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Objectives. Machine learning (ML)–based emulators improve the calibration of decision-analytical models, but their
performance in complex microsimulation models is yet to be determined. Methods. We demonstrated the use of an
ML-based emulator with the Colorectal Cancer (CRC)-Adenoma Incidence and Mortality (CRC-AIM) model,
which includes 23 unknown natural history input parameters to replicate the CRC epidemiology in the United
States. We first generated 15,000 input combinations and ran the CRC-AIM model to evaluate CRC incidence, ade-
noma size distribution, and the percentage of small adenoma detected by colonoscopy. We then used this data set to
train several ML algorithms, including deep neural network (DNN), random forest, and several gradient boosting
variants (i.e., XGBoost, LightGBM, CatBoost) and compared their performance. We evaluated 10 million potential
input combinations using the selected emulator and examined input combinations that best estimated observed cali-
bration targets. Furthermore, we cross-validated outcomes generated by the CRC-AIM model with those made by
CISNET models. The calibrated CRC-AIM model was externally validated using the United Kingdom Flexible Sig-
moidoscopy Screening Trial (UKFSST). Results. The DNN with proper preprocessing outperformed other tested
ML algorithms and successfully predicted all 8 outcomes for different input combinations. It took 473 s for the
trained DNN to predict outcomes for 10 million inputs, which would have required 190 CPU-years without our
DNN. The overall calibration process took 104 CPU-days, which included building the data set, training, selecting,
and hyperparameter tuning of the ML algorithms. While 7 input combinations had acceptable fit to the targets, a
combination that best fits all outcomes was selected as the best vector. Almost all of the predictions made by the best
vector laid within those from the CISNET models, demonstrating CRC-AIM’s cross-model validity. Similarly,
CRC-AIM accurately predicted the hazard ratios of CRC incidence and mortality as reported by UKFSST, demon-
strating its external validity. Examination of the impact of calibration targets suggested that the selection of the cali-
bration target had a substantial impact on model outcomes in terms of life-year gains with screening. Conclusions.
Emulators such as a DNN that is meticulously selected and trained can substantially reduce the computational
burden of calibrating complex microsimulation models.
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Highlights

� Calibrating a microsimulation model, a process to find unobservable parameters so that the model fits
observed data, is computationally complex.

� We used a deep neural network model, a popular machine learning algorithm, to calibrate the Colorectal
Cancer Adenoma Incidence and Mortality (CRC-AIM) model.

� We demonstrated that our approach provides an efficient and accurate method to significantly speed up
calibration in microsimulation models.

� The calibration process successfully provided cross-model validation of CRC-AIM against 3 established
CISNET models and also externally validated against a randomized controlled trial.
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A crucial component of developing cancer microsimulation
models is calibration, which involves estimating the directly
unobservable natural history parameters from repeated
simulation experiments.1 Conventional approaches to
calibration require running the microsimulation model
with a large number of input combinations to identify a
parameter set that best fits calibration targets such as
observed cancer incidence and mortality.2 There are 2
important challenges in calibration. First, running a
complex simulation model with many input combinations
is computationally prohibitive. Second, there is little

knowledge of how different targets for calibration may
affect model outcomes.

Previous efforts to improve the calibration of simula-
tion models with heuristic or statistical engines such as
simulated annealing3–5 and Bayesian calibration6–9 are
powerful yet timely and complex. Alternatively, machine
learning (ML) and statistical methods are simpler to
implement, do not require optimization knowledge, and
can be used to accelerate the calibration process com-
pared with conventional calibration methods.

To address these challenges, we compared several ML
algorithms and selected a deep neural network (DNN)

framework as an emulator to facilitate microsimulation

model calibration. Emulators or surrogate models have

recently received attention for calibration of simulation

models2,10; however, previous studies either used only 1

ML algorithm or calibrated using only a few targets.

Furthermore, we incorporated multiple calibration targets

into our framework and showed that the heterogeneity in

the estimated unknown parameters can be achieved.
We demonstrate the effectiveness and validity of our

approach using the Colorectal Cancer-Adenoma Incidence
and Mortality (CRC-AIM) model, which is designed to
answer questions related to colorectal cancer (CRC) pro-
gression and screening. CRC is the second leading cause
of cancer deaths in the United States,11 and early detection
through screening reduces CRC incidence and mortality.12

While screening is recommended by major medical
organizations including the US Preventive Services Task
Force (USPSTF),13 American Cancer Society (ACS),14
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and American College of Gastroenterology,15 full consen-
sus has not been achieved with respect to some key consid-
erations, such as the optimal frequency, age range for
screening, and so forth. In addition, as new CRC screen-
ing modalities with different accuracies are developed,
comparative effectiveness must be carefully reassessed. For
this purpose, microsimulation models are increasingly used
by policy makers to address comparative effectiveness and
other questions related to CRC screening.16

In this study, we first show how we develop, train,
and tune the hyperparameters of several ML algorithms
and select the best emulator for the calibration. Then, we
illustrate how our DNN-based emulator efficiently iden-
tifies multiple sets of unknown natural history–related
parameters of CRC-AIM that fit well to primary calibra-
tion targets. We then demonstrate the validity of the cali-
brated CRC-AIM model using cross-model validation
and external validation. For cross-model validation, we
compare CRC-AIM’s outcomes for CRC incidence,
mortality, and life-years gained (LYG) from screening to
the 3 established microsimulation models of the National
Cancer Institute’s (NCI’s) Cancer Intervention and Sur-
veillance Modeling Network (CISNET), which were used
to inform USPSTF and ACS CRC screening guide-
lines.14,16,17 For external validation, we replicate a large
randomized controlled trial on CRC screening using
CRC-AIM and compare the model’s outcomes against
the trial’s findings. Finally, we demonstrate how calibra-
tion targets used for CRC-AIM affect the predicted
CRC mortality reduction and LYG by screening.

Methods

Overview of CRC-AIM

CRC-AIM was inspired by the ColoRectal Cancer Simu-
lated Population Incidence and Natural history (CRC-
SPIN) model, 1 of 3 CISNET CRC models, and there-
fore shares many of this model’s features (as obtained or
derived from publicly available sources).18,19 In this sec-
tion, we provide a brief description of the CRC-AIM
and include full details of the model in Supplementary
Section A. We also describe the key differences between
CRC-AIM and CRC-SPIN models in Supplementary
Section B.

CRC-AIM simulates CRC-related events for individ-
uals at average risk of developing CRC. The natural his-
tory of CRC is based on an adenoma-carcinoma
sequence and consists of 5 subcomponents: 1) adenoma
generation, 2) adenoma growth, 3) transition from ade-
noma to preclinical cancer, 4) transition from preclinical
cancer to clinically detectable cancer (i.e., sojourn time),
and 5) survival (Figure 1). CRC-AIM included stylistic
probability distributions to model CRC progression. We
used these probability distributions as they have been
reported to accurately represent CRC natural history.19

1. Adenoma generation. CRC-AIM assumes that the
risk of developing an adenoma depends on an indi-
vidual’s sex, age, and baseline risk, in which individ-
uals younger than age 20 are not at risk of
developing adenomas.20 After an adenoma is
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survival
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Poisson process based on
individual’s per-person 
(inherent) risk, sex, and 
age.

Adenoma growth 
distribution
Fréchet distribution for 
time to 10mm. 
Richard’s growth curve 
for adenoma size at 
each time.

Adenoma location
Six locations (rectum, 
sigmoid, descending 
colon, transverse colon, 
ascending colon, and 
cecum) based on a 
multinomial distribution. 

Adenoma transition
Function of sex, 
adenoma size, 
individual’s age at 
adenoma initiation, and 
adenoma location (colon 
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Sojourn time
Weibull distribution 
based on location
(colon vs. rectum).
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AJCC staging by 
anatomic subsite 
location (proximal 
colon, distal colon, and 
rectum), age-group at 
diagnosis, and sex.

Size at detection
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conditional on subsite 
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Figure 1 Overview of the CRC-AIM natural history model.
AJCC,American Joint Committee on Cancer; CRC, colorectal cancer; CRC-AIM, Colorectal Cancer-Adenoma Incidence and Mortality model.
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created, it is assigned to 1 of the 6 locations accord-
ing to a multinomial distribution derived from sev-
eral autopsy studies: rectum, sigmoid colon,
descending colon, transverse colon, ascending colon,
and cecum (Supplementary Table 1).

2. Adenoma growth. The size (i.e., diameter) of an ade-
noma is determined using the Richard’s growth
model,21 in which its growth rate is calculated by the
time required to reach 10 mm in diameter, sampled
from a Fréchet distribution.22 The parameters of the
adenoma growth model are differentiated by colon
and rectum.

3. Transition from adenoma to preclinical cancer. CRC-
AIM models the cumulative transition probability
of progressing from adenoma to preclinical cancer
using a log-normal cumulative distribution function
that is based on sex, size, and age at initiation of
adenoma.23,24 Adenoma to preclinical cancer transi-
tions differ between colon and rectum.

4. Transition from preclinical cancer to clinically detect-
able cancer (sojourn time). A Weibull distribution is
used to model the time between the transition from
preclinical cancer to when the preclinical cancer
becomes clinically symptomatic (also known as the
sojourn time) for colon cancers. A proportional
hazards model is assumed between colon and rectal
cancers, and consequently, the sojourn times for
both locations follow the Weibull distribution.

5. Survival. Upon clinical detection of cancer, the stage
at clinical detection is sampled using NCI’s Surveil-
lance, Epidemiology, and End Results (SEER) Pro-
gram 1975–1979 data25 and is found to be a function
of age, sex, and location (rectum, proximal colon,
and distal colon). The size at clinical detection, con-
ditional on location and stage at clinical detection, is
modeled as a gamma distribution (Supplementary
Table 2) using SEER 2010–2015 data that are con-
fined within cases diagnosed at ages 20 to 50 y (prior
to eligibility for CRC screening in the United States).
SEER 2010–2015 data for CRC size generation are
preferred to SEER 1975–1979 data due to 1) the
uncertainty regarding American Joint Committee on
Cancer (AJCC) staging estimate within the older era
and 2) notable differences in cancer sizes between
the 2 time periods (Supplementary Figure 2). Sur-
vival from CRC is sampled from parametric models,
with age at diagnosis and sex as covariates for each
stage and location (colon v. rectum) fitted to cause-
specific survival from SEER (see Supplementary
Section A.5). We applied a 7% reduction in hazard,
estimated using the 5-y cause-specific relative sur-
vival between periods 2000–2003 and 2010–2019

from SEER, for cases diagnosed after 2000 to reflect
the improvement in CRC-specific survival in the
recent years.26 All-cause mortality by age were based
on the 2017 U.S. life table.27

List of Calibrated Natural History Parameters

CRC-AIM includes 23 directly unobservable parameters
governing the natural history of CRC (Table 1), which
need to be estimated using calibration. To calibrate these
parameters, we first identified a plausible range for each
parameter, which was informed by CRC-SPIN.18,19 We
then supplemented the initial plausible range using our
calibration process.

Calibration Targets

To estimate the natural history parameters, we used sev-
eral calibration targets. Our primary targets included
SEER 1975–1979 CRC incidence per 100,000, which
encompass the most comprehensive population-based
nationwide CRC data prior to widespread CRC screen-
ing in the United States, hence providing a crucial input
for natural history model development. These data have
also been used by several other CRC models focusing on
the United States, including CISNET CRC models.28–31

Because AJCC staging was not recorded in SEER data
prior to 1988, stage-specific CRC incidence was not
available to be used as a calibration target. To overcome
this limitation, in addition to using overall CRC inci-
dence by age as a calibration target, we also included the
CRC incidence by location (colon and rectum) and gen-
der (male and female) among our calibration targets.
While SEER data include very useful data, they do not
provide sufficient details such as average adenoma size,
which are needed for precise natural history model devel-
opment. For this purpose, we supplemented the primary
calibration targets by including studies by Corley et al.32

and Pickhardt et al.,33 2 high-impact studies reporting
the adenoma prevalence and distribution by size based
on a large sample of asymptomatic patients.32,33

In addition, we used 3 studies as secondary calibra-
tion targets to verify preclinical cancer prevalence and
size distribution.34–36 Since preclinical cancer prevalence
is highly attributed with prior screening history and
removal of adenomas, these studies were unique in iden-
tifying participants without a history of screening. The
chances of detecting precancerous lesions are low; thus,
for each of the secondary calibration targets, we gener-
ated a tolerance interval based on confidence intervals to
determine whether model predictions fall within the
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reported values (Supplementary Table 7b). The use of
secondary targets required adapting CRC-AIM to repli-
cate the study settings in terms of the age and sex distri-
bution of the study population (Supplementary Table 6).

Model Calibration

Because a single run of CRC-AIM simulation takes
approximately 30 min in a standalone desktop PC with
population size of 500K, it is computationally infeasible
to evaluate all possible combinations of the parameters
listed in Table 1 to identify the best combination. To
speed up this process, we evaluated several ML algo-
rithms as an emulator, which approximates the
CRC-AIM model outcomes based on inputs and has
substantially shorter computational times compared with
CRC-AIM.37 Figure 2 shows a schematic flowchart of
our calibration framework.

Emulator Selection

We first generated 15,000 different combinations of the
unknown parameters from the plausible ranges using
Latin hypercube sampling (LHS)38 and ran CRC-AIM
to evaluate the corresponding target values (shown as D1

in Figure 2). To select the best population size for gener-
ating outcomes, the precision of CRC-AIM in predicting
CRC with different population sizes was evaluated. We
found that the modeled incidence remained relatively
stable when the population size was at least 500K (Sup-
plementary Figure 4). Hence, we simulated 500K individ-
uals in each run, and we used the following aggregated
calibration targets to select ML algorithms: CRC inci-
dence by location and gender from SEER (4 outcomes),
adenoma size distribution for the age groups of 50 to 59,
60 to 69, and 70+ y based on Corley et al.32 (3 out-
comes), and the percentage of small adenoma detected
by same-day virtual and optical colonoscopy from

Table 1 Unknown Parameters of CRC-AIM Natural History Model

Unknown Parameter Plausible Range
Best Parameter Value
Selected by Calibration

Adenoma generation
Baseline log risk, b0 b0 ; TN �7,�5½ � �6:3, 0:4ð Þ 25.661
Standard deviation of baseline log-risk, s0 s0 ; TN 1, 2½ � 1:1, 0:2ð Þ 1.270
Sex effect, b1 b1 ; TN �0:5,�0:1½ � �0:5, 0:1ð Þ 20.384
Age effect (ages 20–\50), b2 b2 ; TN 0:03, 0:07½ � 0:045, 0:007ð Þ 0.039
Age effect (ages 50–\60), b3 b3 ; TN 0:01, 0:05½ � 0:03, 0:01ð Þ 0.023
Age effect (ages 60–\70), b4 b4 ; TN �0:01, 0:05½ � 0:03, 0:01ð Þ 0.020
Age effect (ages �70), b5 b5 ; TN �0:02, 0:03½ � 0:03, 0:03ð Þ 20.018

Adenoma growth (time to 10 mm)
Scale (colon), sc sc ; U 10:7, 40ð Þ 24.364
Shape (colon), ac ac ; U 0:5, 4ð Þ 1.388
Scale (rectum), sr sr ; U 5, 20ð Þ 6.734
Shape (rectrum), ar ar ; U 2, 5ð Þ 3.601

Adenoma growth (Richard’s growth model)
Shape parameter, p p ; TN 0:5, 3:2½ � 1:0, 0:5ð Þ 0.710

Transition from adenoma to cancer
Size (male, colon), g1cm g1cm ; U 0:02, 0:06ð Þ 0.040
Age at initiation (male, colon), g2cm g2cm ; U 0:0, 0:02ð Þ 0.016
Size (male, rectum), g1rm g1rm ; U 0:02, 0:07ð Þ 0.039
Age at initiation (male, rectum), g2rm g2rm ; U 0:0, 0:02ð Þ 0.004
Size (female, colon), g1cf g1cf ; U 0:02, 0:05ð Þ 0.043

Age at initiation (female, colon), g2cf g2cf ; U 0:0, 0:02ð Þ 0.014

Size (female, rectum), g1rf g1rf ; U 0:02, 0:055ð Þ 0.035

Age at initiation (female, rectum), g2rf g2rf ; U 0:0, 0:02ð Þ 0.010

Sojourn time
Scale (colon), lc lc ; U 3:0, 5:0ð Þ 4.683
Shape (colon and rectum), k k ; U 2:0, 5:0ð Þ 3.620
Log-hazard ratio, a a ; U �1:0, 1:0ð Þ 20.018

TN a, b½ � m, sð Þ represents a truncated normal distribution with mean m and standard deviation s over the domain [a,b]. U(a,b) represents a

uniform distribution with domain (a,b). CRC-AIM, Colorectal Cancer-Adenoma Incidence and Mortality Model.
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Pickhardt et al.33 (1 outcome). Since the confidence inter-
vals around the mean for secondary targets were wide
(Supplementary Table 7b), the additional value of adding
them as outcomes to our ML algorithms was minimal;
hence, they were excluded in selecting the best emulator
but included in calibration validation.

Using the 15,000 input-output combination pairs, we
evaluated several ML algorithms, such as DNN,39 ran-
dom forest,40 and several gradient boosting methods
including conventional gradient boosting,41,42 eXtreme
Gradient Boosting (XGBoost) with advanced L1 and L2
regularization,43 LightGBM44 (light gradient boosting

machine), and CatBoost (categorical boosting)45 and
compared their performance. For this purpose, we
divided the simulation runs into training and testing data
sets with the ratio of 3:1 and trained each ML algorithm
with the training data. To preprocess the data set, we
evaluated 2 scaling methods, standardization (mean of
zero and standard deviation of unity) and normalization
(min-max scaler). The goodness-of-fit (GOF) metrics
(i.e., mean squared error [MSE], mean absolute error,
mean absolute percentage error, and mean squared log
error) for the training and testing data sets were calcu-
lated. To investigate and tune hyperparameters of each

Figure 2 Calibration framework using an emulator as a surrogate for actual microsimulation model.
LHS, Latin hypercube sampling.
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ML model, we used k-fold cross-validation (k = 5) and
a random search with 100 hyperparameter combinations
for finding the best set that maximizes GOF.

Calibration Process with the Trained Emulator

Once the best ML algorithm for the emulator was identi-
fied, we compared emulator-based predictions against
CRC-AIM–generated outcomes with the testing data set
and confirmed the predictive accuracy of the emulator.
We then used the emulator to evaluate 10 million input
vector combinations generated from LHS (denoted as D2

in Figure 2) to identify the most promising input vector
combinations that are within 5% difference to targets.
We used this 5% deviation from the calibration target to
ensure that all potentially acceptable inputs suggested by
the emulator would be further analyzed. The selected
input vector combinations were simulated by CRC-AIM,
and their simulated outcomes were compared with the
calibration targets.

Since we had several primary and secondary calibra-
tion targets, among vectors with simulated outcomes fall
within targets’ ranges, a rank-ordered hierarchical pro-
cess of eliminating implausible models based on their fit
to the calibration targets was employed. The list of target
priorities and the scoring framework are provided in
Supplementary Table 14. For the natural history model-
ing, our highest-rank target was CRC incidence by age,
location, and sex, followed by adenoma prevalence and
sojourn time. Adenoma size distribution for different age
groups, dwell time, and secondary calibration targets
were weighted less. The input vectors with acceptable
natural history fit to primary and secondary calibration
targets were further examined by cross-model validation
experiments.

Cross-Model Validation

After the calibration was completed and all of the input
vector combinations with high precision to primary and
secondary calibration targets were selected, CRC-AIM
was cross-validated against the 3 CISNET models,
CRC-SPIN, MISCAN-COLON, and SimCRC, which
reported extensive results as part of the 2021 USPSTF
CRC screening guideline update.46 We compared several
outcomes such as LYG with screening, CRC incidence
and deaths (in the presence and absence of screening),
and total number of colonoscopies conducted by screen-
ing modality. Three screening strategies (at their recom-
mended screening intervals) for individuals aged 45 to
75 y were compared: colonoscopy every 10 y, annual

fecal immunochemical test (FIT), and triennial multitar-
get stool DNA (mt-sDNA) test. Screening test sensitivity
for CRC and adenomas (by size) and specificity are pro-
vided in Supplementary Table 10. Consistent with the
USPSTF modeling approach,46 sensitivity for stool tests
was calibrated to match the overall nonadvanced ade-
noma sensitivity (Supplementary Section F). Perfect
adherence to screening (100%) was assumed, and an
incidence rate ratio was applied to reflect the increasing
underlying risk of developing CRC since 1970.47 Previ-
ous analysis showed that the CRC incidence for adults
younger than 50 y who were not eligible to receive
national screening has substantially increased for both
men and women in colon and rectum.47 Based on prior
analysis reported in USPSTF,46 the incidence rate ratio
was set to 1.19. The incidence rate ratio was assumed to
be driven by an increase in the baseline log risk, b0ð Þ in
adenoma generation (the full equation is provided in
Supplementary Section A.1), and is applied throughout
each simulated individuals’ life span.

Similar to natural history model selection, we used a
hierarchical process to rank our cross-model validation
experiments since multiple outputs were compared
against other models. The criteria specified that the dif-
ferences of model-predicted outcomes compared with
those from the 3 CISNET models should be sufficiently
small. The outcomes, sorted from most important to
least, included CRC incidence, LYG due to screening,
CRC deaths averted with screening, total number of
colonoscopies, and CRC cases and deaths without
screening. We prioritized LYG due to screening since
USPSTF ‘‘focused on estimated LYG (compared with
no screening) as the primary measure of the benefit of
screening’’ in their 2021 CRC screening guideline
update.48

External Validation Using the United Kingdom Flexible
Sigmoidoscopy Screening Trial (UKFSST)

External validation was performed by comparing mod-
eled outcomes from CRC-AIM against those reported
by UKFSST, a randomized controlled trial that exam-
ined CRC incidence and mortality outcomes following a
1-time flexible sigmoidoscopy.49–51 UKFSST was con-
ducted in a population that was not yet routinely
screened for CRC; therefore, published trial results pro-
vided unique information on the preclinical duration of
CRC and the screening impact on the risk of CRC. As a
result, many simulation models including CSNET CRC
models used UKFSST as an external validation tar-
get.52–55
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Briefly, in UKFSST, participants aged 55 to 64 y
from 14 centers were randomized into a control group
and a sigmoidoscopy screening group. As the UKFSST
was a UK-based trial, 1996–1998 UK life tables were
used to modify all-cause mortality in CRC-AIM.56 No
other modifications to the natural history of the model
were made. The trial was simulated 500 times, each time
generating a cohort with size, age, and sex distributions
similar to the observed data from the trial. Details
regarding sensitivity and specificity of sigmoidoscopy
and colonoscopy, referral to colonoscopy, and surveil-
lance with colonoscopy are presented in Supplementary
Section G. Primary outcomes included hazard ratios of
CRC incidence and mortality, whereas secondary out-
comes included long-term cumulative incidence and mor-
tality over 17 y of follow-up.

For each of the input combinations that demonstrated
successful fit to natural history targets and screening
cross-validation, external validity against UKFSST was
also examined. A vector that partially fails to meet this
criterion (i.e., only 1 of incidence or mortality hazard
ratio is within confidence interval range) was regarded as
acceptable, since it is likely for that vector to demon-
strate external validity against other trials. At the end of
selecting final input vectors, we identified 1 single input
vector that has the best performance in terms of calibra-
tion targets. However, we also included multiple input
vectors with acceptable performance in our final model,
to reflect the heterogeneity of the CRC natural history.

Impact of Calibration Targets on Outcomes

To test the importance of calibration target selection, we
examined the LYG from screening for 4 input combina-
tions that were regarded as unacceptable for 1 of the pri-
mary targets: 1 that fit SEER incidence and the
calibration target from the study by Pickhardt et al. but
not that from the study by Corley et al. (model U1), 1
that fit the calibration target from the studies by Corley
et al. and Pickhardt et al. well but not SEER incidence
(model U2), 1 that fit SEER incidence and the calibra-
tion target from the study by Corley et al. but not that
from the study by Pickhardt et al. (model U3), and 1 that
fit SEER incidence but not the studies by Corley et al.
and Pickhardt et al. well (model U4). We also performed
the external validation experiments for these models.

Results

Selection and Fine-Tuning of the Emulator

Among all ML algorithms, DNN had the best GOF
when standardization was used (Supplementary Table

8). Hence, DNN was selected to build the emulator for
the calibration. For the hyperparameter tuning of the
DNN, we explored its performance with different GOF
measures, the number of nodes in hidden layers, activa-
tion functions, optimization algorithms, learning rates,
epochs, and batch sizes. We used 5-fold cross-validation
and random search with 100 hyperparameter combina-
tions that took 4.16 h to complete. We further verified
several parameter combinations with trial and error, to
ensure the best hyperparameters were selected. The final
DNN had an input layer with 23 nodes, an output layer
with 8 nodes, and 4 dense hidden layers with 128, 64, 64,
and 64 nodes, respectively (Figure 3). The activation
function used in the first and third layers was the sig-
moid function, whereas rectified linear units were used in
other layers. We selected the Adam optimization algo-
rithm,57 a first-order gradient-based optimization of sto-
chastic objective functions with a learning rate of 0.001
to train the model. Since the outputs are continuous and
MSE provides a combination measurement of bias and
variance of the prediction, it was used to quantify the
GOF between the predicted and observed values in the
test data set and as the loss function.

Performance of DNN

Using AWS (p3.2xlarge EC2 instance), it took 10 min to
run 1 replication of CRC-AIM, whereas the DNN model
was trained in 28.4 s with a training MSE of 0.014. On
the test data set, predicted outcomes were comparable
with actual outcomes in most cases, with an MSE less
than 0.016. DNN-predicted versus CRC-AIM–predicted
outcomes for the first 100 testing input combinations are
shown in Figure 4. While the outcomes may substantially
differ between each combination of input vector (shown
in the x-axis), the DNN model was also able to predict
these differences accurately (shown by the red line). For
instance, the input vector used for run 20 of the testing
data set (i.e., x-axis value equal to 20) led to a high ade-
noma prevalence and low CRC incidence, indicating a
slow-growing adenoma scenario in which the proportion
of small adenomas is high and they would not transition
to cancer. The red and black points at x = 20 represent
the DNN and CRC-AIM estimates, respectively. In most
cases, red and black points associated with input vectors
are very close to each other, indicating that the DNN
successfully predicted the CRC incidence for each loca-
tion and sex, adenoma prevalence by age, and propor-
tion of small adenoma detected.

The trained DNN was used to predict outcomes for 10
million newly generated inputs in 473.16 s. Considering
the computation times for input-output pair data
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generation (2,500 h), the generation, storage, and retriev-
ing of 10 million LHS combinations for prediction
(7 min), Emulator model selection (5 h), training, testing,
hyperparameter tuning of selected emulator (4.5 h), and
filtering the predicted outcomes (10 min), the calibration
process took approximately about 104 CPU days. In
contrast, conventional calibration would have required a
total of 190 CPU y with CRC-AIM.

Of 10 million inputs, only 101 input combinations that
were within a deviation of 5% from the point estimates of
primary calibration targets and were considered well-
fitting and selected for further investigation. We then used
CRC-AIM to evaluate these 101 input combinations for
primary and secondary calibration targets. As shown in
Supplementary Table 9, the overall difference between
CRC-AIM’s actual outcomes and the predicted outcomes
by DNN were 4.4% (CI: 3.9%–4.7%), and the largest
margin between predicted and actual outcomes was seen
in CRC incidence of colon in females and rectal in males.

Selection of a Calibrated CRC-AIM

In total, 56 of 101 input vectors showed acceptable
natural history outcomes and were further examined for
cross-model validation. Among them, 16 of the 56 input
parameters resulted in outcomes that were consistent
with those reported by the CISNET models. We then
used the UKFSST to test the external validity of our best

input vectors. Seven input vectors with acceptable fit to
the calibration targets and cross-model validity were
selected as our final input vector combinations. These
inputs with corresponding values, reflecting the heteroge-
neity of CRC natural history, are presented in Supple-
mentary Table 12. Model predictions for all outcomes
considered in cross-validation and external validation
are presented in Supplementary Table 13. The score of
each input vector for targets is summarized in Supple-
mentary Table 14. One vector that best fits all outcomes
was selected as the representative input vector (Table 1).
The difference between predicted outcomes from DNN
and actual outcomes from CRC-AIM for the representa-
tive input vector was 1.9%. The selected input vector
matched age-specific CRC incidence as reported by
SEER’s 1975–1979 data (Figure 5) as well as adenoma
prevalence reported by the autopsy studies46 (Supple-
mentary Figure 7). Distributions of adenomas by loca-
tion (Supplementary Figure 8), adenoma size by age
group (Supplementary Figure 9), and cancer stage at
diagnosis (Supplementary Figure 11) estimated by CRC-
AIM compared well against our estimates with SEER
data58 and CISNET models. The dwell time and sojourn
time estimated by CRC-AIM were 20.3 y and 4.1 y,
respectively, both of which fall within the estimated val-
ues from the literature59–61 and CISNET models (Sup-
plementary Figure 10).
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Cross-Model Validation with CISNET Models and
External Validation with UKFSST

Screening-related outcomes estimated by CRC-AIM,
including LYG, incidence and mortality reductions asso-
ciated with colonoscopy, FIT, and mt-sDNA screening
strategies (Figure 6) as well as the associated numbers of
colonoscopies and stool-based tests (Supplementary Fig-
ures 12–15), were comparable with CISNET model
predictions.

The hazard ratios of CRC incidence and CRC mortal-
ity at 17-y follow-up (Figure 7) and the cumulative

probabilities of CRC incidence and mortality (Supple-
mentary Figure 16) estimated by CRC-AIM were consis-
tent with the reported outcomes from UKFSST,50

demonstrating the external validity of CRC-AIM.

Impact of Calibration Targets on Outcomes

The LYG from screening colonoscopy for individuals
aged 45 to 75 y was 338, 283, 344, and 414 per 1,000
people screened for models U1, U2, U4, and U4, respec-
tively (Supplementary Table 13). Models U2 and U4

Figure 4 DNN- and CRC-AIM–predicted outcomes for the first 100 testing input combinations. CRC incidence rate by sex and
location is represented in panels A through D, followed by adenoma prevalence by age groups in panels E through G and
percentage of small adenoma (� 5 mm) in panel H. Note that the red lines and black lines perfectly overlap for most of the
instances; therefore, black lines are often invisible.
CRC, colorectal cancer; CRC-AIM, Colorectal Cancer-Adenoma Incidence and Mortality model; DNN, deep neural networks.
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were unable to predict LYG within expected range, and
models U2 and U3 failed external validation. Therefore,
fitting to SEER incidence and calibration targets from
screening studies are both critical for model validation.

Discussion

Extensive computational needs for calibration, a crucial
step in the development of cancer microsimulation

models, require methods to accelerate this lengthy pro-
cess. In this study, we used an ML-based framework to
increase the efficiency of calibration for simulation mod-
els without compromising the quality of the calibrated
parameters. We demonstrated our framework’s utility
using CRC-AIM, a microsimulation model representing
the CRC epidemiology in the United States. We found
that using a DNN as an emulator substantially reduced
calibration time from 190 CPU-years to 104 CPU-days.

0

100

200

300

400

500

600

700

40 45 50 55 60 65 70 75 80 85 90 95

C
as

es
 p

er
 1

00
,0

00

Age (y)

SEER (1975-1979)
MISCAN
CRC-SPIN
SimCRC
CRC-AIM

Figure 5 CRC-AIM and CISNET predictions of colorectal cancer cases per 100,000 people by age (adapted from Knudsen et al.46).
CRC-AIM, Colorectal Cancer-Adenoma Incidence and Mortality model; CRC-SPIN, ColoRectal Cancer Simulated Population Incidence and

Natural history model; MISCAN, MIcrosimulation SCreening Analysis; SEER, Surveillance, Epidemiology, and End Results; SimCRC, Simulation

Model of Colorectal Cancer.

364

327 320

369
348

335340
314

301301 291
273

0

50

100

150

200

250

300

350

400

COL (45-75) 10yr FIT (45-75) 1yr mt-sDNA (45-75) 3yr

CRC-AIM SimCRC CRC-SPIN MISCAN

Figure 6 CRC-AIM and CISNET46 estimates of life-years gained from screening by modality (10 y colonoscopy, annual FIT,
and triennial mt-sDNA).
COL, colonoscopy; CRC-AIM, Colorectal Cancer-Adenoma Incidence and Mortality model; CRC-SPIN, ColoRectal Cancer Simulated

Population Incidence and Natural history model; FIT, fecal immunochemical test; MISCAN, MIcrosimulation SCreening Analysis; mt-sDNA,

multi-target stool DNA; SimCRC, Simulation Model of Colorectal Cancer; yr, year.

Vahdat et al. 729



We demonstrated the validity of calibrated parameters
by comparing model-predicted outcomes such as CRC
incidence, LYG, and CRC mortality reduction due to
screening to those reported by the 3 established CISNET
CRC models. Model-predicted LYG and CRC incidence
and mortality reduction resulting from the evaluated
CRC screening strategies were within CISNET models’
predictions. In addition, we showed that the calibrated
CRC-AIM estimated a reduction in CRC incidence and
mortality from 1-time sigmoidoscopy screening similar
to that reported by the UKFSS trial, representing the
external validity of the model.

There is a growing interest in improving the calibra-
tion process for microsimulation models.62–66 Since the
early 2000s, when the conventional approaches to cali-
bration were trial and error,67 maximum likelihood–
based methods,68–70 and grid or random search,71 novel
methods are increasingly being introduced. Hazelbag
et al.63 reviewed 84 publications that used calibration
methods in simulation models. Only 40 of the models
reported a search strategy that was further classified into
optimization and sampling algorithms. Among optimiza-
tion methods, grid search72–74 and iterative optimization

algorithms75 were most commonly used. Examples of
iterative optimization algorithms (e.g., meta-heuristic
methods) that have been extensively used for calibration
are genetic algorithms, simulated annealing, and particle
swarm optimization. The methods have been suggested
as a way to shorten the calibration time.1,5,76,77 However,
the complexity of the proposed methods has limited their
use in real-world applications. Heuristic algorithms start
from an initial input vector and sequentially update the
vector by exploring the neighboring solutions at each
iteration. The sequential nature of these algorithms and
the likelihood of converging to a local optimum are the
biggest limitations of these heuristic approaches. Com-
pared with these methods, our approach enables parallel
computations, thus achieving computational feasibility
and time efficiency. We note that meta-models and emu-
lators have also been used in simulation models for pur-
poses other than calibration, such as conducting cost-
effectiveness and value-of-information analyses or devel-
oping online decision support tools.78,79

Another class of search strategies for calibration
involves statistical and sampling methods,63 which
includes Bayesian calibration with several variations
such as Bayesian melding,80 Sampling Importance
Resampling, Rejection Approximate Bayesian Computa-
tion (ABC), and Incremental Mixture Importance Sam-
pling (IMIS).81 Volpatto et al.9 and Wade et al.82 used
Bayesian calibration with Cascading Adaptive Transi-
tional Metropolis in Parallel (CATMIP)83 for parallel
sampling. Ryckman et al.64 considered 3 calibration
techniques comparing random search to Bayesian cali-
bration with the sampling-importance-resampling algo-
rithm and IMIS to model the natural history of cholera
and showed that Bayesian calibration with IMIS pro-
vided the best model fit while requiring the most compu-
tational resources.

Among Bayesian calibration methods, ABC received
more attention, with Shewmaker et al.7 and Niyukuri
et al.6 using ABC rejection sampling. ABC offers a
likelihood-free method that provides an estimate from
the posterior distribution by choosing parameters that
closely fit the data. However, ABC can be inefficient
when the number of unknown parameters for calibration
is large or many calibration targets are involved. Also,
these models are sensitive to the differences between
prior and posterior distributions. Slipher and Carnegie84

explored parameter calibration in epidemic network
models using 2 search strategies: LHS and ABC. They
found that parameter estimation with LHS is more dis-
persed and better covers the entire parameter space,
while approximate Bayesian inference creates a focused
distribution of values and is more computationally

Figure 7 External validation with UKFSST: hazard ratios of
colorectal cancer incidence and mortality between screening
and control groups over the 17-y follow-up (adapted from
Knudsen et al.46)
CRC, colorectal cancer; CRC-AIM, Colorectal Cancer-Adenoma

Incidence and Mortality model; CRC-SPIN, Colorectal Cancer

Simulated Population Incidence and Natural history model;

MISCAN, MIcrosimulation SCreening Analysis; SimCRC, simulation

model of colorectal cancer; UKFSST, United Kingdom Flexible

Sigmoidoscopy Screening Trial.
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efficient. To overcome some of the shortcomings of
ABC, the Bayesian Calibration using Artificial Neural
Networks (BayCANN) framework was recently pro-
posed.10 BayCANN estimates the posterior joint distri-
bution of calibrated parameters using neural networks
and was 5 times faster than the IMIS algorithm.10

Compared with the present study, BayCANN
included a smaller number of unknown parameters (9
inputs) while predicting a large number of outcomes
(36). For a better comparison between our method and
the Bayesian calibration with neural network emulators,
we used the open-source code of BayCANN for our cali-
bration experiment (Supplementary Section E.1). We
observed that our method was more successful than Bay-
CANN in matching calibration targets. Furthermore,
our method generates a set of heterogeneous input vec-
tors rather than clustered inputs, which may be more
helpful when dealing with uncertainty. However, we also
recognize that BayCANN was previously tested on mul-
tiple models and therefore has more promise for general-
izability. Thus, while our approach appears to work well
for our problem, its potential performance for other
simulation models is unknown.

Recent calibration literature advocates for the use of
ML algorithms and their efficiency. Chopra et al.85 and
Anirudh et al.86 used neural networks to calibrate simu-
lation models. These studies did not compare their cali-
bration method with other ML algorithms but found
neural network framework to be effective for calibration.
Angione et al.87 compared several ML algorithms (e.g.,
linear regression, support vector machines, neural net-
works) for an agent-based model of social care provision
in the United Kingdom and found ML-based meta-
models can facilitate robust sensitivity analyses while
reducing computational time. However, this proof-of-
concept study predicted only a single outcome of inter-
est, rather than multiple outcomes concurrently. Sai
et al.88 and Reiker et al.89 used Gaussian process for cali-
bration. Reiker and colleagues proposed an optimization
framework employing Gaussian process as a ML emula-
tor function to calibrate a complex malaria transmission
simulator.89

Similar to our study, Cevik et al.2 demonstrated how
an active learning-based algorithm could accelerate natu-
ral history calibration in microsimulation model, specifi-
cally a CISNET breast cancer model. However, that
active learning algorithm required a feedback mechanism
between the ML and microsimulation models, whereas
our framework used the microsimulation model only to
provide inputs to the ML algorithm. Therefore, unlike
the study by Cevik et al.,2 our framework does not
require specifying a stopping condition to end the

feedback mechanism between the ML and microsimula-
tion models. Furthermore, our ML algorithm incorpo-
rated multiple calibration targets rather than a single
calibration target, and such differences may have led to
performance differences between the 2 studies.

We showed that the choice and number of calibration
targets and the differential weights applied to them
affected modeled outcomes. Because several input com-
binations generated outcomes close to the targets, adding
cross-model targets for validation of our complex simula-
tion model was crucial in identifying the final set of
inputs. We demonstrated that if our study had relied on
only 1 of the primary calibration targets sets instead of
using all 3 of them, the model’s LYG predictions would
have been substantially different, demonstrating the
impact of calibration target selection on model predic-
tions. In fact, even the use of SEER data, the most com-
prehensive population-based calibration target for cancer
modeling, was by itself insufficient to identify a model
that passed the cross-model validation and external vali-
dation. The findings suggest the importance of establish-
ing cross-model and external validity to obtain a robust
set of input combinations that is best supported by all
available evidence. To the best of our knowledge, no pre-
vious cancer simulation study has demonstrated the
impact of choosing calibration targets on long-term
model outcomes such as LYG, prohibiting direct com-
parison to these studies. Our findings suggest that mode-
lers and policy makers may need to conduct a sensitivity
analysis on the calibration targets to assess the robust-
ness of the conclusions drawn from modeling studies and
the uncertainties in the natural history of the disease.
Such structural sensitivity analyses experiments and
robust decision-making approaches could be useful for
model development.

Unlike many of the calibration studies in the litera-
ture, we identified a set of input vectors that have accep-
table performance in terms of calibration and validation
targets. The selection of multiple input vectors as
opposed to a single input vector provides an opportunity
to evaluate the impact of heterogeneity and uncertainty
in directly unobservable natural history parameters on
final model outcomes. We identified an input vector with
good fit to the outcomes explored in the natural history,
but the LYG outcomes did not compare well with the
CISNET model predictions (model U5 in Supplementary
Table 14). While this vector may be regarded as unaccepta-
ble simply due to its failure to demonstrate cross-validity,
we recognize that the choice of comparing well to CISNET
models may appear arbitrary and suggest that models that
predicted outcomes that are out of range must not be plau-
sible. Excluding this vector may jeopardize the goal of
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obtaining robust conclusions. While we plan to use the best
input vector for the base-case analyses, multiple input vec-
tors will be used to conduct a structural and parametric
sensitivity analysis of the natural history parameters in
future experiments.

This study has several limitations. One of the chal-
lenges in calibrating complex cancer simulation models is
overidentification. To assess the level of overidentifica-
tion in our study, we plotted the distribution of the
model parameters corresponding to the best-fitting 500K
input combinations from our emulator, as shown in Sup-
plementary Figure 5. While some parameters are tightly
clustered (e.g., the mean and standard deviation of the
baseline risk for developing adenoma and the impact of
adenoma size in colon and rectum on transitioning of
adenoma to preclinical cancer), no clustering was
observed for other parameters (e.g., the impact of per-
son’s age at the time of adenoma initiation on transition
of adenoma to preclinical cancer). The heterogeneity of
our final selected sets of inputs also indicates that there
might be multiple solutions for our calibration problem.
Alarid-Escudero et al.90 and Ryckman et al.64 suggested
using additional calibration targets, narrowing prior dis-
tribution ranges, and weighting the GOF function, as
some methods to address nonidentifiability, which also
applies to overidentification. Identifying and addressing
the degree of overidentification solutions with meta-
models is a topic of interest and recommended for future
research.

While our approach has impressive empirical perfor-
mance, it is not based on rigorous statistical methodol-
ogy. Also, other sections of our calibration procedure
such as input selection scoring system, targets’ weights
and importance, and selection of additional cross-
validation target were based on empirical evidence rather
than on a theoretical framework, which can be further
investigated with more theoretical approaches. While
empirical, we showed that having a sufficiently large
sample for prediction, the difference between the emula-
tor and statistical methods such as Bayesian calibration
may be minimal. Although substantial time may need to
be spent to fine-tune and tailor the DNN to a specific
simulation model including hyperparameter tuning, the
overall calibration time can be reduced. Unlike Bayesian
calibration models, our method is not capable of produc-
ing conventional posterior distribution and uncertainty
bounds around the estimates. However, our method gen-
erates a set of heterogeneous input vectors rather than
clustered inputs, as discussed earlier. Furthermore, iden-
tifying the correlation between inputs and calibration
targets is not trivial when using a DNN emulator. While
some ML algorithms such as random forests generate

the correlation of inputs to outputs, such a task is com-
putationally burdensome for other models such as
DNN, with many deep layers and thousands of hidden
parameters.91–93 There are methods that approximate
the importance of inputs in DNN94,95 but are beyond the
scope of this research.

While we investigated the importance of calibration
target selection in our research, we did not quantify
uncertainty and incompatibility of calibration targets in
cancer simulation modeling. Mandrik et al.66 discussed
methods for dealing with biased calibration targets,
including adjustment of target means and standard errors
to account for sampling uncertainty and data incompat-
ibility. Further investigation is required to understand
the efficiency of ML compared with Bayesian calibration
when calibration data are incomplete or biased. Note
that prior information about the input parameters from
the CRC-SPIN model, which was used to design our
model structure, may have helped us identify high-quality
inputs relatively quickly. Therefore, our approach may
not work efficiently on models in which there is no prior
information. In terms of modeling the natural history of
CRC, CRC-AIM does not consider the modeling of
CRCs that occur through the sessile serrated pathway
(SSP), which is a major limitation. Approximately 14%
to 30%96–98 of CRCs are estimated to arise from sessile
serrated lesions and polyps, which develop mainly via the
CpG island methylation pathway.99,100 In fact, several
CRC simulation models considered both adenoma-
carcinoma and SSP pathways and have been extensively
validated through several clinical trials.101–103 Finally,
further work is needed to demonstrate that CRC-AIM
predictions approximate CISNET CRC model predic-
tions for other screening scenarios and modalities.

In summary, this study showed that the use of power-
ful DNNs as an emulator could significantly speed up
calibration for complex cancer microsimulation models
with extensive computational requirements.
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