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and Cure Models: A Tutorial
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Background. Different parametric survival models can lead to widely discordant extrapolations and decision uncer-
tainty in cost-effectiveness analyses. The use of excess hazard (EH) methods, which incorporate general population
mortality data, has the potential to reduce model uncertainty. This review highlights key practical considerations of
EH methods for estimating long-term survival. Methods. Demonstration of methods used a case study of 686
patients from the German Breast Cancer Study Group, followed for a maximum of 7.3 y and divided into low (1/2)
and high (3) grade cancers. Seven standard parametric survival models were fit to each group separately. The same 7
distributions were then used in an EH framework, which incorporated general population mortality rates, and fitted
both with and without a cure parameter. Survival extrapolations, restricted mean survival time (RMST), and differ-
ence in RMST between high and low grades were compared up to 30 years along with Akaike information criterion
goodness-of-fit and cure fraction estimates. The sensitivity of the EH models to lifetable misspecification was investi-
gated. Results. In our case study, variability in survival extrapolations was extensive across the standard models, with
30-y RMST ranging from 7.5 to 14.3 y. Incorporation of general population mortality rates using EH cure methods
substantially reduced model uncertainty, whereas EH models without cure had less of an effect. Long-term treatment
effects approached the null for most models but at varying rates. Lifetable misspecification had minimal effect on
RMST differences. Conclusions. EH methods may be useful for survival extrapolation, and in cancer, EHs may
decrease over time and be easier to extrapolate than all-cause hazards. EH cure models may be helpful when cure is
plausible and likely to result in less extrapolation variability.

Highlights

� In health economic modeling, to help anchor long-term survival extrapolation, it has been recommended
that survival models incorporate background mortality rates using excess hazard (EH) methods.

� We present a thorough description of EH methods with and without the assumption of cure and
demonstrate user-friendly software to aid researchers wishing to use these methods.

� EH models are applied to a case study, and we demonstrate that EHs are easier to extrapolate and that the
use of the EH cure model, when cure is plausible, can reduce extrapolation variability.

� EH methods are relatively robust to lifetable misspecification.
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Estimates of long-term survival are frequently required in
cost-effectiveness analyses of new treatments.1,2 Such
analyses play an important role in reimbursement decisions
for new interventions and rely on estimates of lifetime
benefits and costs. In oncology, the limited follow-up of
clinical trials usually necessitates extrapolation of survival
beyond the trial period.3 However, cost-effectiveness
estimates can be highly sensitive to the extrapolation
method used.4 A review of National Institute for Health
and Care Excellence (NICE) cancer Technology Appraisals
has identified a variety of extrapolation approaches that
have previously been used, often employing parametric
survival models.5 To help avoid extremely implausible
projections, it has been recommended that standard
parametric models incorporate background mortality rates
and/or other relevant external information.6

Incorporation of general population mortality (GPM)
rates into survival extrapolation has the potential to pre-
vent implausible projections by using GPM rates as an
anchor for long-term hazards. Previously, Technology
Appraisals have used GPMs outside of the model-fitting

process to switch from the parametric model projections
to the GPM rates when the projected rates hit the GPM
rates.7,8 This causes a discontinuity in the all-cause
hazard function at the time the parametric rates drop
below the GPM rates. Furthermore, parametric models
may project mortality rates that remain implausibly
higher than GPM rates into the future. A more statisti-
cally coherent approach to incorporating GPM rates
directly into the modeling process is to use an excess
hazard (EH) model.9,10 A EH model will ensure that all-
cause hazards are at least as large as the GPM rates and
may be larger if the model estimates nonzero excess mor-
tality. The EH approach therefore deals with one of the
issues with survival extrapolation, namely, preventing
projected mortality rates dropping below GPM rates.
The EH approach partitions overall mortality rates into
expected rates determined from the GPM rates and
excess rates, estimated from the model, which describe
the additional hazard experienced in the study popula-
tion. The GPM rates are assumed fixed and known and
are usually taken from population lifetables, which are
matched to the study population by age, sex, and calen-
dar year. Once an EH model has been fitted, predictions
of excess mortality can be combined again with GPM
rates to give estimates of long-term all-cause survival.
This approach may be appealing given patterns of excess
mortality rates, and GPM rates are likely to be very dif-
ferent over time.6

As an example, Figure 1 shows the background GPM
hazard (red line) and the EH (blue line) in one arm of a
hypothesized randomised controlled trial (RCT). The
all-cause hazard (green line) is the sum of the GPM and
EHs. Due to trial inclusion/exclusion criteria, the all-
cause hazard rate may start out low before increasing
and then decreasing as the EH decreases. In the long
term, the all-cause hazard may start increasing again as
it starts to become dominated by the background GPM
rate (red line), which increases as the cohort ages. There-
fore, in this example, the all-cause hazard function has 2
turning points (at 3 and 11 y), whereas the EH function
has just 1 turning point (at 3 y) and so has a less complex
shape.

A class of models called EH cure models consider the
possibility of cure, which can lead to the excess mortality
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rates approaching zero over time. If the assumption of
cure is considered reasonable, the use of cure models may
be appealing and provide improved extrapolations.11

The focus of this article is on the demonstration of the
use of EH methods for extrapolation using a suite of
standard parametric models that have been recom-
mended for consideration in health economic modeling.2

We demonstrate the methods using data from the Ger-
man Breast Cancer Study Group (GBCS), which is freely
available and for which R code is provided in Appendix
3 and R and Stata code is online at https://github.com/
AstraZeneca/survextrap-excesshazards. Although we
make no firm recommendations on the use of EH meth-
ods for survival extrapolation, this tutorial provides a
hands-on demonstration for researchers wishing to use
EH methods and discusses the underlying assumptions,
robustness of the estimation to lifetable misspecification,
and how predictions of all-cause survival, hazard, and
restricted mean survival time (RMST) can be obtained.
Finally, we consider the plausibility of extrapolated long-
term treatment effects using fully stratified parametric
models that do not rely on strong proportional hazards
(PH) or constant acceleration factor (AF) assumptions.

Methods

EH/Relative Survival Framework

In an EH framework, the all-cause mortality rate for an
individual i in the study population, hi tð Þ, is broken into
2 constituent parts, the background mortality rate h�i tð Þ
and the excess mortality rate li tð Þ, such that, based on an
additive hazards assumption,

hi tð Þ = h�i tð Þ + li tð Þ:

In an EH model, the background mortality rate is
treated like an offset and is assumed fixed and known. It
is individual specific as it is usually based on a lifetable
matched by variables such as age, sex, and calendar year.

Using the transformation between the hazard and
survival scale, the all-cause survival Si tð Þ is a product of
the background (expected) survival S�i tð Þ and the relative
survival, Ri tð Þ:

Si tð Þ = S�i tð ÞRi tð Þ:

Ri tð Þ is known as the relative survival function as it
describes the ratio of all-cause survival to background
survival.

GPM rates are commonly used for the background
mortality, whereas a parametric survival distribution can

be chosen to model the excess rate. A model that includes
covariates, for example, treatment, could then be defined
using a proportional (excess) hazards (PH) model

li tð Þ=l0 tð Þ exp bT Xi

� �

or an accelerated failure time (AFT) model such that on
the relative survival scale

Ri tð Þ= R0 t exp �bT Xi

� �� �
:

Alternatively, parametric models could be fitted to each
treatment arm separately. This approach relaxes the PH/
AFT assumption and places fewer constraints on how
the treatment effect varies over time.

In the short time frame of a typical RCT, the excess
mortality rate is often not too dissimilar to the all-cause
rate, as many deaths will be associated with the disease
under study. However, in the long term, the excess and
all-cause rates will start to diverge. In oncology, excess
rates will tend to decrease and may even approach zero
if cure is possible (see hypothesized example in Figure 1).

EH Cure Models

EH cure models take into account the possibility of cure,
which can lead to the EH tending toward zero over time,
which is not guaranteed for all EH models. There are 2
types of cure model: the mixture-cure and non–mixture-
cure model.12 Both have a long history, and their proper-
ties have been studied widely.13–15 In this tutorial, we
consider only the mixture-cure model, which expresses the

Figure 1 Hypothesised hazard functions in a cancer clinical
trial where cure is possible.
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relative survival as a mixture of 2 latent subpopulations,
one that is cured and never experiences mortality due to
the disease and an uncured subpopulation. The all-cause
survival probability for an individual i is written as

Si tð Þ = S�i tð ÞRi tð Þ = S�i tð Þ pi + 1� pið ÞSu, i tð Þð Þ ð1Þ

where pi is the probability that the individual will be
cured of their disease and Su, i tð Þ is a parametric survival
function for the uncured component of the mixture. The
EH cure model is expressed in the framework of an EH
model but with Ri tð Þ modeled as a mixture. If p is not a
function of covariates, then it can be interpreted as an
overall cure fraction (the proportion of the population
estimated to be eventually cured of their disease if other
causes of mortality were not acting on the population).
However, research has shown that the cure fraction
should be interpreted cautiously since it may be very sen-
sitive to model misspecification14 and can be unstable.15

In the special case where p= 0, mixture-cure models col-
lapse to standard EH models. For the purposes of extra-
polation in this tutorial, we consider the incorporation
of GPM rates for all applications of the cure model.

Obtaining Predictions from EH Models

EH models estimate parameters on the EH scale, includ-
ing EH ratios. To get predictions of all-cause survival and
all-cause hazard, we need to reincorporate the GPM rates.
The predicted all-cause survival for an individual i at time
t is the predicted relative survival (obtained from the EH
model) multiplied by their expected survival at time t:

Ŝi tð Þ= S�i tð ÞR̂i tð Þ: ð2Þ

The prediction of all-cause survival is individual specific
even if no covariates are included in the EH model,
because the expected mortality rates will typically vary
by the age, sex, and calendar year of the individual. Usu-
ally, interest is in the marginal predicted all-cause sur-
vival. This is the survival distribution for the trial (or
trial arm) population, which is calculated via averaging
(standardizing) individual-level survival curves over a
suitable target population (e.g., the original study popu-
lation). Given N individuals in the target population, the
marginal all-cause survival at time t is predicted as

�S tð Þ =
XN

i= 1

Ŝi tð Þ
N

ð3Þ

The hazard function for the marginal all-cause survival
at time t is a weighted average of the N individual

all-cause hazard functions, weighted by the probability
of survival by time t:

�h tð Þ =

PN
i= 1 Ŝi tð Þĥi tð Þ
PN

i= 1 Ŝi tð Þ
ð4Þ

where ĥi tð Þ = h�i tð Þ + l̂i tð Þ is the predicted all-cause
hazard for individual i. When covariates are used in the
EH model, the same calculations can be performed,
resulting in marginal estimates of the all-cause survival
and hazard function, averaging over the covariate distri-
bution of the N individuals. If an indicator of treatment
(or exposure), Z, is included in the EH model, then a
counterfactual marginal contrast can be obtained, in
which a marginal estimate is calculated assuming all
patients had received the treatment (Z = 1) and con-
trasted against a marginal estimate assuming all patients
did not receive the treatment (Z = 0).

Software Implementation

All models were fitted using the flexsurv and flex-
survcure packages in R. Postestimation predictions of
all-cause survival, hazard, RMST, and EHs were calcu-
lated using the standsurv function within flexsurv,
which calculates marginal survival and hazard measures
set out in equation 3 and equation 4. Standard errors
and confidence intervals for these marginal effects are
calculated using the delta method. To calculate implied
hazard ratios and differences in RMST from models fitted
separately to each treatment (or exposure) group, we fit
fully stratified survival models where treatment (or expo-
sure) is included as a covariate that affects all parameters
in the model (e.g., both the shape and scale parameters
for a standard Weibull, or the mean, standard deviation
and cure parameters in a log-normal cure model). Fully
stratified survival models are equivalent to fitting models
to each treatment arm separately but have the additional
advantage of allowing contrasts and standard errors of
contrasts between treatment groups to be easily calculated
using existing software implementation. Example code
used to fit these models and to produce the predictions
are given in Appendix 3, with full code online at https://
github.com/AstraZeneca/survextrap-excesshazards.

Results

The German Breast Cancer Study (GBCS) group pro-
vides data on 686 primary node-positive breast cancer
patients diagnosed between 1984 and 1989. The median
age at diagnosis is 53 y (Q1–Q3; 46–61 y). The data
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contain information on survival and recurrence times
together with their respective censoring indicators. The
data also contain a variety of patient characteristics,
including age and diagnosis date. For this demonstration,
cancer grade is used as a prognostic (exposure) variable,
collapsed into 2 levels: grades 1/2 and grade 3. The objec-
tive is to obtain extrapolated survival curves up to 30 y
after diagnosis and to compare the 2 prognostic groups.
Cancer grade was used for illustrative purposes because it
produced 2 distinct survival curves. There were 171 deaths
with a mean follow-up to death or censoring of 3.6 y
(2,480 person-years of follow-up) and maximum follow-
up of 7.3 y. A Kaplan-Meier plot of the data, stratified by
grade, is shown in Supplementary Figure 1. At 6-y follow-
up, survival was estimated to be 66% and 48% in the
grade 1/2 and grade 3 groups, respectively.

Model Fit for Cancer Grades 1 and 2

Seven standard parametric survival models were fitted to
the group with cancer grades 1/2 (Exponential, Weibull,
Log-logistic, Log-normal, Gompertz, Gamma, General-
ised Gamma). The Exponential distribution makes a very
strong assumption of a constant hazard over time. Three
other distributions have monotonic hazards (Weibull,
Gamma, Gompertz), whereas the remaining 3 distribu-
tions (Log-logistic, Log-normal, Generalized Gamma)
allow unimodal hazard functions with a single turning
point.

EH models with and without cure were fitted by
incorporating background mortality rates from (West)
German lifetables obtained from the Human Mortality
Database (https://www.mortality.org). These were
matched by age, sex, and calendar year to patients in the
breast cancer study. The lifetables used in this example
were from 1956 to 2020 and for ages 0 to 119 y. Pre-
dicted expected survival beyond the maximum age or
calendar year in the lifetable used the rate at the maxi-
mum for as many years as required.

AIC Statistics and Root Mean Squared Prediction Error

Goodness of fit of the 8 standard parametric models, as
assessed via the Akaike information criterion (AIC)
statistic, are shown in Table 1 (first column). The Log-
normal with the lowest AIC gives the best fit, whereas
the Exponential and Gompertz are shown to provide the
worst fit among the models considered. The Generalized
Gamma distribution is second best and has a similar
AIC to the Log-normal.

Most statistical software that fit EH models do not
use the full likelihood, and as such, AIC statistics
reported from EH models cannot be compared directly
with AIC statistics reported from standard parametric
models. Appendix 1 provides a more complete discussion
of this issue. Nevertheless, AIC statistics can be used to
compare between EH models with different distributions
and between EH cure models. In the EH models without
cure, the Generalized Gamma is the model that now
gives the best AIC, whereas the Exponential and
Gompertz continue to have a poor relative fit (Table 1,
second column).

When a cure assumption is imposed, the goodness of
fit improves for all parametric models, except the Expo-
nential and Generalized Gamma, in comparison with the
EH models without cure (Table 1, third column).

AIC goodness-of-fit statistics, along with visual fit to
the data, can be useful tools to rule out clearly ill-fitting
models. However, we warn against selecting a single
model based on AIC alone, as similar-fitting models can
lead to very different extrapolations.

A further approach to understanding model fit is to
compare root mean squared prediction error (RMSPE)
between predicted marginal all-cause survival and the
Kaplan-Meier estimator. This metric allows direct assess-
ment of the marginal fit of the model and has the addi-
tional benefit of allowing us to compare between
different EH and non-EH models. Further details of the
RMSPE is given in Appendix 2. The RMSPE statistics
show improved fit using EH models for some parametric
distributions and worse fit for others (Supplementary
Table 1).

Table 1 AIC Statistics for 7 Parametric Survival Models and
the Extended Excess Hazard Models with and without Cure,
Fitted to the Grade 1/2 Group of the GBCS Data Seta

Distribution
Standard
Parametric

Excess Hazard
(No Cure)

Excess
Hazard (Cure)

Exponential 874.6 (7) 844.4 (7) 846.5 (7)
Weibull 843.2 (5) 815.7 (5) 812.3 (5)
Gompertz 858.1 (6) 829.3 (6) 825.7 (6)
Gamma 840.2 (3) 812.8 (3) 808.4 (3)
Log-logistic 840.3 (4) 813.2 (4) 809.6 (4)
Log-normal 835.4 (1) 806.6 (2) 804.9 (2)
Generalized
Gamma

837.3 (2) 801.4 (1) 803.4 (1)

AIC, Akaike information criterion; GBCS, German Breast Cancer

Study.
aRank order statistics are shown in parentheses. Note that AIC

statistics are not directly comparable between excess hazard and

standard parametric models.
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All-Cause Hazard Plots

All-cause hazard functions for the 3 approaches are
shown in Supplementary Figure 2, with a B-spline
smoothed empirical hazard function.16 The observed
hazard increases over the first 2 y, which then plateaus
and slightly rises again between years 5 and 6. Many of
the standard parametric and EH models without cure
have an increasing hazard that does not capture the pla-
teau. Only the Log-normal and Generalized Gamma
models show a plateauing of the hazard function. The
various EH cure models behave more similarly to each
other, and all the models except for the Exponential now
incorporate a turning point in the all-cause hazard
function but appear to underestimate the all-cause
hazard at 6 y.

Cure Fraction Estimates

Estimated cure fractions are between 58% and 67% for 5
of the 7 EH cure models (Supplementary Table 2). For
the Exponential (the worst-fitting model) and the Gener-
alized Gamma (the best-fitting model), the estimated cure
fraction is 0%. The Generalized Gamma has more flexi-
bility to model the EH function for the uncured subpopu-
lation and estimates a low (but nonzero) EH in the long
term for the uncured component. This effectively mimics
cure and discounts the need for a cure component in the
model.

Extrapolated Survival and Hazard for
Cancer Grades 1 and 2

All-cause survival extrapolations up to 30 y are extremely
variable for the 7 parametric models without background
mortality (Figure 2a). This is evidenced by the 30-y
RMST estimates, which range from 7.5 y under the
Gompertz model to 14.3 y under the Exponential model.
This variability remains when using EH models without
cure (Figure 2b) but decreases when using EH cure
models (Figure 2c). The 30-y RMST under the cure
models ranges from 13.5 y to 17.5 y.

To better understand each model, we need to study
the all-cause hazard functions over a 30-y period, as
plotted in Figure 3. The Weibull, Gompertz, and Gamma
distributions have unrealistic increasing hazards that go
beyond the range of the y-axis when applied both with-
out and with background mortality rates. The models
might be discounted due to lack of face validity, since the
hazards rise rapidly and are 2.9, 4.8, and 74.5 times the
average rate (estimated by the Exponential model) by
20 y, for the Gamma, Weibull, and Gompertz standard
parametric models, respectively. The Log-logistic, Log-

normal, and Generalized Gamma standard parametric
models all have a turning point and tend toward back-
ground mortality rates by 30-y, whereas the all-cause
hazard function stays consistently above background
rates when these models are applied in an EH (no cure)
setting. For 5 of the EH cure models, the EH rate
becomes negligibly small between 7 and 15 y, and hence,
the all-cause hazard reaches and follows the background
hazard. The plausibility of this assumption along with
the credibility of the long-term all-cause survival pre-
dicted by the cure models should be carefully considered
and justified if a cure model is to be used. The Exponen-
tial and Generalized Gamma EH cure models (the worst-
fitting and best-fitting model, respectively) predict an all-
cause hazard that remains above the background hazard
up to 30 y.

Long-term Effects of Cancer Grade

The model-fitting process is repeated using all patients in
the GBCS data to investigate the long-term effect of can-
cer grades 1 and 2 versus grade 3, using cancer grade to
mimic the 2 arms of an RCT. It is common in health
technology assessment submissions to fit entirely sepa-
rate survival models to 2 treatment arms of a clinical
trial; this avoids assuming the treatment effect follows a
PH or constant AF assumption, which may be unrealistic
over a long time period. Conversely, however, the treat-
ment effect is now unrestricted and governed entirely by
the shape of the extrapolated hazards in the 2 arms. The
implied long-term treatment effect of fitting 2 separate
models to the treatment arms is often not fully investi-
gated. We assume the same underlying distributional
form for the 2 cancer grade groups; that is, if one group
is fitted using a Weibull distribution, then the other
group is also fitted using a Weibull. We return to this
issue of using the same ‘‘type’’ of model in the discussion.

The implied all-cause hazard ratio from fitting models
to each group separately is shown in Figure 4. In the
standard parametric models, there is considerable varia-
bility in the long-term all-cause hazard ratios with the
Gompertz hazard ratio going above 1 after 10 y and con-
tinuing to rise thereafter. The variability in the hazard
ratios is translated to large differences between the
groups in RMST at 30 y, ranging from a difference of
1.6 y (95% CI 20.5, 3.6) for the Gompertz model to
5.9 y (95% CI 3.4, 8.4) for the Exponential.

The EH models reduce this variability somewhat.
Most of the models predict an increasing all-cause hazard
ratio that tends to and approaches 1. The variability in
the RMST difference has reduced, although it is still
considerable.
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In the EH cure models, the all-cause hazards in the 2
groups tend toward background hazards, albeit at possi-
bly different rates, and so the all-cause hazard ratio tends
towards 1 in the long-term (Figure 4c). For most of the
models, the all-cause hazard ratio reaches 1 between 10
and 25 y. The exception is the Exponential (a poor-fitting
model) and the Generalized Gamma, where the all-cause
hazard ratio gets close to but does not reach 1 by 30 y.
The variability in the RMST difference has reduced con-
siderably, with most models predicting a difference in
RMST of between 4 and 4.8 y. However, the confidence
intervals are quite variable between the models, with the
95% confidence intervals for the Log-normal being par-
ticularly wide.

Supplementary Figure 3 shows the all-cause hazard
functions for the 2 groups for the Generalized Gamma
and Log-normal distributions. The all-cause hazards for

the EH models for the 2 groups have similar shapes and
tend to converge after a period of time, tracking either
above the GPM rates (EH noncure models) or conver-
ging towards the GPM rates (EH cure models).

Sensitivity of Cure Models to Choice of External
Population Hazards

This section highlights the robustness (or otherwise) of
the EH models based on the choice of lifetable and how
variation in background mortality rates between a selec-
tion of different countries affects estimation of EH rates
and extrapolations. We consider 2 scenarios: first, where
an incorrect lifetable is used in both the estimation of the
EH model and in the prediction of all-cause survival, and
second, where an incorrect lifetable is used in the estima-
tion but a common lifetable is used for prediction. The

Figure 2 All-cause survival extrapolation of 7 parametric models for grades 1/2 breast cancer patients: (a) without external data,
(b) with background mortality rates incorporated using an excess hazards model, and (c) with background mortality rates
incorporated in a mixture-cure excess hazards model. The black dashed line shows the marginal background survival. The
vertical dashed line shows the end-of-study follow-up. The table shows the 30-y restricted mean survival times (RMST) with 95%
confidence intervals.
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latter scenario considers the same target estimand (coun-
try) but considers misspecification of the EHs estimated
from the EH model.

GPMs were obtained from the Human Mortality
Database17 for 6 countries (West Germany, Hungary,
Chile, United States, Sweden, Japan). There is reason-
able variation in the GPM rates from these countries
(Supplementary Table 3). The Log-normal EH models
with and without cure were refitted using background
mortality rates from each of these 6 countries in turn. In
scenario 1, predictions were then made for the country
whose lifetable was used for estimation, whereas in sce-
nario 2, predictions were made for a West German popu-
lation (the target population) using the estimated EH
models.

Changing the lifetable in the estimation of the EHs
and then applying the same background rates to predict
all-cause survival has very little effect on predictions if an
EH model without cure is fitted (Figure 5a). However,

using an EH cure model results in much wider variabil-
ity, which is a consequence of different background rates
dominating the long-term predictions (Figure 5b).

In scenario 2, there is very little variability in the pre-
dicted all-cause survival for a West German population
using an EH noncure model dependent on the lifetable
used in the estimation of the excess rates, whereas there is
slightly more variability using an EH cure model (Supple-
mentary Figure 4). The difference in RMST at 30 y is rel-
atively robust to the choice of lifetable, although there are
clear differences between the noncure and cure models.

In conclusion, based on these limited investigations,
results are generally robust to lifetable misspecification.
This finding is supported by previous research that inves-
tigated the use of different projected general population
rates in calculating life expectancy in colon cancer
patients.18

The implications of this finding are that it may be
plausible to fit a single EH (cure) model utilising the

Figure 3 Extrapolation of all-cause hazards estimated from 7 parametric models for grades 1/2 breast cancer patients: (a)
without external data, (b) with background mortality rates incorporated using an excess hazards model, and (c) with background
mortality rates incorporated in a mixture-cure excess hazards model. The black dashed line shows the marginal background
hazard. The vertical dashed line shows end of study follow-up.
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lifetable information that best matches the study popula-
tion. Health economic evaluations in different countries
could then use these excess mortality/relative survival
estimates and combine with background mortality rates/
expected survival from the country of interest using
equation 2 to predict all-cause survival in that jurisdic-
tion. This approach makes the stronger assumption that
excess mortality rates are commutable between countries
whereas other-cause rates vary.

Discussion

This tutorial demonstrates the potential that EH models

with and without cure have for improving the practice of

survival extrapolation in Technology Appraisals, when

long-term extrapolation is required. EH cure models are

likely to result in less extrapolation variability due to the

use of GPM data and the cure assumption they make but

should be considered only if cure is deemed plausible. If

Figure 4 All-cause hazard ratios derived from 7 parametric models fitted separately to the 2 cancer grade groups: (a) without
external data, (b) with background mortality rates incorporated using an excess hazards model, and (c) with background
mortality rates incorporated in a mixture-cure excess hazards model. The table shows the difference in 30-y restricted mean
survival times (RMST) with 95% confidence intervals.
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cure is not plausible, then cure models can result in large
bias, as shown previously in simulation studies.6 In can-
cer studies, extrapolation based on the EH function is
more stable and reliable, as it is likely to have a simpler
long-term shape than the all-cause hazard and in cancer
is likely to decrease over time.19 Hence, standard para-
metric functions with at most 1 turning point in the
hazard function may be more suitable when applied to
the EH compared with the all-cause hazard. Further-
more, EH cure models typically force a turning point in
the all-cause hazard function as the hazard returns
toward the background hazard in the long term, even if
simpler monotonic hazard functions are used for the
uncured subpopulation. The EH models use background
mortality rates, which typically dominate the long-term

extrapolation reflecting the aging cohort. None of the
standard parametric models incorporate this external
information. Although EH models were applied in this
tutorial to a breast cancer population, the model frame-
work can also be used for extrapolating survival in other
cancers and to nonmalignant diseases in which GPM

rates are relevant and a dominating factor for informing
long-term rates.

Consideration should be given to whether GPM rates
are suitable as long-term estimates of background mor-
tality. It may be plausible that hazards remain above
population mortality rates even in the long term, in
which case background rates from other data sources
(such as cancer registries with long-term follow-up)
could be used within an EH modeling framework.

Figure 5 All-cause survival extrapolation of the stratified Log-normal excess hazard models with and without cure, where
background mortality rates used for model fitting are taken from 1 of 6 countries and predictions are made for the country used
in the estimation. The table shows the difference in 30-y restricted mean survival time (RMST) with 95% confidence intervals. (a)
Scenario 1: Excess hazard model without cure (same lifetable for estimation and prediction), (b) Scenario 1: Excess hazard model
with cure (same lifetable for estimation and prediction).
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This tutorial does not discuss the use of flexible para-
metric models (FPMs) that use splines to model hazard
functions since the purpose of the tutorial was to demon-
strate EH methods using the standard suite of parametric
models commonly used in Technology Appraisals. Nev-
ertheless, FPMs are becoming increasingly popular as
they can more accurately capture changes in the hazard
function over follow-up and hence overcome some of the
limitations of using standard parametric models.6,19–21

FPMs are more explicit in the assumption they make
about the shape of the hazard after the end of follow-up.
For example, the Royston-Parmar FPM on the log
cumulative EH scale assumes linearity after the last
knot,20,22 whereas an FPM cure model assumes zero EH
after the last knot.23 The utility of these models may
therefore lie in the ability to explicitly place the last knot
at a location where these assumptions may be deemed
reasonable. Meanwhile, the extrapolated (excess) hazard
from standard parametric models is not made explicit in
the model formulation, and we recommend plotting the
long-term estimated (excess) hazard function to assess if
it is deemed plausible.

Cure models are increasingly seen as an important
tool for survival extrapolation. However, in some set-
tings where cure is not reasonable, cure models can give
very poor extrapolation performance.6 The parametric
cure models discussed in this tutorial allow EH rates to
approach (asymptote) zero over time, which in our appli-
cation can be interpreted as patients eventually being free
from breast cancer–related deaths. However, within the
study follow-up, there may be no evidence of ‘‘cure.’’
Whether the assumption of long-term cure beyond the
range of the data is reasonable or not is an untestable
assumption (with the study data to hand) and so relies
on arguments around biological plausibility, pharmaco-
logic mechanisms, clinical opinion, and other external
evidence.21 Care should be given not to overinterpret the
estimated cure fraction in a model since EHs may tend
to zero even when the cure fraction is zero. This was
demonstrated in our case study, in which a Generalized
Gamma EH model was flexible enough to capture a low
long-term EH, negating the need for a mixture-cure
model (and hence estimating a cure fraction of zero).

The choice of model used for extrapolation should not
be based entirely on within-sample goodness-of-fit. As
previously demonstrated,11,24 models with near-identical
within-trial fit can provide qualitatively discrepant extra-
polations. Therefore, within-trial goodness-of-fit should
be used in conjunction with objective assessment of the
credibility of extrapolations. This approach naturally
leads to the consideration of external data sources such
as other trials with longer-term follow-up, disease

registries, and expert elicitation, and Bayesian approaches
lend themselves naturally to the formal incorporation of
external information.25–27

In the evaluation of relative treatment efficacy, a fully
stratified parametric model does not rely on strong PH or
constant AF assumptions. However, this approach does
assume the same ‘‘type’’ of model is applied to both arms
(e.g., a Weibull), as recommended in the NICE Technical
Support Document 14.2 A yet more assumption-free
approach could be to allow the parametric distribution as
well as the parameters of the model to vary by treatment
group. This may provide a wider range of possible treat-
ment effects and is an avenue for further exploration.

In conclusion, this tutorial has demonstrated how EH
methods can help reduce model variability through the
incorporation of population mortality rates and can
make explicit assumptions regarding long-term cure. We
suggest these methods should be considered when con-
ducting extrapolation of all-cause survival.

Authors’ Note

Michael J. Sweeting is also affiliated to Department of Popula-
tion Health Sciences, University of Leicester, UK.

ORCID iD

Michael J. Sweeting https://orcid.org/0000-0003-0980-8965

Data Availability Statement

Data and analytic methods are available to other researchers at
https://github.com/AstraZeneca/survextrap-excesshazards.

Supplemental Material

Supplementary material for this article is available online at
https://doi.org/10.1177/0272989X231184247.

References

1. National Institute for Health and Care Excellence. Guide

to the methods of technology appraisal 2013. Process and

methods [PMG9]. April 2013. Available from: https://

www.nice.org.uk/process/pmg9/chapter/foreword
2. Latimer N. NICE DSU Technical Support Document 14:

Undertaking Survival Analysis for Economic Evaluation

Alongside Clinical Trials - Extrapolation with Patient-Level

Data. Report. London: National Institute for Health and

Care Excellence; 2011.
3. Ouwens MJNM, Mukhopadhyay P, Zhang Y, Huang M,

Latimer N, Briggs A. Estimating lifetime benefits associated

with immuno-oncology therapies: challenges and approaches

for overall survival extrapolations. Pharmacoeconomics.

2019;37(9):1129–38. DOI: 10.1007/s40273-019-00806-4

Sweeting et al. 747

https://orcid.org/0000-0003-0980-8965
https://github.com/AstraZeneca/survextrap-excesshazards
https://doi.org/10.1177/0272989X231184247
https://www.nice.org.uk/process/pmg9/chapter/foreword
https://www.nice.org.uk/process/pmg9/chapter/foreword


4. Kearns B, Stevens J, Ren S, Brennan A. How uncertain is
the survival extrapolation? A study of the impact of differ-
ent parametric survival models on extrapolated uncertainty
about hazard functions, lifetime mean survival and cost
effectiveness. Pharmacoeconomics. 2020;38(2):193–204.
DOI: 10.1007/s40273-019-00853-x

5. Bell Gorrod H, Kearns B, Stevens J, et al. A review of sur-
vival analysis methods used in NICE technology appraisals
of cancer treatments: consistency, limitations, and areas
for improvement. Med Decis Making. 2019;39(8):899–909.
DOI: 10.1177/0272989X19881967

6. Rutherford MJ, Lambert PC, Sweeting MJ, et al. NICE

DSU Technical Support Document 21: Flexible Methods

For Survival Analysis. Report. London: National Institute
for Health and Care Excellence, 2020.

7. National Institute for Health and Care Excellence. Aval-
glucosidase alfa for treating Pompe disease. Technology

appraisal guidance [TA821]. August 24, 2022. Available
from: https://www.nice.org.uk/guidance/ta821/documents/
committee-papers

8. National Institute for Health and Care Excellence. Liposo-
mal cytarabine–daunorubicin for untreated acute myeloid
leukaemia. Technology appraisal guidance [TA552].
December 19, 2018. Available from: https://www.nice.or
g.uk/guidance/ta552/documents/committee-papers

9. Nelson CP, Lambert PC, Squire IB, Jones DR. Flexible
parametric models for relative survival, with application in
coronary heart disease. Stat Med. 2007;26(30):5486–98.
DOI: 10.1002/sim.3064

10. Dickman PW, Sloggett A, Hills M, Hakulinen T. Regression
models for relative survival. Stat Med. 2004;23(1):51–64.
DOI: 10.1002/sim.1597

11. Kearns B, Stevenson MD, Triantafyllopoulos K, Manca
A. The extrapolation performance of survival models for
data with a cure fraction: a simulation study. Value Health.
2021;24(11):1634–42. DOI: 10.1016/j.jval.2021.05.009

12. Lambert PC. Modeling of the cure fraction in survival
studies. Stata J. 2007;7(3):351–75. DOI: 10.1177/15368
67X0700700304

13. Farewell VT. Mixture models in survival analysis: are they
worth the risk? Can J Stat. 1986;14(3):257–62. DOI: 10.2307/
3314804

14. Sposto R. Cure model analysis in cancer: an application to
data from the Children’s Cancer Group. Stat Med.
2002;21(2):293–312. DOI: 10.1002/sim.987

15. Yu B, Tiwari RC, Cronin KA, Feuer EJ. Cure fraction
estimation from the mixture cure models for grouped survival
data. Stat Med. 2004;23(11):1733–47. DOI: 10.1002/sim.1774

16. Rebora P, Salim A, Reilly M. bshazard: a flexible tool for

nonparametric smoothing of the hazard function. R J.

2014;6(2):114–22. DOI: 10.32614/RJ-2014-028
17. HMD. Human Mortality Database. Max Planck Institute

for Demographic Research (Germany), University of Cali-

fornia, Berkeley (USA), and French Institute for Demo-

graphic Studies (France). https://www.mortality.org
18. Andersson TML, Rutherford MJ, Lambert PC. Illustration

of different modelling assumptions for estimation of loss in

expectation of life due to cancer. BMC Med Res Methodol.

2019;19(1):145. DOI: 10.1186/s12874-019-0785-x
19. Andersson TML, Dickman PW, Eloranta S, Lambe M,

Lambert PC. Estimating the loss in expectation of life due

to cancer using flexible parametric survival models. Stat

Med. 2013;32(30):5286–300. DOI: 10.1002/sim.5943
20. Jakobsen LH, Andersson TML, Biccler JL, El-Galaly

TC, Bøgsted M. Estimating the loss of lifetime function

using flexible parametric relative survival models. BMC

Med Res Methodol. 2019;19(1):23. DOI: 10.1186/s12874-

019-0661-8
21. Latimer NR, Adler AI. Extrapolation beyond the end of trials

to estimate long term survival and cost effectiveness. BMJ

Med. 2022;1(1):e000094. DOI: 10.1136/bmjmed-2021-000094
22. Royston P, Parmar MKB. Flexible parametric proportional-

hazards and proportional-odds models for censored survival

data, with application to prognostic modelling and estima-

tion of treatment effects. Stat Med. 2002;21(15):2175–97.

DOI: 10.1002/sim.1203
23. Andersson TML, Dickman PW, Eloranta S, Lambert PC.

Estimating and modelling cure in population-based cancer

studies within the framework of flexible parametric sur-

vival models. BMC Med Res Methodol. 2011;11:96. DOI:

10.1186/1471-2288-11-96
24. Gallacher D, Kimani P, Stallard N. Extrapolating para-

metric survival models in health technology assessment: a

simulation study. Med Decis Making. 2021;41(1):37–50.

DOI: 10.1177/0272989X20973201
25. Demiris N, Sharples LD. Bayesian evidence synthesis to

extrapolate survival estimates in cost-effectiveness studies.

Stat Med. 2006;25(11):1960–75. DOI: 10.1002/sim.2366
26. Benaglia T, Jackson CH, Sharples LD. Survival extrapola-

tion in the presence of cause specific hazards. Stat Med.

2015;34(5):796–811. DOI: 10.1002/sim.6375
27. Guyot P, Ades AE, Beasley M, Lueza B, Pignon JP, Wel-

ton NJ. Extrapolation of survival curves from cancer trials

using external information. Med Decis Making. 2017;37(4):

353–66. DOI: 10.1177/0272989X16670604

748 Medical Decision Making 43(6)

https://www.nice.org.uk/guidance/ta821/documents/committee-papers
https://www.nice.org.uk/guidance/ta821/documents/committee-papers
https://www.nice.org.uk/guidance/ta552/documents/committee-papers
https://www.nice.org.uk/guidance/ta552/documents/committee-papers
https://www.mortality.org

