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Abstract

Transcription factors (TFs) are key regulatory proteins that control the transcriptional rate of cells by binding short DNA sequences called
transcription factor binding sites (TFBS) or motifs. Identifying and characterizing TFBS is fundamental to understanding the regulatory
mechanisms governing the transcriptional state of cells. During the last decades, several experimental methods have been developed to
recover DNA sequences containing TFBS. In parallel, computational methods have been proposed to discover and identify TFBS motifs
based on these DNA sequences. This is one of the most widely investigated problems in bioinformatics and is referred to as the motif
discovery problem. In this manuscript, we review classical and novel experimental and computational methods developed to discover
and characterize TFBS motifs in DNA sequences, highlighting their advantages and drawbacks. We also discuss open challenges and
future perspectives that could fill the remaining gaps in the field.
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INTRODUCTION
Transcription factors (TFs) are fundamental proteins regulating
the transcriptional states, differentiation and developmental pat-
terns of cells [1–3]. TFs exert their function by binding short and
specific DNA sequences (∼6–20 nt long [4]), called transcription
factor binding sites (TFBS), recognized by their binding domains.
TFBS are often located in gene promoters [5], distal regulatory
elements, such as enhancers, silencers or insulators, and even
within coding regions [6–8]. TFBS often correspond to recurring
DNA sequence patterns, which are often referred to as motifs,
and these patterns can differ by a few nucleotides. Importantly,
TF function is critically linked to the motif sequences it can bind
[9, 10]. Therefore, the identification of such regulatory motifs
provides fundamental insights into the complex mechanisms
governing gene expression.

Several experimental assays have been developed to determine
the binding site sequences of TFs in living cells or organisms (in
vivo), or in test tubes using synthetic or purified components (in
vitro) [11] (Figure 1). Early methods, like electrophoretic mobility
shift assay (EMSA) [12] or footprinting [13], generally analyze a
relatively small number of target sequences to find TFBS. As a
result, they return small datasets of bound sequences. In vitro
and in vivo high-throughput protocols such as PBM, SELEX or ChIP
methods [14–16] facilitated the analysis of most target sites for
factors of interest. As a result, large datasets of bound sequences
have been generated, presenting an unprecedented opportunity
to study and determine the TF binding landscapes. Experimen-
tal assays can recover the sequences bound by TFs along with
their relative or absolute binding affinity. However, such datasets
can incorrectly report unbound sequences as binding sites. In

addition, the assays usually capture extra nucleotides in tar-
get sites, reducing data resolution and making manual analysis
challenging.

Motif discovery algorithms provide a computational frame-
work to analyze these large datasets generated by experimental
assays, discovering the sequences potentially bound by TFs and
predicting their affinities [17–21]. Given a sequence dataset, these
algorithms typically recover sets of short and similar sequence
elements. The prioritized sequence elements are later used to
construct a motif model, summarizing the diverse binding site
configurations observed among the prioritized sequences, and
encoding their recurrent patterns and similarities (Figure 1).

Several methods and models have been proposed to discover
and represent TFBS motifs. Position weight matrices (PWMs) [22]
are the most popular models. PWMs are simple yet powerful
and interpretable models, encoding the probability of observing
a given nucleotide in each TFBS position. However, PWMs have
some limitations, like the assumption of independence among the
binding site positions. Therefore, several alternative motif models
have been proposed [23–25], as described below. The derived
motif models can be employed in many downstream analyses,
like searching potential binding site occurrences in regulatory
genomic sequences, predicting the sets of genes regulated by the
investigated TFs or assessing how genetic variants could affect
their binding landscape (Section 5).

In this paper, we review the state-of-the-art of motif dis-
covery, describing the classical and recent experimental and
computational methods to discover and represent TFBS motifs
in DNA sequences. We discuss the novelties brought to the
field by each algorithm and model, highlighting advantages and
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Figure 1. Experimental and computational methods to discover TFBS and popular models to represent binding site motifs. Protein binding microarray
(PBM), HT-SELEX and ChIP-seq have become the most popular assays to determine TF binding preferences and identify their target sites (TFBS) in recent
years. Computational motif discovery methods can be grouped into five classes, based on the algorithms employed to discover TFBS: enumerative,
alignment-based, probabilistic graphical model-based, SVM-based and DNN-based methods. TFBS sequences prioritized by motif discovery algorithms
are encoded in computational models representing the binding preferences of the investigated TFs.

drawbacks of motif discovery methods and motif models, and how
researchers addressed their limitations over the years. We begin
by introducing in Section 2 popular experimental technologies to
identify TF target sequences (Table 1). In Section 3, we review the
computational methods to discover TFBS motifs in the datasets
recovered from experimental assays (Supplementary Table 1)
and popular motif models to represent TFBS. In Section 4, we
discuss widely used TF-related databases. In Section 5, we present
common downstream analyses employing motif models. We
conclude by discussing in Section 6 the open challenges and
potential future research directions for the development of novel
motif discovery algorithms.

EXPERIMENTAL METHODS TO DISCOVER
TRANSCRIPTION FACTOR BINDING SITES
During the last decades, several techniques have been introduced
to experimentally identify and assess TF binding sites and binding
preferences [11] (Figure 1 and Table 1).

Early studies on TF binding focused their analysis on gene
promoters [22] and employed in vitro methods, such as elec-
trophoretic mobility shift assay (EMSA) [12] or DNase footprinting
[26]. EMSA exploits non-denatured polyacrylamide gel properties
to separate bound and unbound DNA sequences. DNase foot-
printing combines EMSA with DNase I cleavage, identifying uncut
regions (footprints) due to the protection of the bound TF. Gen-
erally, these assays produce datasets of a few hundred of bound
sequences, exploring a limited spectrum of TFs binding landscape.
Moreover, EMSA and DNase footprinting may be subject to tech-
nical constraints that could lead to inaccuracies in the reported
sequences and binding preferences [11].

The introduction of NGS technologies revolutionized the
study of TFBS identification by encouraging researchers to
develop methods that exploit the power of massively parallel
sequencing (Figure 1). These methods have two major advantages:
(i) they do not require any prior knowledge on the binding
site sequence [11, 27] and (ii) produce datasets of thousands of
bound sequences allowing a better characterization of TF binding
preferences [28].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
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Protein binding microarrays (PBMs) [14, 29] recover short TFBS
sequences (∼10 bp) and measure TF binding preferences in vitro. In
PBMs, a tagged TF is released on a glass slide containing thousands
of spots filled with short, immobilized DNA sequences. The tagged
TFs are then incubated with fluorescent antibodies against the
tag and subsequently washed to remove weakly bound factors.
The fluorescence and DNA sequence enrichment are then used
to quantify the TF–DNA binding strength and capture the bound
sequences. Generally, the recovered sequences do not contain
nucleotides flanking the investigated binding sites, producing
high-resolution datasets. However, since the number of possible
sequences grows as a function of the target length, PBMs can
assess only a limited number of target sequences [11, 27]. PBM
analysis is usually constrained to binding sites ∼10–12 bp long.

HT-SELEX [11, 15] is a widely used in vitro method, coupling
SELEX with high-throughput sequencing. A TF is released on
a pool of randomized DNA sequences to allow the factor to
select its target sites. The resulting TF–DNA complexes are sep-
arated from unbound sequences using affinity capture, and sub-
sequently amplified through polymerase chain reaction (PCR) and
sequenced. The resulting DNA library is enriched in binding sites
for the studied TF and is used as the starting pool for another
SELEX run [11, 15]. SELEX does not require any prior knowledge on
the target sites of the investigated factor [30]. Since SELEX reaction
is typically performed in liquid phase and consequently does not
suffer from physical constraints, the sequence space covered by
HT-SELEX is often larger than that of PBMs. Moreover, by cou-
pling sequencing with DNA barcode indexing, HT-SELEX allows to
analyze hundreds of TFs in parallel. HT-SELEX produces datasets
of thousands of high-resolution bound sequences, which include
only a few nucleotides flanking the binding sites. However, since
the starting DNA library is constituted by randomized sequences,
HT-SELEX cannot recover the genomic binding locations for the
investigated factor.

The introduction of chromatin immunoprecipitation (ChIP)
technologies [16] radically changed the study of TFBS binding,
enabling the genome-wide identification of regions bound by
TFs in vivo. In ChIP, the TF–DNA complexes are cross-linked
using formaldehyde. The DNA is then fragmented in ∼100–
1000 bp long fragments and subsequently immunoprecipitated
with antibodies specific for the investigated TF. To recover the
bound sequences, the cross-links are reverted. Then, the resulting
fragments are amplified through microarray hybridization (ChIP-
on-Chip [16, 31]) or sequencing (ChIP-seq [32, 33]). To locate
the binding regions, the recovered DNA fragments are mapped
onto the genome. After ChIP-seq reads mapping, peak calling
algorithms [34–36] are employed to predict the genomic binding
locations for the investigated factor. Peak calling algorithms
identify the genomic regions showing greater enrichment in
mapped DNA probes with respect to a control experiment
and mark those regions as binding locations, or peaks [37].
ChIP methods produce large datasets of thousands of genomic
regions, whose length ranges from few hundreds to thousands
of nucleotides, from which we can identify the likely TFBS
for the investigated factor. Although ChIP technologies, and
particularly ChIP-seq, are currently considered the current
‘golden standard’, they have some limitations. (i) ChIP can detect
indirect binding, identifying other TFBS not belonging to the
investigated factor [38]. (ii) ChIP-seq peaks may be false positives,
recovered because of poor antibody quality [39]. (iii) ChIP-seq
returns low-resolution datasets, whose sequences include several
nucleotides flanking the target TFBS. ChIP-exo [40] addresses
the latter issue, employing a lambda exonuclease to trim ChIP
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sequences, removing some of the nucleotides flanking the target
sites.

Alternatively, since most TFs bind their target sequences in
open chromatin regions, experimental assays targeting open chro-
matin like ATAC-seq or DNase-seq [41, 42] can be employed to
recover in vivo genomic locations likely to contain TFBS. ATAC-seq
and DNase-seq are generally employed when the factors binding
the target regions are not known.

In summary, the current high-throughput in vivo and in
vitro assays generate datasets of thousands of sequences
potentially containing several possible binding configurations
of TFBS, thereby enabling better characterizations of TFs binding
landscapes.

COMPUTATIONAL METHODS AND MODELS
TO DISCOVER AND REPRESENT
TRANSCRIPTION FACTOR BINDING SITES
The TFBS motif discovery problem can be formalized as fol-
lows. Given a set of positive DNA sequences S, obtained from
an experimental assay targeting a certain TF, and a set of neg-
ative sequences B, the goal is to find one or more recurrent,
short and similar subsequences in S that maximize the discrim-
inatory power between S and B. Such subsequences are called
patterns or motifs and are likely bound by the investigated TF.
The negative set B can contain randomly generated or selected
genomic sequences, with similar nucleotide content and length
of those in S. The retrieved patterns are used to construct and
train a computational model M (motif model), representing the
discovered motif. These models can then be used to identify new
potential binding sites, given a new set of sequences, and to
predict the strength of the TF–DNA binding. Motif discovery can
be considered a classification or a regression problem, depending
on the type of data used to train M. The datasets derived by
experimental assays like ChIP-seq or HT-SELEX provide hundreds
or thousands of sequences containing binding sites. In this setting,
motif discovery becomes a classification problem. In fact, the goal
is to discriminate between bound and unbound sites in the input
sequences and train the motif model with the identified binding
sites. The datasets produced by other experimental technologies
like PBMs provide the relative binding strength for large sets of
sequences of equal length. Therefore, rather than discriminat-
ing between bound and unbound sequences, in this setting M
learns the relative binding affinities associated to each target
site in the input dataset, transforming motif discovery into a
regression problem. In both settings, the final goal is to derive
a computational model M, describing the recovered TFBS and
capable of predicting new binding events, along with their affinity,
in sequences not used during model training. Motif discovery
algorithms can be classified in enumerative, alignment-based,
probabilistic graphical models, support vector machine (SVM)-
based and deep neural network-based methods (Figure 1 and
Supplementary Table 1).

Other approaches to discover TFBS motifs in genomic
sequences use phylogenetic footprinting [43, 44]. The core
principle of phylogenetic footprinting is that functional elements,
such as TFBS, are more likely to be conserved across evolution-
arily related species, while non-functional elements are more
susceptible to mutations. Although phylogenetic footprinting was
one of the first techniques proposed for identifying TFBS, it is
still widely used to examine TFBS conservation across different
organisms [45–47]. In a recent study [48], the authors proposed a

novel method that utilizes phylogenetic footprinting to discover
TFBS.

Before describing the algorithms, we briefly review the models
to describe TFBS motifs.

The most common models to represent TFBS are consensus
sequences [49], PWMs [22, 50], high-order PWMs [23, 51], SVM-
based [24] and deep neural network-based [25] models.

Consensus sequences summarize the discovered TFBS by
denoting the most frequently observed nucleotide at each
motif position in a prioritized sequence set. Although TFBS
have conserved positions not tolerant to mutations [52], other
binding site locations admit alternative nucleotides. Degenerate
consensus accommodates ambiguous motif positions employing
IUPAC symbols. However, consensus sequences cannot encode
the contribution to TF–DNA binding of each nucleotide at each
motif position.

PWMs address this limitation, providing an additive model
with the contribution of each motif position to the binding site.
PWMs construct an ungapped alignment between motif can-
didate sequences and count the frequency of each nucleotide
at each position. The statistical significance of PWMs is often
measured employing relative entropy (RE) [53]. RE quantifies the
difference between computed nucleotide frequencies and those
obtained from aligning random sequences. PWMs are visualized
as logos [54], where the height of each nucleotide is proportional
to its RE. Despite their wide success, PWMs still assume indepen-
dence between motif positions.

Probabilistic graphical models address this limitation by
modeling dependency between motif nucleotides. These models
include high-order PWMs like dinucleotide weight matrices
(DWMs), Bayesian networks (BNs), Markov models (MMs) or
hidden Markov models (HMMs) [23, 51, 55, 56]. DWMs and high-
order PWMs are often visualized as logos with q-mers replacing
the single nucleotides, where q is the dependency order between
neighboring nucleotides. Importantly, probabilistic graphical
models can account for variable spacing between half-sites of
two box motifs. However, the number of model’s parameters and
its complexity grow exponentially with q, often resulting in the
model overfitting the input dataset.

SVM-based models train a SVM kernel learning the binding
site structure from the input sequence dataset. TFBS are repre-
sented by either a list of k-mers with associated weights or sup-
port vectors used to discriminate between bound and unbound
sequences, depending on the employed kernel [57]. In the former
case, the weights reflect the k-mer contribution to the motif
sequence. SVM-based models can account for variable spacing
between the half-sites of two box motifs, like probabilistic graph-
ical models. Importantly, k-mers indirectly capture k-th order
dependencies between neighboring nucleotides. However, simple
SVM-based models are limited to consider short k (∼10 bp) and
cannot represent longer motifs. Gapped k-mers [58] addressed
this limitation, handling longer TFBS and sequence degeneration
in non-informative motif positions. To visualize the discovered
motifs, SVM-based models are often reduced to PWMs computed
aligning the informative k-mers.

Deep neural network (DNN)-based models integrate the
diverse, complex and hierarchical patterns governing TF–DNA
binding events in input nucleotide sequences. Although DNN-
based models are accurate and powerful, their ‘black box’
nature is a major limitation [59]. Many frameworks visualize the
discovered motifs as PWMs, computed aligning the sequences
activating the convolutional kernels of the DNN [60]. However,
DNNs often learn distributed representations where multiple

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
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neurons cooperate to describe single patterns. Therefore, motifs
learned by single kernels and the resulting PWMs are often
redundant with each other. DeepLIFT [61] proposed a method to
assign importance scores to the kernels. Comparing the activation
of each neuron to a reference value, DeepLIFT selects which
kernels contribute most to the TFBS definition, reducing motif
redundancy. TF-MoDISco [62] extended this idea by clustering and
aggregating the discovered motifs, using the importance scores
assigned to the kernels. However, computing interpretable models
without losing some information learned by the DNN is still an
open challenge.

Enumerative methods
Enumerative motif discovery algorithms (Figure 1) assume that
motifs are overrepresented patterns in the input dataset S, with
respect to a set of background genomic sequences B. Enumerative
algorithms may assume that the motif length | M | is known a
priori. Given |M| = k, the general idea is to collect the approximate
occurrences of all potential 4k k-mers in the sequences of S and
assess if the difference between the number of matches found in
S and B or the expected number of matches from a background
model is statistically significant. Then, a PWM is obtained building
an ungapped alignment from the statistically significant k-
mers. Searching the approximate occurrences of all 4k k-mers
quickly becomes impractical, even for small k. Early proposals
introduced the usage of heuristics to reduce the search space,
for example, searching only patterns occurring at least once in
each sequence s ∈ S [63] or restricting mismatching locations
to specific motif positions [64]. However, mismatches can occur
at any motif position. Weeder [65, 66] and SMILE [67] proposed
using suffix trees (STs) [68] to efficiently explore the entire motif
search space. They leverage the indexing capabilities of STs to
perform approximate pattern matching, without restrictions on
mismatching positions. This enabled achieving high accuracy
in motif discovery, while reducing computational costs. To
determine the statistical significance of motif candidates, SMILE
and Weeder compare the motifs frequencies in S with those in a
set of random genomic sequences or the promoters of the same
organism, respectively (Supplementary File Section 1). However,
these approaches can be computationally intensive and are not
scalable on the large datasets generated by PBMs, HT-SELEX or
ChIP assays [69]. Therefore, more efficient approaches specifically
tailored to work on large datasets were proposed. MDscan [70] and
Amadeus [71] use word enumeration to discover motif candidates
in sequence datasets (Supplementary File Section 1). MDscan
employs ChIP peaks shape to identify non-redundant patterns
abundant in the most enriched sequences and uses a third-order
Markov background model to assess motif statistical significance.
Amadeus evaluates all k-mers in S and groups similar patterns in
list. Each list is grouped into motifs, statistically evaluated using
a hypergeometric test. However, word enumeration can be still
computationally demanding. To address this challenge, DREME
[72] proposed using regular expressions to count approximate
frequencies of motifs in S and B. To evaluate the motifs’ statistical
significance, DREME employs Fisher’s exact test, comparing the
number of sequences in S and B in which the motifs occur.
However, regular expressions can be computationally expensive
when analyzing large S, and may detect false positives or miss
motifs. Trawler, HOMER and STREME [73–75] reintroduced STs,
proposing different optimizations to make the methods scalable
on large datasets (Supplementary File Section 1). Trawler and
HOMER optimized the statistical assessment step using z-
scores derived from the normal approximation to the binomial

distribution and the hypergeometric distribution, respectively.
Instead of improving the statistical assessment, STREME reduces
the motif search space by first identifying overrepresented seed
words of different lengths on the ST. Then, STREME counts the
number of approximate matches of the most significant words on
the ST. By identifying seeds of different lengths, STREME discover
motifs of different lengths in one single tree visit.

Alignment-based methods
Alignment-based motif discovery algorithms compute alignment
profiles to describe motifs binding preferences (Figure 1), avoiding
exhaustive k-mer enumeration. This approach involves construct-
ing an alignment by selecting motif candidate sequences from the
input dataset S and evaluating the resulting profile using various
measures, like nucleotide conservation, information content
or profile statistical significance. Motif statistical significance
is determined by computing the probability of obtaining the
same alignment from either a background dataset B or random
sequences. Alignment-based motif discovery algorithms typically
assume that the motif length | M | is known a priori. For
alignment-based algorithms, motif discovery can be formalized
as a combinatorial problem. Given |M| = k, the goal is to find the
best alignment profile by combining k-mers from S, according to
a scoring criterion. The best alignments are then used to generate
the corresponding PWMs. Most alignment-based algorithms
assume that each sequence in S contains zero or one binding site.
Therefore, there exist

(∑
s∈S|s| − |M| + 1

)|S| possible profiles, built
by combining k-mers in all possible ways. Since enumerating all
possible solutions is computationally impractical even for small
datasets, alignment-based algorithms employ heuristics, such as
greedy [76], expectation–maximization (EM) [77], stochastic (e.g.
Gibbs sampling) [78] or genetic algorithms [79] (Supplementary
File Section 2). CONSENSUS [76] proposed a greedy approach to
construct alignment profiles incrementally. It solves the problem
initially on two sequences and progressively solves it by adding
the remaining sequences s ∈ S one by one. CONSENSUS stores the
best partial alignments hoping to find the highest-scoring profiles.
However, if motifs are not conserved, CONSENSUS may poten-
tially discard the highest-scoring solutions. The MEME algorithm
[77, 80, 81] proposed a different strategy based on EM. It iteratively
refines an initial profile by substituting some k-mers in the
profile, with others more likely to produce better solutions. MEME
evaluates the fit of each k-mer in s ∈ S to the current profile, rather
than a background model. MEME identifies motifs occurring
more than once in each sequence and computes their statistical
significance, and the method does not rely on TFBS conservation.
However, the algorithm may converge prematurely to local max-
ima and convergence heavily depends on the algorithm starting
conditions. In contrast to MEME, Gibbs sampling [82] employs a
stochastic approach to add k-mers to the alignment instead of a
deterministic one based on the profile fit. Gibbs sampling replaces
k-mers in the profile with others selected with probability propor-
tional to its likelihood score (Supplementary File Section 2). The
algorithm’s stochastic nature reduces its likelihood to converge
to local maxima, but it may require multiple runs to achieve
reliable results. However, several methods using Gibbs sampling
and its extensions have been proposed [83–89] (Supplementary
File Section 2). Genetic algorithms are an alternative approach
overcoming the limitations of EM and stochastic methods. GADEM
[90] combined EM local search with genetic algorithms to refine
profiles, avoid convergence to local maxima and overcome Gibbs
sampling stochastic nature. However, due to their computational
complexity, genetic algorithms are computationally demanding

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
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when analyzing thousands of sequences. Using alignment
profiles, the solution space grows exponentially with the size
of S and even with employing heuristics analyzing thousands
of sequences is computationally impractical [21]. Therefore,
researchers focused on developing algorithms specifically tailored
to analyze the large datasets produced by high-throughput assays
(Supplementary File Section 2). MEME-ChIP [91] and STEME
[92] improved the MEME algorithm to analyze ChIP datasets.
While MEME-ChIP focuses the analysis on a random subset of
sequences, STEME speeds up EM steps indexing the sequences in a
suffix tree. However, using random subsets of S may cause missing
critical motif instances and constructing ST from thousands of
sequences may be computationally demanding. ChIPMunk [93]
proposed a greedy profile optimization like EM developed to
discover motifs in large ChIP-seq datasets, while accounting for
ChIP peaks shape. XXmotif [94] and ProSampler [95] proposed
methods combining enumerative motif discovery with iterative
and stochastic profile refinement, respectively.

Probabilistic graphical model-based methods
The inclusion of dependencies between nucleotides in TFBS has
been subject of debate [96–98]. Some studies have shown that
dependencies exist between neighboring and non-neighboring
nucleotides in TFBS [99, 100]. Enumerative and alignment-
based algorithms represent motifs as PWMs, which do not
account for dependencies between the binding site positions.
PWMs can be extended to account for the frequency of di-
or trinucleotides (high-order PWMs), like DWMs [23]. Dimont
[101] and diChIPMunk [102] proposed extensions to alignment-
based methods to discover and represent motifs as DWMs
(Supplementary File Section 3). However, these methods capture
dependencies only between neighboring nucleotides. Probabilistic
graphical models (Figure 1) such as BNs, MMs or HMMs provide
powerful frameworks for capturing dependencies between TFBS
nucleotides. In [55], the authors proposed using BNs trained via
EM to model TFBS. The proposed approach captures dependencies
between neighboring and non-neighboring positions but assumes
the same order of dependence throughout the entire motif.
Similarly, in [103], the authors introduced VOBN models. VOBNs
use BNs accounting for variable orders of dependencies between
positions. However, training BNs is not computationally scalable
when analyzing thousands of sequences and these models are
prone to overfitting when trained on hundreds of sequences.
MMs and HMMs provide more efficient and scalable frameworks
than BNs to include dependencies between motif positions.
Therefore, researchers focused on developing algorithms using
these models to learn dependencies in large sequence datasets
produced by NGS assays (Supplementary File Section 3). TFFMs
[104] and Discrover [105] proposed HMM-based models learning
the dinucleotide dependencies between neighboring motif
positions in large sequence datasets. In addition, TFFMs learn
the properties of the sequences flanking the TFBS. MMs can be
extended to capture different orders of dependencies between
neighboring nucleotides, as demonstrated in [106], where the
authors proposed a method to discover CTCF [107] motifs using
variable-order MMs. Similarly, MMs can also be extended to
capture dependencies between non-neighboring nucleotides as
proposed in Slim [108]. However, MMs and HMMs typically only
capture low-order dependencies. BaMMotif [56, 109] proposed
a motif discovery algorithm employing a Bayesian approach to
efficiently train Markov models up to fifth-order dependencies on
thousands of sequences.

SVM-based methods
SVMs [110] have been successfully applied to different problems
in computational biology [111], including TFBS motif discovery
(Figure 1). This is achieved by decomposing bound (foreground
dataset S) and unbound sequences (background dataset B) in k-
mers and using their frequencies as features to train a sequence
similarity kernel [111]. Generally, to each k-mer is assigned a
weight proportional to its contribution to the definition of the pos-
itive or negative training sets, or to its likelihood of being a motif
candidate. While earlier methods [112–114] were designed for
protein sequence homology, recent SVM-based algorithms have
been developed to discover TFBS motifs. Furthermore, SVMs can
efficiently analyze datasets of thousands of sequences. Kmer-SVM
[115, 116] proposed a method to discover TFBS motifs in sequence
datasets, using the spectrum kernel [112]. Kmer-SVM counts the
exact matches for all contiguous k-mers in S and B, building the
k-mers feature space (Supplementary File Section 4). The mis-
match and wildcard kernels [114, 117] were introduced to count
k-mer frequencies while allowing a fixed number of mismatching
positions for each k-mer. This approach was later extended to
allow for less restrictive k-mer frequency estimation, offering
flexibility in the motif structure without affecting scalability on
large datasets. Agius and coworkers [118] extended the concept of
mismatch kernels by developing the di-mismatch kernel. The di-
mismatch kernel is a first-order Markov mismatch kernel based
on the dinucleotide alphabet, which handles sequence variability
and accounts for dependencies between neighboring nucleotides
(Supplementary File Section 4). To maintain scalability on large
datasets small k (∼ 10) is used, discovering short motifs. However,
TFBS lengths range between 6 and 20 bp, making it challenging
to fully characterize longer motifs with short k-mers. In addition,
increasing k often results in sparse feature vectors overfitting the
training dataset. Gapped k-mers [58] proposed to represent longer
motifs as k-mers with gaps in non-informative or degenerate TFBS
positions, accounting for motif variability in sequence and length.
Gkm-SVM [119, 120] extends kmer-SVM to train SVM kernels
employing gapped k-mers as features. The algorithm considers
larger k preventing model overfitting and reducing the method’s
dependency on parameters’ choice. LS-GKM [121] optimizes the
algorithm for scalable SVM training with gapped k-mers on large-
scale sequence datasets. LS-GKM also provides other kernels for
SVM training (Supplementary File Section 4).

DNN-based methods
DNNs have become increasingly popular in computational biol-
ogy [122–130] due to their ability to learn complex patterns [131]
from large omics datasets [132]. Convolutional neural networks
(CNNs) [133], originally developed for image classification [133–
135], have been successfully applied to analyze in vivo TF–
DNA interactions [136–139] (Figure 1). CNNs apply non-linear
transformation to input data, learning and representing complex
patterns in a high-dimensional space [140]. This simplifies
classification tasks and enables accurate prediction of TFBS in
genomic sequences. CNNs represent genomic sequences as 1D
or 2D images with four associated channels (A, C, G, T) [139].
Therefore, classifying TFBS in genomic sequences becomes a two-
class image classification problem. Typically, CNN architectures
designed for motif discovery and classification consist of one
or more sets of four layers: the convolutional layer, the max-
pooling layer, the fully connected NN layer and the output
layer [139] (Supplementary File Section 5). Deepbind [136] and
Basset [138] proposed two CNN architectures to discover motifs

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
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in different datasets, such as ChIP-seq, HT-SELEX, PBM and
DNase-seq (Supplementary File Section 5). The discovered motifs
in DeepBind and Basset are visualized as PWMs. The PWMs
are computed by aligning and grouping the sequences that
activate the convolutional layer. While DeepBind and Basset
have demonstrated promising results in predicting TFBS, their
performance may be limited by the quality of training data and
the significant computational resources and time required for
model training. These limitations have led to the development
of novel methods, such as BPNet [62], which address some of
these issues by incorporating additional features in the model and
using more efficient training processes. BPNet proposed a dilated
CNN architecture, allowing the model to learn and integrate
diverse complex features without sacrificing the spatial and
base resolution of the input data (Supplementary File Section 5).
However, TF–DNA interactions involve not only the direct binding
between TF and DNA but also the interactions between multiple
binding subregions (long-term interactions) and the nucleotides
with high-order structures of TFs (short-term interactions). Long
short-term memory networks (LSTMs) [141] and bi-directional
LSTMs (BLSTMs) can efficiently capture long-term and short-term
dependencies of sequential signals. LSTMs and BLSTMs are well
suited for modeling TF–DNA interactions as genomic sequences
can be viewed as sequential signals with long-term and short-
term dependencies (Supplementary File Section 5). DeeperBind
[142] introduced a hybrid CNN–LSTM architecture removing
the pooling layer to maintain the positional information of
potential motif instances. Similarly, DanQ [143] proposed a hybrid
CNN–BLSTM architecture to capture the positional dynamics of
genomic sequences for TFBS motif discovery. The BLSTM replaces
the fully connected NN. Factornet [144] extended the DanQ
approach by incorporating additional features in the model and
using a Siamese BLSTM architecture to improve model training.

TF DATABASES
With the recent advancement in experimental technologies, a
vast amount of TF-related data have been generated and stored
in databases (Table 2). The ENCODE project [145] provides mul-
tiple data on functional elements in the human genome col-
lected across different tissues and cell types. ENCODE stores
TF-related genomic data such as ChIP-seq targeting several TFs
and DNase-seq. Similarly, Cistrome [146] and GTRD [147] provide
TF-related genomic data from different organisms and across
different species, cell types and tissues, respectively. Furthermore,
GTRD stores large collections of curated ChIP-seq, ChIP-exo and
ChIP-nexus datasets. HOCOMOCO [148, 149] and JASPAR [150, 151]
provide large collections of curated, experimentally derived and
computationally predicted TFBS motifs for several TFs from dif-
ferent species. They store PWMs and DWMs obtained by analyzing
ChIP-seq and SELEX datasets. In addition, HOCOMOCO models
were generated integrating sequence datasets with evolutionary
conservation and DNA shape. Similarly, Cis-BP [152] stores experi-
mentally derived and computationally predicted PWMs, obtained
integrating multiple sources, including published literature, other
databases and experimental datasets. TRANSFAC [153, 154] col-
lects experimentally validated and manually curated PWMs for
various TFs from different eukaryotic organisms, and includes
data on TF-associated proteins, DNA binding domains and, reg-
ulatory elements. FactorBook [155] provides computationally pre-
dicted PWMs generated analyzing ENCODE data and includes TF
expression data across tissues and cell types. Unibind [156] col-
lects experimentally validated and curated PWMs from different

organisms, providing information on structural properties and
conformation of TF–DNA complexes and their genomic binding
locations across different cell types and tissues. UniPROBE [157]
stores curated PWMs for several eukaryotic TFs, generated ana-
lyzing PBM datasets. HTRIdb [158] stores data on TF–target genes
interactions in human, collected from published literature and
other databases, in different cell types, experimental methods and
disease state, also providing functional annotations for the target
genes. TFcancer [159] collects TF–gene interactions across 33
cancer types, providing tools to identify TF expression alterations
and their roles in biological processes and signaling pathways in
cancer.

DOWNSTREAM ANALYSES
The discovered motifs can be employed in several downstream
analyses: motif comparison, motif scanning, motif enrichment
analysis and assessing genetic variants effects on TF–DNA bind-
ing affinity. Motif comparison measures the similarity between
the discovered motifs and annotated TFBS. Motif comparison
allows for linking known TFs to the newly discovered motifs [160]
and inferring the relationship between the input sequences and
function of the annotated TF [152]. For this task, several tools
have been developed such as Tomtom, STAMP, MACRO-APE or
MoSBAT [160–163]. These tools search annotated database for
motifs matching the input consensus sequence or inferred motif
matrix. Moreover, motif comparison tools have been developed
to interpret and annotate the potential motifs encoded in the
convolutional filters of a CNN model. Motif scanning scans sets of
genomic regions searching for potential occurrences of the input
motif. The goal is to recover sets of potential binding locations
for the investigated factor. Given a motif model (e.g. a PWM) and a
set of sequences, motif scanning algorithms assign a score to each
sequence using the input model. A common challenge is to deter-
mine a reliable cutoff on the scores assigned to the sequences to
discriminate between true and false binding events [57]. Several
motif scanning tools are currently available such as MOODS, FIMO
or PWMscan [164–166]. The HOMER suite [74] also provides a
motif scanning functionality. Recently, MOODS was extended to
search instances of motifs modeled as high-order PWMs [51].
GRAFIMO [167] extended classical motif scanning to panels of
thousands of genomes encoded in genome graphs [168], consid-
ering individual genetic variants and haplotypes while searching
for potential motif occurrences. Motif enrichment analysis (MEA)
searches for over- and underrepresented motifs in gene regulatory
regions. Analyzing the TFBS enrichment in regulatory regions
governing sets of genes, researchers can link the investigated TFs
to their function within the cell environment. MEA consists of two
steps: (i) scanning regulatory regions for motif occurrences and
(ii) statistical testing of motif enrichment. TFs whose motifs are
significantly overrepresented (enriched) in the scanned regulatory
regions are marked as transcriptional regulators for the target
gene set. There are many MEA tools available to the community,
such as Clover, Pscan, AME or oPOSSUM-3 [169–172]. HOMER [74]
provides a functionality to perform MEA. Haystack [173] proposed
an integrated MEA strategy, investigating motif enrichment in
cell-type-specific regions and incorporating gene expression data
to assess the transcriptional activity of the studied factors and
their impact on the regulated genes.

Genetic variants have been shown to impact TF–DNA binding
events [174–176], including variants associated with common
diseases in regulatory elements [177], potentially altering the
transcriptional state of the cell [178]. As a result, there has been

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad156#supplementary-data
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Table 2. Transcription factor-related databases

Type Name Reference Data type Model organisms TFs

Sequence database ENCODE [145] ChIP-seq
DNase-seq
ATAC-seq

Caenorhabditis elegans
Drosophila melanogaster
Homo sapiens
Mus musculus

>1500

Cistrome [146] ChIP-seq, DNase-seq H. sapiens
M. musculus

1773 (ChIP-seq)

GTRD [147] ChIP-seq
ChIP-exo, ChIP-nexus
DNase-seq

Arabidopsis thaliana
C. elegans
Danio rerio
D. melanogaster
H. sapiens
M. musculus
Rattus norvegicus
Saccharomyces cerevisiae
Schizosaccharomyces
pombe

3988 (ChIP-seq)
1708 (ChIP-
exo + ChIP-
nexus)

Motif models
database

HOCOMOCO [148, 149] PWMs
DWMs

H. sapiens
M. musculus

680 (human)
453 (mouse)

JASPAR [150, 151] PWMs
DWMs

53 species >1500

Cis-BP [152] PWMs A. thaliana
C. elegans
D. rerio
D. melanogaster
H. sapiens
M. musculus
Neurospora crassa
R. norvegicus
S. cerevisiae
Xenopus tropicalis

>5000

TRANSFAC [153, 154] PWMs >300 species >10 000
FactorBook [155] PWMs H. sapiens

M. musculus
881 (human)
49 (mouse)

Unibind [156] PWMs A. thaliana
C. elegans
D. rerio
D. melanogaster
H. sapiens
M. musculus
R. norvegicus
S. cerevisiae
S. pombe

841

UniPROBE [157] PWMs C. elegans
Cryptosporidium parvum
H. sapiens
M. musculus
Plasmodium falciparum
S. cerevisiae
Vibrio harveyi

726

TF–target gene
interaction database

HTRIdb [158] TF–gene interaction networks H. sapiens 284

TF–disease
association database

TFcancer [159] TF–cancer associations H. sapiens 364

The table presents a summary of the TF-related databases discussed in Section 4. For each database, the table reports the database main purpose (Type), the
available type of data (Data type), the model organisms for which data are provided (Model organisms), the number of TFs (TFs) and the database website
(Website).

a growing interest in developing tools to predict the impact of
variants on TFBS (Table 3). TRAP [179] and CATO [10] use PWMs
to predict the impact of variants on TFBS by comparing the
binding affinity scores of reference and alternative sequences.
TRAP repeats the procedure on a collection of TFBS, reporting

the motif showing the largest score change. CATO, instead, pro-
vides a ranked list of disrupted motifs, obtained using a logistic
model trained with the information content difference between
reference and alternative sequences, TF occupancy and phylo-
genetic conservation. However, these methods are not scalable
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when analyzing thousands of single nucleotide polymorphisms
(SNPs). atSNP [180] proposed a scalable strategy to assess the
impact of thousands of SNPs on TFBS by computing the statistical
significance of the computed affinity scores, in addition to the
difference between the reference and alternative sequence bind-
ing scores using PWMs. GRAFIMO [167] extended the scalability
to millions of SNPs by scanning collections of PWMs on genome
graphs, while accounting for haplotypes. MotifRaptor [181] inte-
grates chromatin accessibility, gene expression and GWAS sum-
mary statistics, to predict and annotate functional effects for
large non-coding variant datasets, using PWMs. DeltaSVM [182]
and GkmExplain [183] use SVM-based motif models to assess
variant impact. DeltaSVM scans DNA positions overlapping each
SNP in the input dataset using a pretrained list of k-mers with
associated weights and computing the difference between the
reference and alternative sequence scores. However, it assesses
the impact of individual variants, not accounting for relation-
ships between variants. GkmExplain overcomes this limitation
by considering the impact of variants not in individual posi-
tions, but on sequence features, like entire k-mers. DeepBind [136]
and DeepSEA [137] employ DNN-based models to predict variant
impact on TFBS. DeepBind uses mutation maps to assess variant
effect on binding affinities by considering the importance of each
motif position within the model. DeepSEA uses in silico saturated
mutagenesis to predict the impact of individual variants on the
whole sequence context and features like TFBS. Similarly, Basset
[138] employs in silico saturated mutagenesis by learning criti-
cal nucleotides governing chromatin accessibility. Basset assigns
importance scores to each position in the input sequences and
attempts to map the variants’ impact to the TFBS in the input
sequences. Basenji [127] extends Basset’s workflow by providing
functional annotations to SNPs affecting sequence features like
TFBS and returning potential changes in gene expression patterns.
However, Basenji is limited to predict SNP effects on distal regula-
tory elements within a 20 kb range. Enformer [184] overcomes this
limitation by employing transformer architectures to extend the
range up to 200 kb, providing more comprehensive and accurate
functional effects of variants on sequence elements and gene
expression.

DISCUSSION
Discovering TFBS motifs in DNA sequences has been extensively
studied over the past few decades. This paper reviewed various
algorithms and computational models for discovering and repre-
senting motifs. However, there are still several open issues and
potential research directions that need to be addressed in this
field.

The choice between simple and complex motif discovery
algorithms is often debated. While classical enumerative and
alignment-based methods have been shown to have comparable
performance in scalability and accuracy to complex methods
[185], they also offer user-friendly interfaces and generally
do not require any computational expertise. In addition, they
can be applied to any sequence dataset and do not require
any additional information beyond the sequences themselves.
Moreover, these tools have a strong user community and continue
to be widely used in the field. MEME [77, 80, 81], HOMER [74] and
the newer STREME [75] are particularly popular and continue
to be well maintained by their developers, ensuring continued
usability and relevance. In contrast, probabilistic graphical model-
based algorithms often struggle with scalability when analyzing
thousands of sequences due to the complexities involved in

http://trap.molgen.mpg.de/cgi-bin/home.cgi
https://github.com/keleslab/atSNP
https://github.com/pinellolab/GRAFIMO
https://github.com/InfOmics/GRAFIMO
https://github.com/pinellolab/MotifRaptor
https://www.beerlab.org/deltasvm/
https://github.com/kundajelab/gkmexplain
http://tools.genes.toronto.edu/deepbind
http://deepsea.princeton.edu
https://github.com/davek44/Basset
https://github.com/calico/basenji
https://github.com/deepmind/deepmind-research/tree/master/enformer
https://github.com/deepmind/deepmind-research/tree/master/enformer
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model training involving dependencies. SVM-based methods have
demonstrated high scalability and accuracy in discovering TFBS
motifs across various sequence datasets, as well as predicting PBM
binding affinities. One major advantage of SVM-based algorithms
is that they can learn features of the entire sequence context,
contributing to their success in motif discovery. However, the
performance of SVM-based methods heavily depends on the
quality of the background dataset, which needs to be carefully
designed based on different sequence characteristics, such as
GC and repeat content. DNN-based motif discovery algorithms
have been shown to be highly accurate compared to other
methods. However, their complexity often requires expertise in
the field and fine parameter tuning. DNN-based methods also
hold the potential to integrate diverse genomic data sources
for discovering TFBS (as discussed in Section 3.5). Although
DNN-based methods are scalable in terms of dataset size, they
often require significant computational resources and dedicated
hardware components (e.g., GPUs) to train effective motif models.
Nevertheless, DNN-based methods are rapidly gaining popularity
within the community. The debate about which is the best
method is ongoing. While several papers have benchmarked the
performance of motif discovery algorithms on various datasets
[69, 186], these benchmarks often focus on a small number
of similar methods or homogenous datasets. A comprehensive
benchmark that considers a wide range of datasets in terms of
size and composition, as well as methods from different algorithm
classes, is needed. Such a benchmark would offer crucial insights
into which methods perform best with specific input data.

The need and effectiveness of motif models capturing depen-
dencies between positions within a TFBS has been extensively
discussed during the last decades [185, 187–189]. Although prob-
abilistic models are expected to perform better, many studies
showed that simpler models like PWMs perform as well as these
models on both in vitro PBM and in vivo ChIP-seq data for most
TFs [98, 185]. In [185], the authors suggested that these results
could be explained by the degeneracy observed in eukaryotic
TFBS. In fact, many TFs bind sequences showing variations with
respect to the motif consensus, even though with less affinity.
Since PWMs accommodate variations to the motif consensus,
they can capture a wider range of target sites, including those
weakly bound. However, this advantage comes at the cost of an
increased susceptibility to noise, potentially recovering several
false positives. By encoding dependencies between TFBS posi-
tions, probabilistic graphical models are expected to provide more
robust models. However, since these models learn several param-
eters, they can easily overfit the training data if not trained on
appropriate datasets. SVM-based motif models have been shown
to perform generally better than PWMs when predicting potential
TFBS [119]. However, these models are often reduced to PWMs
for visualization and interpretation purposes, losing most of the
learned information. Recent studies observed that DNN-based
models better capture the sequence specificities underlying TF–
DNA interactions, returning better predictions with respect to
other models [190]. However, to visualize and interpret the discov-
ered motifs, the DNN models are generally reduced to PWMs com-
puted with the sequences activating the convolutional kernels.
Therefore, complex motif models provide powerful frameworks
sacrificing interpretability, while simpler models are more sus-
ceptible to noise but easily interpretable. The trade-off between
model accuracy and interpretability is still an open challenge in
the context of motif discovery.

Recently, many consortia like the ENCODE Project [145] and
Roadmap Epigenomics Project [191] collected huge amounts of

TF-related data, like ChIP-seq experiments performed on dozens
of factors in different organisms, tissues and cell types. These
datasets are often used as ground truth to evaluate the per-
formance of motif discovery algorithms. However, ChIP-seq is
susceptible to different sources of noise that could bias perfor-
mance evaluation. The growth of HT-SELEX or ChIP-exo datasets
available in public databases would address this limitation since
they provide cleaner data (Section 2).

It is known that regulatory elements in multicellular organisms
act in a cell-type-specific manner [192, 193]. TFBS show cell-type-
specific patterns and configurations [194]. Moreover, cell-type-
specific and individual-specific genetic variants can impact TFBS
[195, 196]. However, capturing and modeling cell-type-specific TF–
DNA interactions remain a key problem. Although NGS-based
experimental assays like ChIP-seq enabled genome-wide TFBS
analyses in vivo, they capture the binding landscape in a single
cell type and rely on the availability of antibodies targeting the
investigated factor. Since TFs are major drivers of chromatin
accessibility [197], TFBS can be discovered on ATAC-seq or DNase-
seq data by running motif discovery algorithms on the reported
open chromatin sequences. Importantly, ATAC-seq data are easier
to obtain than ChIP-seq even when targeting new cell types
and unknown factors. Recently, Virtual ChIP-seq [198] proposed
a method to predict TF binding in new cell types using only
chromatin accessibility and transcriptomic data.

Often the motifs discovered in a certain cell type poorly gener-
alize to other cell types [199] and the motifs discovered in DNase-
seq or ATAC-seq datasets may not be sufficiently well calibrated
to provide reliable predictions on the impact of genetic variants
on TFBS [200]. DNN-based motif discovery algorithms potentially
integrate data recovered from different cell types. However, the
development of motif discovery algorithms and models explicitly
integrating and representing different cell-type-specific motifs
remains an open challenge. The recent introduction of experi-
mental assays analyzing epigenetic marks at single-cell resolution
provides new and powerful data to improve our knowledge on the
mechanisms regulating individual cell environments [201].

Single-cell ChIP-seq (scChIP-seq) extends traditional ChIP
assays to investigate the binding landscapes of DNA-binding
proteins like TFs at single-cell resolution [202, 203]. The growing
availability of such data would help to better learn cell-type-
specific TF–DNA binding dynamics and epigenetic mechanisms.
However, to our knowledge, only a few studies successfully
performed scChIP-seq due to its challenging execution [201].
Single-cell ATAC-seq (scATAC-seq) identifies open chromatin
regions at individual single-cell resolution [204]. scATAC-seq is
not limited by technical constraints and the number of available
datasets is rapidly growing. Interestingly, some tools performing
different motif analyses on scATAC-seq, such as motif discovery
[205] and MEA [206, 207], are already available. We expect that
in a few years the availability of single-cell epigenetic data will
increase, enabling the development of more motif discovery
algorithms and models designed to analyze and describe TFBS
data at single-cell resolution. This would provide more reliable
datasets to train motif models and assess their predictive
performances.

Key Points

• The development of algorithms to discover transcription
factor binding sites is one of the most studied problems
in computational biology.
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• The introduction of in vitro and in vivo high-throughput
experimental assays revolutionized transcription factor
binding site discovery, returning large datasets of poten-
tial target sites that provide unprecedented opportuni-
ties to study and characterize the binding landscapes of
transcription factors.

• Several different algorithms to discover transcription
factor binding site motifs along with different computa-
tional models to represent the discovered binding sites
have been proposed over the last two decades; however,
each proposed method and model show advantages and
drawbacks.

• The motif models derived by motif discovery algorithms
are employed in several different downstream analysis,
like motif comparison, motif scanning, motif enrichment
and assessing the effects of genetic variants on tran-
scription factor binding site affinity.
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