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Abstract
Motivation: The interactions between T-cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) are essential for the adaptive
immune system. However, identifying these interactions can be challenging due to the limited availability of experimental data, sequence data
heterogeneity, and high experimental validation costs.

Results: To address this issue, we develop a novel computational framework, named MIX-TPI, to predict TCR–pMHC interactions using amino
acid sequences and physicochemical properties. Based on convolutional neural networks, MIX-TPI incorporates sequence-based and
physicochemical-based extractors to refine the representations of TCR–pMHC interactions. Each modality is projected into modality-invariant
and modality-specific representations to capture the uniformity and diversities between different features. A self-attention fusion layer is then
adopted to form the classification module. Experimental results demonstrate the effectiveness of MIX-TPI in comparison with other state-of-the-
art methods. MIX-TPI also shows good generalization capability on mutual exclusive evaluation datasets and a paired TCR dataset.

Availability and implementation: The source code of MIX-TPI and the test data are available at: https://github.com/Wolverinerine/MIX-TPI.

1 Introduction

T-cells play an essential part in regulating effector immune
cells involved in the adaptive immune response against infec-
tions and cancer (Hudson and Wieland 2023). On the surface
of T-cells, the T-cell receptor (TCR) is responsible for antigen
recognition. Antigens are degraded into polypeptides, and an-
tigenic peptides are bound to specific major histocompatibility
complex (MHC) molecules in a process called peptide-MHC
binding. TCR is a heterodimeric molecule consisting of two
chains, i.e. an a-chain and a b-chain, which interact with
peptide-MHC (pMHC) via six loops, i.e. three from the a-
chain and three from b-chain. The three loops in each chain
are known as complementarity determining regions (CDRs)
1–2–3. They are responsible for determining the TCR specific-
ity. The CDR3 loops primarily interact with the peptide,
while the CDR1 and CDR2 loops interact with MHC
(Rossjohn et al. 2015). Upon recognition of pMHC by TCR,
T-cells are stimulated to mount an immune response like pro-
liferation, activation, or differentiation (Zhang et al. 2016).
The characterization of TCR–pMHC interactions provides
valuable insights into the development of personalized immu-
notherapies, including vaccine design and T-cell transfer
methods (Frank et al. 2023). For instance, understanding the
diversity of TCR and antibody repertoires can help reveal the

adaptive immune status and history of patients. A number of
wet lab experiments, such as tetramer analysis (Altman et al.
2011), tetramer-associated TCR sequencing (Zhang et al.
2018), and T-scans (Kula et al. 2019), have been conducted
to investigate TCR–pMHC interactions. Nevertheless, these
conventional laboratory validation approaches are time-
consuming, costly, and technically demanding.

Recently, various computational methods have been devel-
oped to expedite the identification process of TCR–pMHC
interactions by prioritizing the most promising candidates
based on TCR and peptide sequence information (Hudson
et al. 2023). For example, NetTCR (Jurtz et al. 2018) encodes
TCR and peptide sequences based on the BLOSUM50 matrix
(Henikoff and Henikoff 1992). The resulting feature embed-
dings are concatenated and fed into a convolutional neural
network (CNN) (LeCun et al. 1998) to predict TCR–pMHC
interactions. ERGO (Springer et al. 2020) uses an autoen-
coder and a long short-term memory network (Hochreiter
and Schmidhuber 1997) to encode TCR and peptide sequen-
ces, respectively, to identify TCR–pMHC interactions. ImRex
(Moris et al. 2021), a 2D CNN model, was proposed to pre-
dict TCR–pMHC interactions based on multi-channel inter-
action maps. It encodes the feature embeddings of TCR and
peptide sequences with physicochemical properties including
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hydrophobicity, hydrophilicity, mass, and isoelectric point.
TITAN (Weber et al. 2021) utilizes a 1D CNN with different
kernel sizes to encode amino acid-wise information from the
BLOSUM62 matrix. Moreover, a bimodal attention network
is utilized to assess the significance of each token in the
sequences and predict missing links between unseen TCRs
and peptides.

The aforementioned methods have achieved great success,
yet they still suffer from the shortage of TCR–pMHC interac-
tion data. The majority of the existing methods were designed
to accept single-modal input, i.e. sequences or physicochemi-
cal features, which limits their abilities to incorporate infor-
mation from different resources. Moreover, most of these
methods were intended to predict solely the TCRb (the CDR3
region of TCR’s b-chain) and peptides interaction. They can-
not handle paired TCR cases where TCRa (the CDR3 region
of TCR’s a-chain), TCRb, and the peptides together are taken
into account. To address these issues, we propose a novel
multimodal framework dubbed MIX-TPI for predicting
TCR–pMHC interactions by mixing the extracted sequence
and physicochemical representations. MIX-TPI is applicable
to both single-chain TCR and paired TCR scenarios.
Particularly, we use CNNs to construct sequence-based ex-
tractor (SE) and physicochemical-based extractor (PE), with
which the refined sequence and physicochemical features are
learned, respectively. These features are then used to form the
modality-invariant and modality-specific representations, en-
abling MIX-TPI to capture the underlying commonalities be-
tween different modalities and distinctive characteristics of
the specific modality, respectively. Finally, a self-attention fu-
sion layer with different learnable weights is introduced to
combine these representations and identify the TCR–pMHC
interactions. MIX-TPI is validated on various datasets and
evaluation schemes. The experimental results demonstrate the
effectiveness and generalization capability of MIX-TPI in
comparison with other state-of-the-art methods.

2 Materials and methods
2.1 Data

In this study, datasets curated from four databases including
VDJdb (Bagaev et al. 2020), ImmuneCODE (Dines et al.
2020), IEDB (Vita et al. 2019), and McPAS (Tickotsky et al.
2017) are used to evaluate the performance of MIX-TPI. To
ensure a fair comparison with other methods, we downloaded
two benchmark datasets released in (Weber et al. 2021). The
first dataset is referred to as VDJdb-TITAN, which is a proc-
essed version of the VDJdb database, containing 10 599
known TCR–pMHC interactions of 10 138 TCRs and 87
peptides. The second dataset Immune-TITAN merges the
ImmuneCODE database (COVID-19 related database) and
the VDJdb-TITAN dataset, resulting in 23 595 known TCR–
pMHC interactions of 22 885 TCRs and 192 peptides.
According to the maximum sequence length, the fixed pad-
ding lengths of TCR m and peptide n are set to 33 and 20, re-
spectively, in these two datasets. Two different data splitting
strategies, i.e. TCR split and strict split (Weber et al. 2021),
are used to test the generalization capability of the compared
methods. Specifically, TCR split specifies the TCRs in the test
set being absent in the training set, while strict split ensures
that neither TCRs nor peptides overlap in test and training
sets.

To further validate the generalization ability of MIX-TPI,
we collected three mutual exclusive validation datasets from
VDJdb and McPAS databases. The first one named VDJdb-
ImRex (Moris et al. 2021) is curated from the VDJdb
database and comprises 14 188 known pairwise associations
involving 13 913 TCRs and 117 peptides. VDJdb-ImRex is
only used in the training of MIX-TPI. The other two datasets,
namely, McPAS-TCRs and McPAS-peptides were created
from the McPAS database (Tickotsky et al. 2017) to test the
performance of MIX-TPI on unseen TCRs and peptides, re-
spectively. McPAS-TCRs comprises 4101 interactions of
4024 TCRs and 46 peptides, excluding all TCRs covered by
VDJdb-ImRex. McPAS-peptides includes 736 known associa-
tions of 736 TCRs and 10 peptides, excluding all peptides
involved in VDJdb-ImRex. The TCRs and peptides in VDJdb-
ImRex, McPAS-TCRs, and McPAS-peptides datasets are pad-
ded with fixed lengths of 20 and 11, respectively, i.e. m ¼ 20
and n ¼ 11. Note the three datasets contain merely positive
samples of TCR–pMHC interactions and there are no known
negative samples, the same number of negative examples are
randomly generated for training following the sampling pro-
cess used in (Moris et al. 2021, Weber et al. 2021).

The aforementioned datasets, including VDJdb-TITAN,
Immune-TITAN, VDJdb-ImRex, McPAS-TCRs, and McPAS-
peptides, only contain the sequences of single-chain TCR or
more specific TCRb and peptides. To evaluate the ability of
MIX-TPI to handle paired TCR data, we utilize the prepro-
cessed paired TCR dataset provided in (Montemurro et al.
2021). The dataset was curated from both the VDJdb and
IEDB databases, comprising 2744 known interactions be-
tween sequences of 1728 TCRa, 1598 TCRb, and 17 pepti-
des. We adopted the negative sampling approach described in
the original paper, where for each positive interaction, the
peptide is fixed, and TCRa and TCRb were randomly selected
from the 10X Genomics (10x Genomics 2019) dataset to
form negative samples. The positive-to-negative ratio was
configured to 1:5. We refer to this dataset as IEDB-NetTCR,
with a maximum padding length of 18 for TCRa and TCRb,
and 9 for peptides (i.e. m ¼ 18 and n ¼ 9). The information
of all datasets used in this study is summarized in Table 1.

2.2 Proposed MIX-TPI

As shown in Fig. 1, the flowchart of MIX-TPI consists of
three stages, i.e. data preprocessing, feature extraction, and
modality fusion. The details of these stages are described as
follows.

2.2.1 Data preprocessing
To construct the SE embedding, the BLOSUM62 matrix is
used to calculate the evolutionary distance of amino acids in
TCR sequences and peptide sequences. Specifically, each
amino acid is replaced with a log-odds score that corresponds
to the substitution pairs of the 20 standard amino acids.

Table 1. The information of the datasets.

Dataset #TCRa #TCRb #Peptides #Interactions

VDJdb-TITAN 10 138 87 10 599
Immune-TITAN 22 885 192 23 595
VDJdb-ImRex 13 913 117 14 188
McPAS-TCRs 4024 46 4101
McPAS-peptides 736 10 736
IEDB-NetTCR 1728 1598 17 2744
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Given the maximum padding sequence length of TCR m and
peptide n, we can convert the TCR and peptide sequences
into zero-padded embedding matrices of dimensions m� 20
and n� 20, respectively.

For the PE embedding, we utilize the Biopython library fol-
lowing (Moris et al. 2021). The TCR and peptide sequences
are fed to calculate four types of physicochemical properties
namely hydrophobicity, hydrophilicity, mass, and isoelectric
point. These properties provide valuable information about
the amino acid sequence and contribute to the overall under-
standing of protein structure and function. The selection of
these properties is also confirmed by their extensive utilization
in the field of TCR–pMHC interaction prediction (Ostmeyer
et al. 2019, Moris et al. 2021). For each physicochemical
property, we then calculate the pairwise absolute difference
between TCR and peptide embeddings to construct an inter-
action map. Finally, we apply max-min normalization to each
interaction map and zero-pad it to the size of m� n to obtain
a channel-wise physicochemical embedding of size 4�m� n.

2.2.2 Feature extraction
After data preprocessing, two feature extractors, i.e. SE and
PE, are constructed to extract refined sequence and physico-
chemical features, as shown in Fig. 2. The details of SE and
PE are described as follows.

2.3 Sequence-based extractor

To enhance model generalization and capture local neighbor-
ing representations, we utilize 1D CNN with multiple kernel
sizes for feature extraction based on the sequence padding

matrices. The resulting feature maps are combined through
the addition operation to obtain intermediate feature matri-
ces, namely T 2 R

m�r for TCR and P 2 R
n�r for peptide,

where r is the predefined number of filters.
Inspired by the advances in cross-modal co-attention mecha-

nisms in visual question answering (Gao et al. 2019), we design
a cross-modal self-attention module to accurately assess the sig-
nificance of each modality in relation to the query and key fea-
tures, taking into account the information from the other
modality. Through a feedforward neural network (also known
as a dense network), the intermediate feature matrices T and P
are transformed into query/key/value embeddings (Shaw et al.
2018), resulting in TQ=TK=TV 2 R

m�r and PQ=PK=PV 2 R
n�r,

respectively. These query/key/value embeddings are used to com-
pute the output via a weighted sum of the values, where the
weights are derived by the non-linear transformation from the
queries and keys. We introduce conditional gates G to dynami-
cally regulate the cross-modal information flow with different
weights as follows:

GP!T ¼ rðf ðAvg PoolðPÞÞÞ (1)

GT!P ¼ rðf ðAvg PoolðTÞÞÞ (2)

where the notation P!T denotes the passage of information
from peptide to TCR, while T!P indicates the reverse direc-
tion. In this equation, r denotes the sigmoid activation func-
tion, f ð�Þ represents a dense network, and Avg Poolð�Þ
denotes the operation of average pooling (Gao et al. 2019).

(a)

(b)

Figure 1. The framework of MIX-TPI to handle both (a) single-chain TCR data, i.e. TCRa=b (a=b-chain) and (b) paired TCR data, i.e. both TCRa and TCRb.
TCRs and peptide sequences are firstly fed into the data preprocessing module, where they are encoded with BLOSUM62 and Biopython (Cock et al.

2009) libraries, respectively, to generate the embedding matrices of SE and PE. Subsequently, SE and PE are used to extract sequence and

physicochemical features, respectively, with CNNs. Finally, the modality-invariant and modality-specific representations are learned and passed to the

self-attention fusion layer to predict the TCR–pMHC interactions.

MIX-TPI: a multimodal prediction framework of TCR-pMHC interactions 3



Then, the query and key embeddings of TCR and peptide
are regulated by G with the learnable co-attention weights
calculated as follows:

T̂Q ¼ ð1þGP!TÞ � TQ (3)

T̂K ¼ ð1þGP!TÞ � TK (4)

P̂Q ¼ ð1þGT!PÞ � PQ (5)

P̂K ¼ ð1þGT!PÞ � PK (6)

where � represents the element-wise multiplication.
Accordingly, the TCR attention features TA 2 R

m�r and pep-
tide attention features PA 2 R

n�r can be calculated with a
softmax function (Gibbs 1902) as follows:

TA ¼ f softmax
T̂QðT̂KÞTffiffi

r
p

 !
� TV

 !
(7)

PA ¼ f softmax
P̂QðP̂KÞTffiffi

r
p

 !
� PV

 !
(8)

Afterward, we obtain the fused sequence features as

FS ¼ TAðPAÞT 2 R
m�n. FS is flattened into a sequence-based

interaction representation vector F̂S 2 R
mn. This vector is sub-

sequently fed into the modality fusion block for further proc-
essing. For paired TCR data, F̂Sa 2 R

mn and F̂Sb 2 R
mn are

used to distinguish between the a and b chains, respectively.

2.4 Physicochemical-based extractor

We employ a similar approach to process the channel-wise
physicochemical features by using 2D CNN with multiple
kernel sizes. This process produces four channel-wise interme-
diate feature embeddings with the “same” padding as
Ui 2 R

m�n�r, where i 2 ½1;4�. We then use dense layers to ob-
tain refined feature embeddings Ûi 2 R

m�n�1. The four Ûi

embeddings are summed together to generate the feature
embeddings FP 2 R

m�n. Similarly, FP is flattened into a
physicochemical-based interaction representation vector
F̂P 2 R

mn, which serves as input to the modality fusion block.
For paired TCR data, F̂Pa 2 R

mn and F̂Pb 2 R
mn represent the

a and b chains, respectively.

2.4.1 Modality fusion
For providing a comprehensive view of cross-modal data, we
propose a modality fusion block to learn modality-invariant
and modality-specific representations. The modality-invariant
representation aims to learn the shared representation with
distributional similarity constraints (Guo et al. 2019) by mini-
mizing the heterogeneity gap. On the other hand, the
modality-specific representation focuses on capturing the
unique characteristics of each modality. The architecture of
the modality fusion block is illustrated in Fig. 3.

The modality fusion block consists of a shared bottom net-
work f c (where c refers to a common set of learnable weights)
and separate bottom networks f i

S and f i
P (where i refers to in-

dividual sets of learnable weights). For single-chain TCR
data, we input the calculated F̂S and F̂P to obtain the
modality-invariant representations Hc

S and Hc
P, as well as the

modality-specific representations Hi
S and Hi

P, each with a

Figure 2. Feature extraction architecture includes sequence-based extractor (upper) and physicochemical-based extractor (lower).
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predefined dimension of d. In this work, both the shared and
separate bottom networks are implemented with dense layers.

These four representation vectors are concatenated to form
a matrix M ¼ ½Hc

S;H
c
P;H

i
S;H

i
P� 2 R

4�d. To enable each mo-
dality to learn latent features from the other modalities, a self-
attention fusion layer is applied to M (Kiela et al. 2019). In
this layer, the matrix M is transformed into query/key/value
embeddings MQ=MK=MV 2 R

4�d, resulting in a refined ma-

trix M̂ ¼ ½Ĥc
S ; Ĥ

c
P ; Ĥ

i
S ; Ĥ

i
P � 2 R

4�d as follows:

M̂ ¼ softmax
MQðMKÞTffiffiffi

d
p

 !
MV : (9)

Based on M̂, we form a concatenated vector
hconcat ¼ ½Ĥc

S � Ĥc
P � Ĥi

S � Ĥi
P � 2 R

4d, where � represents the
concatenation operator. We utilize the binary cross-entropy
(BCELoss) in conjunction with the AdamW (Loshchilov and
Hutter 2019) optimizer to calculate the loss value of the task
as follows:

Ltask ¼ �y logðŷÞ � ð1� yÞ logð1� ŷÞ (10)

where y represents the ground-truth labels, and ŷ denotes the
predicted results through ŷ ¼ rðf ðhconcatÞÞ. The total loss of
MIX-TPI is defined as L ¼ Ltask þ kLrepre, where k is the
tuning parameter, and the composite loss function Lrepre com-
bines Lsim and Lorth to regulate the learning of modality-
invariant and modality-specific representations, respectively.
Especially, Lsim aims to minimize the gaps between the
modality-invariant representations in the shared bottom net-
work f c, thereby aligning these representations into the shared
vector space (Hazarika et al. 2020). To achieve this, we adopt
the central moment discrepancy (CMD) method (Zellinger
et al. 2017) to calculate Lsim. The CMD distance metric

measures the dissimilarity between the distributions of two
representations by evaluating their discrepancies in order-
wise moments. As the two distributions become more similar,
the CMD distance decreases accordingly. The calculation of
Lsim is as follows:

Lsim ¼ CMDKðHc
S;H

c
PÞ (11)

CMDKðX;YÞ ¼ kEðXÞ � EðYÞÞk2

þ
XK

k¼2
kCKðXÞ � CKðYÞÞk2 (12)

where K denotes the boundary of central moments and is
usually set to 5. The empirical expectation vector of a sample

X is reached as EðXÞ ¼ 1
jXj
P
x2X

. The vector CKðXÞ ¼

Eððx� EðXÞÞkÞ represents the collection of all k-th order sam-
ple central moments in X. The orthogonal loss Lorth is pro-
posed to facilitate the learning of non-redundant features in
both modality-invariant and modality-specific representa-
tions. It ensures that these representations are constrained to
orthogonal subspaces. Hence, Lorth is calculated as follows:

Lorth ¼
X

t2fS;Pg

����HcT

t Hi
t

����
2

F
þ
����HiT

S Hi
P

����
2

F
(13)

Similarly, for paired TCR data, the representation matri-
ces fF̂Sa ; F̂Pa ; F̂Sb ; F̂Pb g are fed to f c and f i to obtain corre-
sponding modality-invariant representations fHc

Sa
;Hc

Pa
;

Hc
Sb
;Hc

Pb
g and modality-specific representations fHi

Sa
;Hi

Pa
;

Hi
Sb
;Hi

Pb
g. Accordingly, Lsim and Lorth can be rewritten as

follows:

Lsim ¼
1
6

X
t1;t22/

CMDKðHc
t1
;Hc

t2
Þ (14)

Lorth ¼
X

t2fSa;Pa;Sb;Pbg

����HcT

t Hi
t

����
2

F
þ
X

t1;t22/

����HiT
t1

Hi
t2

����
2

F
(15)

where
/ ¼ fðSa;PaÞ; ðSa; SbÞ; ðSa;PbÞ; ðPa; SbÞðPa;PbÞ; ðSb;PbÞg.

3 Results
3.1 Experiment setup

To evaluate the performance of different data splitting strate-
gies, this study adopts cross-validation based on two primary
evaluation metrics, i.e. the area under the receiver-operating
characteristic curve (AUC) and the area under the precision-
recall curve (AUPR). AUC is widely used in this field
(Springer et al. 2020, Moris et al. 2021, Weber et al. 2021),
while AUPR is used to assess the performance on the unbal-
anced dataset (i.e. IEDB-NetTCR). The implementation of

(a)

(b)

Figure 3. The modality fusion architectures on (a) single-chain TCR

datasets and (b) the paired TCR dataset.

Table 2. Parameter settings.

No. of filters (r) [64, 256] Feature size (d) [64, 256]
Weight of Lrepre (k) [0.1, 0.3] CNN kernel sizes f3, 5, 9, 11g
Epoch 50 Batch size 128
Dropout rate [0.3, 0.5] Learning rate [1e�5, 1e�3]

MIX-TPI: a multimodal prediction framework of TCR-pMHC interactions 5



MIX-TPI is carried out in Python and PyTorch v1.10.0, and
the default parameter settings are presented in Table 2.

3.2 Comparison with state-of-the-art methods

For performance evaluation, MIX-TPI is pitted against four
state-of-the-art methods, namely NetTCR (Jurtz et al. 2018),
ERGO (Springer et al. 2020), ImRex (Moris et al. 2021), and
TITAN (Weber et al. 2021). The evaluation is conducted on
the VDJdb-TITAN and Immune-TITAN datasets. For the
sake of fairness, all the compared methods are provided with
the same inputs as MIX-TPI and configured with their default
parameter settings as described in their respective articles.

The right side of each subfigure in Fig. 4 presents the results
of the compared methods evaluated with 10-fold cross-
validation. MIX-TPI demonstrates superior performance with
the highest average AUC values compared with the other
methods. Specifically, it outperforms the runner-ups by
1.25%, 1.14%, 2.93%, and 1.74% on the following data
splitting strategies: TCR split on VDJdb-TITAN, TCR split
on Immune-TITAN, strict split on VDJdb-TITAN, and strict

split on Immune-TITAN, respectively. We also observe that
all the compared methods perform worse on strict split than
on TCR split, indicating the heterogeneity of peptides and the
difficulty in generalizing to the associations involving
completely unseen TCRs and peptides. Among these methods,
TITAN and ImRex perform relatively better, because they uti-
lize either sequence-based features or physicochemical-based
features, but not both. In contrast, MIX-TPI reaches superior
generalization capability and robust prediction performance,
primarily due to its incorporation of both sequence-based and
physicochemical-based features, along with the comprehen-
sive view of subspace representation learning.

3.3 Ablation study

The self-attention fusion layer, representation loss Lrepre, SE,
and PE are the important components accounting for the per-
formance improvement reached by MIX-TPI. We conduct an
additional experiment to evaluate their effectiveness. In the
experiment, we replace the self-attention fusion layer with a
simple concatenation operation and compare the performance

Figure 4. The average AUC of the compared methods on the VDJdb-TITAN and Immune-TITAN datasets by different data splitting strategies. The left

side of each subfigure represents the results of MIX-TPI’s variants, while the right side of each subfigure denotes the results of the compared state-of-

the-art methods.
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of the modified model with the original MIX-TPI. The output
embeddings F̂S and F̂P of SE and PE are respectively fed into
separate feedforward neural networks for predicting the
TCR–pMHC interactions. The results are shown on the left
side of each subfigure in Fig. 4. The comparison reveals
that the AUC of MIX-TPI degrades by about 1% without the
self-attention fusion layer (denoted as Concat.) and the repre-
sentation loss (denoted as MIX-TPI w/o Lrepre). This finding
suggests that the self-attention fusion layer and learning
modality-invariant and modality-specific representations play
a crucial role in enhancing the performance of MIX-TPI.

Moreover, the results demonstrate that the single-modal
variants (SE only and PE only) show a decrease in AUC com-
pared with the combined MIX-TPI model. Specifically, the
AUC decreases by 1.16%/1.34%, 1.00%/1.44%, 3.46%/
3.91%, and 2.55%/3.15% on TCR split on VDJdb-TITAN,
TCR split on Immune-TITAN, strict split on VDJdb-TITAN,
and strict split on Immune-TITAN, respectively. This suggests
that the combination of sequence and physicochemical fea-
tures in MIX-TPI provides effective supplementary informa-
tion for prediction. Importantly, despite the degradation in
performance, all variants of MIX-TPI still achieve superior
performance compared with other state-of-the-art methods,
demonstrating the robustness of the proposed MIX-TPI
model.

3.4 Evaluation on mutual exclusive evaluation

datasets

In order to evaluate the generalization capability of the mod-
els in a real-world scenario, mutual exclusive evaluation is
conducted using VDJdb-ImRex and McPAS datasets for train-
ing and testing, respectively. Two subsets of McPAS are
utilized for testing: one excluded TCRs appearing in VDJdb-
ImRex (McPAS-TCRs test set), and the other removed pepti-
des contained in VDJdb-ImRex (McPAS-peptides test set).
The results of 10-fold CV on VDJdb-ImRex and mutual ex-
clusive evaluation set testing on McPAS are summarized in
Table 3, where MIX-TPI achieves the highest average AUC in
all cases. Comparison of the results between Table 3(a) and
(b) reveals that all the compared methods fail to maintain
their generalization capability in mutual exclusive evaluation
set testing, leading to a significant decline in performance
when compared with the results of cross-validation. This
highlights the technical challenge of evaluating the generaliza-
tion capability of models for real-world applications through
mutual exclusive evaluation set testing.

3.5 Evaluation on the paired TCR dataset

We also conduct a thorough performance analysis of MIX-
TPI in processing paired TCR data, peptide-specific AUC

comparison, the impact of the representation loss Lrepre on the
vector subspace of representations, and the decision-making
process of self-attention in the fusion stage. We utilize the
IEDB-NetTCR dataset for our experiments and adopt 5-fold
CV as per the settings described in NetTCR2.0 (Montemurro
et al. 2021), only which is capable of handling paired TCR
data among the compared methods.

3.5.1 Handling paired TCR data
Since MIX-TPI is compatible with handling paired TCR data,
we use NetTCR2.0 as a benchmark for performance compari-
son. NetTCR2.0 employs 1D CNNs to encode the sequences
of peptides, TCRa, and TCRb and then concatenate the
encoded representations to predict the paired TCRab-pMHC
interactions. As shown in Table 4, MIX-TPI achieves a higher
AUC (by 1:38%) and AUPR (by 2:37%) than NetTCR2.0.
This result demonstrates the robustness of MIX-TPI in han-
dling the unbalanced nature of the IEDB-NetTCR dataset.
The simple concatenation feature fusion in NetTCR2.0 may
limit its performance in effectively capturing the TCR–pMHC
interaction patterns. Interestingly, even without TCRa
(denoted as MIX-TPI w/o a) or TCRb (denoted as MIX-TPI
w/o b), MIX-TPI still outperforms NetTCR2.0 with paired
TCR data. This may attribute to the fact that NetTCR2.0
only considers sequence-based features. In contrast, MIX-TPI
introduces physicochemical-based features in addition to
sequence-based features, depicting the TCR–pMHC interac-
tions from different perspectives.

3.5.2 Peptide-specific AUC comparison
We conducted further analysis on the impact of the number
of interactions per peptide on the performance. Figure 5
shows the peptide-specific average AUC of MIX-TPI and
NetTCR2.0 using 5-fold CV. MIX-TPI consistently outper-
forms NetTCR2.0 in most peptides. Peptides with over 200
positive interactions have an average AUC of 0.89, while pep-
tides with <10 positive interactions have an average AUC of
0.52. Furthermore, we observe a decrease in AUC as the num-
ber of peptide interactions decreases, except for peptide
FLYALALLL which has an AUC of 0.97. This outlier can be
explained by the high dissimilarity between its positive and
negative TCRs, as reported in NetTCR2.0 (Montemurro
et al. 2021).

3.5.3 Analysis of vector subspace representations
The ability of MIX-TPI to learn the vector subspace represen-
tations is also investigated in this section. Figure 6a displays
the vector subspaces of modal-invariant representations fHc

Sa
,

Hc
Pa

, Hc
Sb

, Hc
Pb
g and modal-specific representations fHi

Sa
, Hi

Pa
,

Hi
Sb

, Hi
Pb
g for samples in the test set. The results show that

when the representation loss Lrepre is not included (i.e. k ¼ 0),

Table 3. Average AUC comparison of the 10-fold CV on VDJdb-ImRex and mutual exclusive evaluation on McPAS.

Methods (a) 10-Fold CV on VDJdb-Im-Rex (b) Mutual exclusive evaluation on McPAS

McPAS-TCRs McPAS-peptides

NetTCR (Jurtz et al. 2018) 0.636660.0127 0.575260.0183 0.508860.0357
ERGO (Springer et al. 2020) 0.644460.0116 0.582060.0122 0.523060.0260
ImRex (Moris et al. 2021) 0.664560.0110 0.601260.0072 0.531760.0286
TITAN (Weber et al. 2021) 0.662460.0095 0.598060.0171 0.529860.0246
MIX-TPI w/o Lrepre 0.680660.0073 0.611660.0126 0.534460.0271
MIX-TPI 0.689060.0104 0.618260.0099 0.546260.0235

The boldface values indicate the best performance.
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the modality-invariant representations cannot be learned.
However, when Lrepre is involved (i.e. k 6¼ 0), there is a clear

fusion effect observed among the modality-invariant represen-
tations. It is worth noting that the modal-specific representa-
tions remain scattered, as they are supposed to be distinct for
each modality. However, their distributions are more con-
densed when Lrepre is utilized. The results demonstrate that
Lrepre plays a crucial role in learning the modality-invariant
representations and improving the performance of MIX-TPI.

3.5.4 Importance of the learned representations through
attention visualization
We investigate the importance of the learned representations by
visualizing the average attention distribution in the fusion stage
over the test set. As shown in Fig. 6b, each row represents the
probability distribution of each representation embedding, aver-
aged over all test samples, while each column shows the signifi-

cance of a specific representation Hfc=ig
fSa=Pa=Sb=Pbg to all enhanced

representations Ĥ
fc=ig
fSa=Pa=Sb=Pbg.

It is observed that the four modality-invariant representa-
tions have similar patterns, which can be attributed to their
shared vector subspaces. On the other hand, the contributions
of the four modality-specific representations are distinctive
because of their orthogonality constraints. Although the
modality-specific representations seem to have higher impor-
tance than the modality-invariant representations, these repre-
sentations provide varying degrees of information to the
results.

4 Conclusion

We proposed a multimodal computational framework named
MIX-TPI for the prediction of TCR–pMHC interactions. The
sequence-based extractor and physicochemical-based extrac-
tor were shown to effectively capture feature embeddings.
The modality fusion stage of MIX-TPI incorporates similarity
and orthogonality constraints to facilitate the learning of
modality-invariant and modality-specific representations.
These constraints allow the model to capture both commonal-
ities and diversities across different modalities, effectively
modeling the intricate relationships between them. The self-
attention fusion layer was then employed to fuse these
representations to predict TCR–pMHC interactions. The

Figure 5. Comparison of MIX-TPI and NetTCR2.0 in terms of peptide-

specific average AUC on peptides with at least three positive examples.

Table 4. Average AUC and AUPR comparison on IEDB-NetTCR.

Methods AUC AUPR

NetTCR2.0 0.896360.0080 0.817760.0089
MIX-TPI w/o a 0.903460.0071 0.833660.0090
MIX-TPI w/o b 0.902860.0048 0.832560.0063
MIX-TPI w/o Lrepre 0.904660.0058 0.833960.0077
MIX-TPI 0.910160.0064 0.841560.0086

The boldface values indicate the best performance.

(a) (b)

Figure 6. Representation embedding analysis. (a) t-SNE (Van der Maaten and Hinton 2008) visualization of vector subspace of modality-invariant and

modality-specific representations. (b) Average self-attention scores. The rows denote queries and the columns denote keys. Transparency is used to

further differentiate the scores of each column, with higher transparency indicating lower scores.
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effectiveness and reliability of MIX-TPI were demonstrated
on VDJdb-TITAN and Immune-TITAN datasets using two
data splitting strategies. The generalization capability of
MIX-TPI for real-world applications was further validated
through mutual exclusive evaluation on McPAS datasets.
Experiments conducted on the paired TCR dataset, specifi-
cally IEDB-NetTCR, validated the capability of MIX-TPI in
processing multimodal data with high flexibility. The results
also demonstrated its proficiency in achieving desired vector
subspace learning, as well as showcasing the self-attention de-
cision process in the fusion stage.

While MIX-TPI has demonstrated promising performance,
there are still areas where further improvements can be made.
The accuracy of negative samples for TCR–pMHC interac-
tions is crucial. In this study, negative samples were generated
through shuffling or sampling from 10X Genomics data.
However, these negative samples may contain false negatives.
To address this issue, positive-unlabeled learning approaches
(Zeng et al. 2020, Jiang et al. 2023) could be utilized to select
reliable negative TCR–pMHC interactions. Furthermore,
MIX-TPI only incorporates data from the CDR3 regions of
the TCR. Integration of other valuable information, such as
CDR1, CDR2, V/D/J gene usage, and other physicochemical
features (Lanzarotti et al. 2019, Wang and Zou 2023), can
provide a more comprehensive understanding of the interac-
tion patterns between TCR and pMHC from different
perspectives.
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