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Abstract
Motivation: The emergence of high-throughput experiments and high-resolution computational predictions has led to an explosion in the quality
and volume of protein sequence annotations at proteomic scales. Unfortunately, sanity checking, integrating, and analyzing complex sequence
annotations remains logistically challenging and introduces a major barrier to entry for even superficial integrative bioinformatics.

Results: To address this technical burden, we have developed SHEPHARD, a Python framework that trivializes large-scale integrative protein bio-
informatics. SHEPHARD combines an object-oriented hierarchical data structure with database-like features, enabling programmatic annotation,
integration, and analysis of complex datatypes. Importantly SHEPHARD is easy to use and enables a Pythonic interrogation of largescale protein
datasets with millions of unique annotations. We use SHEPHARD to examine three orthogonal proteome-wide questions relating protein se-
quence to molecular function, illustrating its ability to uncover novel biology.

Availability and implementation: We provided SHEPHARD as both a stand-alone software package (https://github.com/holehouse-lab/shep
hard), and as a Google Colab notebook with a collection of precomputed proteome-wide annotations (https://github.com/holehouse-lab/shep
hard-colab).

1 Introduction

Over the last two decades, high-throughput experiments have
enabled the acquisition of large datasets that offer insight into
biologically important features for thousands of proteins si-
multaneously (Zhang et al. 2014, Huang et al. 2015, Riley
and Coon 2016, Kinney and McCandlish 2019). When com-
bined with traditional and deep-learning-based computational
approaches, proteome-wide annotation enables the genera-
tion of high-dimensional data ripe for further analysis
(UniProt Consortium 2015, Lindorff-Larsen and Kragelund
2021, Necci et al. 2021, Tunyasuvunakool et al. 2021,
Sapoval et al. 2022) (Fig. 1A). If integrated, these datasets can
be used to ask large-scale statistical questions on the relation-
ship(s) between different types of annotations. These analyses
can generate and test novel hypotheses, extracting additional
value from previously published data in ways the original
authors may have never anticipated.

Despite remarkable progress in data generation and acqui-
sition, downstream processing and integration are often
treated as an afterthought. Proteome-wide datasets that re-
quire incredible resources and effort to generate are often de-
posited in poorly-labeled Excel spreadsheets or hard-to-parse
text files. In particular, the ability to cross-reference across
many different types of annotations raises several practical

challenges, including data cleaning, developing and applying
appropriate data structures, and the portability and reliability
of analysis code. These issues contribute to a scenario where
large-scale analyses are often performed in a relatively ad hoc
way. Researchers often invest substantial resources in build-
ing robust frameworks. Alternatively, they hack together be-
spoke, one-off pipelines, which may suffer from integrity,
completeness, or reproducibility issues.

We have addressed this challenge by developing a modular
and extensible software architecture for large-scale and high-
throughput protein sequence analysis. SHEPHARD is a
Python-based general-purpose hierarchical framework that
facilitates reproducible, reliable, and high-throughput analysis
of complex numerical and symbolic protein annotations at
proteome-wide scales.

2 Materials and methods

SHEPHARD addresses three main challenges in the context
of data integration and analysis. First, SHEPHARD enables a
clear and syntactically simple programming interface for ask-
ing broad, integrative statistical questions across large data-
sets. Second, SHEPHARD makes it easy to read annotations
from external sources and write annotations to files, making
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it easy to integrate into existing workflows. Third, we provide
SHEPHARD as a locally-installable Python package and
Google Colab notebooks. These notebooks include various
preloaded annotations for the human proteome. Together,
SHEPHARD provides features for both seasoned bioinforma-
ticians and novice users.

SHEPHARD stores data in an object-oriented hierarchical
format where the base container is a Proteome. Proteomes con-
tain one or more Proteins, and each Protein can be annotated
with Domains, Sites, or Tracks (Fig. 1B and C). Proteomes and
associated annotations are read in and written out via a set of
routines that provides an interface between the outside world
and SHEPHARD. To ensure SHEPHARD-associated annota-
tions are easy to generate, read, and interpret, we have
introduced a simple tab-separated schema for defining
SHEPHARD-associated data. Text-based tab-separated file
formats are commonplace in bioinformatics (e.g. BED files),
meaning we avoid creating a fundamentally new type of file.
Our file implementation stores one annotation per line with
specific column definitions, making these files easy to generate
using existing bioinformatic scripts or MS Excel, or Google

Sheets. Importantly this format can also be opened and easily
understood via commonly-used software packages (e.g. MS
Excel). In this way, we ensure SHEPHARD-generated data
remain accessible even for scientists with a minimal background
in computer science. Please see the supporting information for a
detailed discussion of the software design principles that
underline SHEPHARD.

Having introduced the conceptual and practical features
that SHEPHARD addresses, the remainder of this report illus-
trates the types of integrative questions SHEPHARD makes
easy to ask and answer across the human proteome.

3 Results

Intrinsically disordered regions (IDRs) often contain post-
translational modification (PTM) sites (Supplementary Tables
S1 and S2) (Iakoucheva et al. 2004). We wondered if this ob-
servation reflects a bona fide preference of modifying enzymes
for IDRs. Conversely, this result may be a convolution of se-
quence composition bias and differences in solvent accessibil-
ity for residues in IDRs versus folded domains (Fig. 2A). To

Figure 1. (A) Protein annotations span a range of flavors and types. (B, C) SHEPHARD uses four protein-level annotations, and multiple Proteins are

organized in Proteomes. (D) SHEPHARD provides an ecosystem of tools for reading, analyzing, and writing annotations to facilitate syntactically simple

analysis of large protein datasets.
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answer this, we combined proteome-wide per-residue binding
accessibility data based on AlphaFold2 predicted structures
with IDR and PTM annotations. These analyses reveal that
after correcting for compositional biases and solvent accessi-
bility, many (but not all) types of modifications remained
enriched in IDRs, in line with recent work (Fig. 2B) (Bludau
et al. 2022). For example, around 23% of serine residues in
IDRs are phosphorylated compared to just 12% of solvent-

accessible serine residues in folded domains. Moreover, most
modifications occur in either disordered regions, flexible
loops with no defined secondary structure, or alpha helices,
suggesting these types of substrates are generally preferred
(Supplementary Figs S1 and S2).

While IDRs are often treated as a monolithic class of
domains, IDR conformational behavior and function can be
influenced or even determined by amino acid sequence

Figure 2. (A) Schematic of different types of PTM site types. (B) After accounting for structural context, residues in IDRs are still preferentially modified by

PTMs. (C) Proteins with arginine or lysine-rich IDRs are largely nonoverlapping in function and have distinct nucleic-acid binding preferences. (D, E, F)

Proteins with polar-rich low-complexity domains enriched for specific types of chemistry have distinct functional enrichments. Enrichment here reflects

being in the top 20% of IDRs by the fraction of the chemistry of interest and also in the bottom 5% of the chemistry being depleted (e.g. in panel D, we

identify the proteins in the top 20% of aromatic residues but bottom 5% of charge þ aliphatic residues). (G) Highly expressed human proteins tend to be

depleted for IDRs (on average) (P< 0.0001). (H) IDRs in highly expressed human proteins tend to be more highly charged (P< 0.0001).
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composition (Das et al. 2015, Zarin et al. 2021). As such, we
examined functional differences in IDRs enriched for either
arginine or lysine, amino acids with different positively
charged sidechains. While proteins with arginine-rich IDRs
were enriched for RNA binding functions, those with lysine-
rich IDRs were enriched for DNA binding (Fig. 2C,
Supplementary Tables S3 and S4). This analysis reveals inter-
pretable chemical differences in nucleic-acid interaction pref-
erences, mirroring previous demonstrations of a clear
difference in higher-order assemblies driven by arginine or
lysine-rich peptides (Boeynaems et al. 2019).

Motivated by our results from examining arginine and
lysine-rich IDRs, we wondered if distinct flavors of polar-rich
low-complexity domains (pLCDs) might be associated with
specific functions. pLCDs are regions in IDRs enriched in po-
lar amino acids (glycine, serine, threonine, glutamine, aspara-
gine, and here also proline) (Millard et al. 2020, Gutierrez
et al. 2022). Given the polar nature of polypeptide backbones,
pLCDs present a chemically homogenous scaffold that could
be punctuated by other types of orthogonal chemistry. The
kinds of sequence chemistry encoded by the remaining natural
twenty amino acids can be broadly categorized as aliphatic,
aromatic, or charged (Martin and Holehouse 2020). We iden-
tified pLCDs and filtered for those depleted in two of these
three types of chemistry but enriched for the third. This
revealed a clear difference in the types of proteins associated
with chemically-distinct pLCDs (Fig. 2D–F). Aromatic-rich
pLCDs (n¼ 89) are enriched for RNA binding proteins as
well as proteins involved in cellular structural components
(intermediate filaments, nuclear pore complex, adhesion junc-
tion proteins) (Supplementary Tables S5 and S8). Charge-rich
pLCDs (n¼106) are largely enriched in nuclear proteins
across a range of functions (notably RNA splicing and RNA
processing) (Supplementary Tables S6 and S9). Finally,
aliphatic-rich pLCDs (n¼ 117) are enriched in proteins asso-
ciated with transcriptional regulation (including transcription
factors and chromatin binding proteins) (Supplementary
Tables S7 and S10). Our results are consistent with a model
whereby IDR chemical context can prime IDRs for specific
functions.

Finally, prompted by prior work linking protein disorder to
dosage-dependent toxicity, we wondered how the presence of
disordered regions might correlate with protein
abundance(Bolognesi et al. 2016). To our surprise, we ob-
served a strong negative correlation between human protein
copy number obtained by quantitative mass spectrometry and
disorder (Fig. 2G). Encouragingly, this trend was reproduced
across several other organisms with data from independent
experiments (Supplementary Figs S3 and S4). Intriguingly,
across the human and yeast proteomes, we observed a strong
correlation between how charged an IDR is and the copy
number (Fig. 2H). IDRs in highly-abundant human proteins
tend to be more highly charged. As such, we speculate that
solubility—as determined by the fraction of charged resi-
dues—may play a role in defining the fitness advantage/defect
associated with the presence of a given IDR. Our simple inter-
pretation from these data is that long uncharged IDRs are
generally more harmful than short, charged IDRs.

4 Discussion

SHEPHARD enables integrative proteome-wide bioinfor-
matic analysis. In the case of expert users, it provides a route

for developing complex bioinformatic pipelines that take care
of several key steps required for protein-based bioinformatics.
In the case of novice users, pregenerated proteome-wide anno-
tations are made accessible via Google Colab notebooks, en-
abling people to perform integrative bioinformatics in their
web browser. To illustrate the types of analyses SHEPHARD
enables, we have provided examples where annotations from
AlphaFold2, post-translational modification experiments,
predicted disorder, sequence chemistry, and protein abun-
dance data are seamlessly integrated. These analyses reveal
new insights into the structural context of PTMs, the role of
sequence chemistry in the function of disordered regions, and
the relationship between disorder and protein abundance. In
summary, SHEPHARD offers a convenient resource for those
working on understanding protein-function relationships at
scale in a distributable, reproducible, and reliable manner.

SHEPHARD offers a standard programmatic interface
such that similar or identical analysis code can be used to ana-
lyse completely different datasets. It also provides important
behind-the-scenes consistency and sanity checking to help
catch simple errors, malformatted data, or inconsistent anno-
tations. These features enable researchers to dedicate their
time to developing innovative analysis approaches instead of
worrying about data parsing and sanity checking. In addition,
we have precomputed a large number of annotations for the
human proteome and written detailed Google Colab note-
books, such that with a rudimentary understanding of the
Python programming languages, scientists can conduct large-
scale proteome-wide bioinformatic analysis with relative ease,
either online or by downloading our precomputed annota-
tions. To clearly illustrate the value added by SHEPARD, we
provide a brief walkthrough comparing the steps needed to
complete the analyses enabled by these precomputed annota-
tions in the supporting information.

SHEPHARD is also designed to be helpful for both compu-
tational and noncomputational researchers. In particular, we
wanted to make it easy for computational scientists to share
their data in a way that is easily accessible to scientists with
no background in computer science at all. Compiled or highly
structured data formats (e.g. GFF, BED, JSON) have many
advantages from the perspective of information theory, meta-
data, or extendability. However, these formats can suffer
from the fact that they are often uninterpretable to scientists
without the requisite technical expertise. To make this con-
crete, a goal for SHEPHARD was to ensure the file formats
that are read in or written out can be opened by “clicking on
an icon” and using software most users already have access to
(e.g. Microsoft Excel). With this in mind, SHEPHERD-
compliant data files are defined in a simple, consistent, and
well-defined tab-separated data format. This means after
complex analysis pipelines, input and output data can be
shared as supplementary information in a format that almost
anyone can open and understand. It also ensures that compu-
tational and noncomputational scientists consistently work
with the same data. The decision to implement a specific
schema for TSV files that hold Tracks, Sites, and Domains (as
opposed to using an existing bioinformatics file format)
reflects the balance of ensuring SHEPHARD files are easily
readable and writable and avoiding overloading an existing
file format for data it was not designed to accommodate (e.g.
protein information into a BED file).

As a final note, from a reproducibility standpoint,
SHEPHARD enables complex bioinformatics pipelines to be
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written in a few lines of code. The ability to easily re-analyze
changing datasets via a consistent software interface will en-
able work published today to be re-evaluated a decade from
now without the need to change the actual pipeline. From a
software engineering standpoint, SHEPHARD was designed
to possess an internally consistent data architecture combined
with loosely-coupled interfaces and APIs. This design strategy
means SHEPHARD does not make any assumptions about
the outside world, avoiding challenges introduced by chang-
ing dependencies or deprecation of external libraries. While
not the most glamorous of topics, software longevity is a criti-
cal feature in an ever-changing ecosystem. SHEPHARD was
deliberately designed to ensure maintainability and extensibil-
ity did not come at the expense of tight coupling to other soft-
ware tools or data formats.
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