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In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation.
Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the
end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between
prehension in isolation and prehension for object manipulation. Sixteen (seven males and nine females) participants were
instructed either to simply grasp the handle of a rotatable dial (isolated prehension) or to grasp and turn it (prehension for
object manipulation). We used representational similarity analysis (RSA) to investigate whether the experimental conditions
could be discriminated from each other based on differences in task-related brain activation patterns. We also used temporal
multivoxel pattern analysis (tMVPA) to examine the evolution of regional activation patterns over time. Importantly, we
were able to differentiate isolated prehension and prehension for manipulation from activation patterns in the early visual
cortex, the caudal intraparietal sulcus (cIPS), and the superior parietal lobule (SPL). Our findings indicate that object manip-
ulation extends beyond the putative cortical grasping network (anterior intraparietal sulcus, premotor and motor cortices) to
include the superior parietal lobule and early visual cortex.
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Significance Statement

A simple act such as turning an oven dial requires not only that the CNS encode the initial state (starting dial orientation) of
the object but also the appropriate posture to grasp it to achieve the desired end state (final dial orientation) and the motor
commands to achieve that state. Using advanced temporal neuroimaging analysis techniques, we reveal how such actions
unfold over time and how they differ between object manipulation (turning a dial) versus grasping alone. We find that a com-
bination of brain areas implicated in visual processing and sensorimotor integration can distinguish between the complex
and simple tasks during planning, with neural patterns that approximate those during the actual execution of the action.

Introduction
The hand is central in physical interactions with our environ-
ment. Typical hand-object interactions consist of sequential

phases, starting with reaching and ending with object manipula-
tion (Castiello, 2005). Electrophysiological studies in macaques
have implicated a frontoparietal network in hand-object interac-
tions (for review, see Gerbella et al., 2017). Previous functional
MRI (fMRI) research (for review, see Errante et al., 2021) has
identified a similar network in humans. This network comprises
a dorsomedial pathway, consisting of the superior parietal occipi-
tal cortex (SPOC; corresponding to V6/V6A) and the dorsal pre-
motor cortex (PMd), and a dorsolateral pathway, consisting of
anterior intraparietal sulcus (aIPS) and ventral premotor cortex
(PMv).

While past human neuroimaging studies revealed the neural
substrates of grasping, most treated prehension as the end goal,
not as a step toward meaningful hand-object interactions. In
contrast, real-world hand-object interactions typically involve
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grasping only as a prelude to subsequent actions such as manipu-
lating or moving objects. Importantly, previous studies have
shown that the final action goal shapes prehension: Initial prehen-
sion strategies are affected by the goal in the “end-state comfort”
effect (Rosenbaum et al., 1990) and in actions like tool use (Comalli
et al., 2016). Moreover, the end goal affects brain responses during
action planning and prehension (Fogassi et al., 2005; Gallivan et al.,
2016).

The purpose of the current study was to investigate how iso-
lated and sequential actions unfold differently on a moment-to-
moment basis. The temporal unfolding of brain activation dur-
ing actions has been largely overlooked (or only studied with
EEG, without localizing the specific brain regions involved; Guo
et al., 2019) . Most studies that have used multivoxel pattern
analysis (MVPA) to investigate hand actions have averaged data
within time bins for Planning and Execution (Gallivan et al.,
2011). Notably, several studies have revealed the temporal
unfolding of MVPA grasping representations for sequential time
points (Gallivan et al., 2013; Ariani et al., 2018). In addition, one
study examined isolated (grasping an object) versus sequential
(grasping to move an object to one of two locations) actions,
showing that activation patterns could be discriminated across
the grasping network even during action planning (Gallivan et
al., 2016).

Here, we examined (univariate) activation levels and (mul-
tivariate) activation patterns [using representational similarity
analysis (RSA); Kriegeskorte et al., 2008]. Moreover, we also
used a new methodological approach, temporal MVPA (tMVPA;
Ramon et al., 2015; Vizioli et al., 2018) to examine the representa-
tion similarities across trials for the same and different points in
time, separately for isolated versus sequential actions.

We measured brain activation using fMRI while participants
performed a motor task consisting of either simple grasping of a
dial (with two possible initial orientations) or grasping followed
by rotation of the dial (clockwise or counterclockwise), as one
might turn an oven dial (see Fig. 1). Based on earlier findings
that brain regions within the grasping network plan the full action
sequence, and not just the initial grasp (see Gallivan et al., 2016),
we expected that during the plan phase, as well as the execute
phase, tMVPA would reveal representations of the task (Grasp vs
Turn). Given that visual orientation (Kamitani and Tong, 2005),
surface/object orientation (Shikata et al., 2001; Valyear et al., 2006;
Rice et al., 2007) and grip orientation (Monaco et al., 2011) are
represented in early visual cortex, the caudal intraparietal sulcus
(cIPS), and reach-selective cortex (SPOC), respectively, we pre-
dicted that the representation of orientation would be biased to
the start orientation early in Planning, with a greater emphasis on
end orientation as the movement progressed. Our approach with
tMVPA allowed us to examine, across different regions, how rep-
resentations unfolded over time for isolated versus sequential
actions. Specifically, we expected that regions sensitive to the kine-
matics of executed actions (e.g., M1 and S1) would only show
highly similar representations during action execution; whereas,
regions involved in more abstract features of action planning (e.g.,
aIPS for coding object shape) would show similar representations
across Planning and Execution.

Materials and Methods
Participants
Data from sixteen right-handed volunteers was used in the analysis
(seven males, nine females, mean age: 24.4 years). Participants were
recruited from the University of Western Ontario (London, Ontario,
Canada) and provided informed consent in accordance with procedures

approved by the University’s Health Sciences Research Ethics Board.
Data from an additional two subjects (one male and one female) was col-
lected but excluded because of excessive motion artifacts (see below,
fMRI functional data processing).

Setup and apparatus
The experimental setup is illustrated in Figure 1A,B. Participants lay
supine in a 3-Tesla MRI scanner with the head and head coil tilted;30°
to allow for direct viewing without mirrors of a manipulandum posi-
tioned above the participant’s hips. The manipulandum consisted of a
black rotatable dial (9 cm in diameter; Fig. 1B) with a yellow rectangular
handle (5-cm length � 1-cm width � 2-cm depth). The dial was
mounted on a black surface. The black surface was positioned such that
the dial was approximately perpendicular to the subject’s line of gaze
and comfortably within reach of their right arm. Two yellow markers
were put on the black surface (Fig. 1B) indicating the start and end posi-
tions for turning the dial. A gray platform (not shown in Fig. 1A) was
positioned above the participant’s lower torso serving as the home/rest-
ing position for the right arm between trials. Participants’ upper arms
were braced above their torsos and just above their elbows (Fig. 1A) to
limit movement of the shoulder, which can induce motion artifacts in
fMRI signals. As such, participants could only rely on elbow flexion/
extension and forearm rotation to perform the experimental task.
Considering these constraints, the position and orientation of the dial
were adjusted for each participant to optimize participant comfort dur-
ing task performance and ensure the dial remained fully visible. The
position of the yellow markers on the black surface was adjusted for each
participant individually so that dial rotation would not exceed 80% of
the participant’s maximum range of motion when turning the dial clock-
wise or counterclockwise.

During the experiment, the dial was illuminated from the front by a
bright yellow light-emitting diode (LED) attached to flexible plastic
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Figure 1. Experimental set-up and design. A, Picture of participant set-up in the fMRI
scanner shown from side view. B, Close up of participant using the instructed grip to grasp
the experimental stimulus, i.e., rotatable dial with a handle. C, Experimental conditions in a
two (start orientation: left or right) by two (action: grasp or turn) design. D, Timing of each
event-related trial. Trials began with the stimulus being illuminated (TR 0–3) indicating the
start of the preparation phase. At TR 3 participants received task instructions indicating the
start of the Planning phase (TR 3–9). At TR 9, participants received the “go” cue indicating
onset of action execution (TR 9–10). After 2 s (1 TR) the light was turned off and the inter-
trial interval was initiated (TR 10–16).
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stalks (Fig. 1A; Loc-Line, Lockwood Products). A dim red LED (masked
by a 0.1° aperture) was positioned;15° of visual angle above the rotata-
ble dial and just behind it to provide a fixation point for participants
(Fig. 1A,B). Experimental timing (see below) and lighting were con-
trolled with in-house MATLAB scripts (The MathWorks Inc.).

Experiment design and timing
Behavioral task
This experiment was a 2 (starting orientation: left or right) � 2 (action:
grasp or turn) delayed movement paradigm (Fig. 1C). For each trial, the
dial would appear in one of the two yellow-marked starting positions.
The grasp condition consisted of reaching toward the dial and squeezing
it between the middle phalanges of the index and middle fingers (trial
end position shown in Fig. 1A; hand shape during grasp shown in Fig.
1B). After grasp completion, participants returned their arm back to the
home position. In the turn condition, participants performed the same
reach-to-grasp action but would then subsequently rotate the dial clock-
wise or counterclockwise after they grasped the dial in the left or right
start position, respectively (Fig. 1C). We decided on the index-middle
finger grip instead of a more natural variant of precision grasp as this
would ensure the grip would be highly similar in all conditions and limit
changes to grip angle to optimize end-state comfort (e.g., putting the
right-hand thumb further up when planning to turn clockwise and fur-
ther down when planning to turn the dial counterclockwise). This avoids
contaminating neural activation with low-level sensorimotor confounds
such as digit positioning. Participants were instructed to keep the timing
of all movements as similar as possible, such that the right hand reached
from and returned to the home position at the same time (see below,
Trial design). To isolate the visuomotor planning response from the vis-
ual and motor execution responses, we used a slow event-related para-
digm with 32-s trials, consisting of three phases: Presentation, Plan, and
Execute (see Fig. 1D). We adapted this paradigm from previous fMRI
studies that successfully isolated delay-period activity from transient
neural responses following the onset of visual stimuli and movement
execution (Beurze et al., 2007, 2009; Pertzov et al., 2011). Furthermore,
using this paradigm in previous work from our group, we were able to
successfully isolate and decode planning-related neural activation before
action execution (Gallivan et al., 2011, 2013).

Trial design
Before each trial, subjects were in complete darkness except for the fixa-
tion LED on which participants were instructed to maintain their gaze.
The trial began with a 6-s (three TRs of 2 s each) Presentation phase in
which the illumination LED lit up the rotatable dial. After the
Presentation phase, the 12-s (six-TR) Plan phase was initiated with a
voice cue (0.5-s duration) saying either “Grasp” or “Turn” to instruct
the upcoming action to the participant. Participants could see the
object during the Presentation phase, thus perceiving the starting ori-
entation of the yellow handle. However, they were instructed to only
begin the action after they received the “go” cue. After the Plan phase,
a 2-s (one-TR) Execute phase began with a 0.5-s beep (the “go” cue)
cueing participants to initiate and execute the instructed action.
Performing the entire action, consisting of reaching and grasping (with
or without dial turning), took ;2 s. The dial remained illuminated for
2 s after the “go” cue allowing visual feedback during action execution.
After the 2-s Execution phase, the illumination LED was turned off,
cueing participants to let go of the dial and return their hand back to
the home position. Participants remained in this position for 12 s (six
TRs) in the dark (i.e., the intertrial interval) to allow the blood oxygen-
ation level-dependent (BOLD) response to return back to baseline
before the next trial would be initiated.

Functional runs
Within each functional run, each of the four trial types (Grasp: left or
right, Turn: from left to right or right to left) was presented five times in
a pseudo-randomized manner for a total of 20 trials. Each participant
performed eight functional runs, yielding a total of 40 trials/condition
(160 trials in total). Each functional run took between 10 and 11min.
For each participant, trial orders were counterbalanced across all

functional runs so that each trial type was preceded and followed equally
often by every trial type (including the same trial type) across the entire
experiment. During testing, the experimenter was positioned next to the
set-up to ensure that the dial was in the correct position before each trial,
and manually adjust it if needed. In addition, the experimenter could vis-
ually check whether the participant performed the trial correctly.
Incorrectly trials were defined as any trial where the participant did not
perform the task as instructed: for instance, turning instead of grasping,
using incorrect grips, failing to turn in a smooth manner or having the
dial slip from the fingers.

Participants performed a separate practice session before the actual
experiment to familiarize them with the motor task and ensure proper
execution. The experimental session took approximately 3 h and con-
sisted of preparation (i.e., informed consent, MRI safety, placing the par-
ticipant in the scanner and setting up the behavioral task), eight
functional runs and one anatomic scan. The anatomic scan was collected
between the fourth and fifth functional runs to give participants a break
from the task.

MRI acquisition
Imaging was performed using a 3-Tesla Siemens TIM MAGNETOM
Trio MRI scanner at the Robarts Research Institute (London, ON,
Canada). The T1-weighted anatomic image was collected using an
ADNI MPRAGE sequence [time to repetition (TR)¼ 2300ms, time
to echo (TE)¼ 2.98ms, field of view¼ 192 � 240 � 256 mm, matrix
size¼ 192� 240 � 256, flip angle¼ 9°, 1-mm isotropic voxels].
Functional MRI volumes sensitive to the blood oxygenation level-de-
pendent (BOLD) signal were collected using a T2*-weighted single-
shot gradient-echo echoplanar imaging (EPI) acquisition sequence
(TR¼ 2000ms, slice thickness¼ 3 mm, in-plane resolution¼ 3 � 3
mm, TE¼ 30ms, field of view¼ 240 � 240 mm, matrix size¼ 80�
80, flip angle¼ 90°), and acceleration factor (integrated parallel ac-
quisition technologies, iPAT¼ 2) with generalized auto-calibrating
partially parallel acquisitions (GRAPPA) reconstruction. Each vol-
ume comprised 34 contiguous (i.e., with no gap) oblique slices
acquired at an approximate 30° caudal tilt with respect to the ante-
rior-to-posterior commissure (ACPC) plane, providing near whole
brain coverage. We used a combination of parallel imaging coils to
achieve a good signal-to-noise ratio and to enable direct viewing of
the rotatable dial without mirrors or occlusion. Specifically, we
placed the posterior half of the 12-channel receive-only head coil
(six channels) beneath the head and tilted it at an angle of ;20°. To
increase the head tilt to ;30°, we put additional foam padding
below the head. We then suspended a four-channel receive-only flex
coil over the forehead (Fig. 1A).

fMRI anatomic data processing
All fMRI preprocessing was performed in BrainVoyager version 22
(Brain Innovation). For the present study, we defined regions of interest
(ROIs) in surface space instead of volumetric space as it has been shown
that cortical alignment improves group results by reducing individual
differences in sulcal locations (Fischl et al., 1999; Frost and Goebel,
2012). As such, we performed surface reconstruction (mesh generation)
and cortex-based alignment. Given that we relied on the recommended
approach and standard settings of BrainVoyager 22, these steps are
explained only in brief.

Folded mesh generation for each participant
In volumetric space we performed the following steps. First, we cor-
rected for intensity inhomogeneity. Then, we rotated the anatomic
data in ACPC space, because of the experimental head tilt, and nor-
malized to Montreal Neurologic Institute (MNI) space. Next, we
excluded the subcortical structures (labeled as white matter) and the
cerebellum (removed from anatomic) before mesh generation. We
then defined the boundaries between white matter and gray matter
and between gray matter and cerebrospinal fluid. Finally, we created
a folded mesh (surface representation) of only the left hemisphere af-
ter removing topologically incorrect bridges (Kriegeskorte and
Goebel, 2001). We decided to only investigate the left hemisphere
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because the motor task involved the right hand only, which previous
work has shown predominantly activates the left (contralateral) hemi-
sphere (Cavina-Pratesi et al., 2010, 2018; Gallivan et al., 2011, 2013).

Standardized folded mesh generation for each participant
Briefly, folded meshes created from anatomic files often result in differ-
ent numbers of vertices between participants. To facilitate cortex-based
alignment between participants, folded meshes were first transformed
into high-resolution standardized folded meshes. Each folded mesh was
first morphed into a spherical representation by smoothing (thus remov-
ing differences between sulci and gyri) and correcting for distortion. The
spherical representation of each participant mesh was then mapped to a
high-resolution standard sphere to create a high-resolution standardized
spherical representation of the participant mesh. The vertex position in-
formation of the original participant folded (not spherical) mesh was
then used to generate a standardized folded mesh for each participant.

Cortex-based alignment
Cortex-based alignment was performed following the approach of Frost
and Goebel (2012) and Goebel et al. (2006): we aligned all individual
standard meshes to a dynamically generated group average target mesh.
Before aligning to the dynamic group average, we performed prealign-
ment (i.e., rigid sphere alignment). The actual steps of cortex-based
alignment generate a dynamic group average (a surface mesh based on
all individual meshes) and sphere-to-sphere mapping files for each par-
ticipant that enable transporting the functional data from each individ-
ual to the dynamic group average. Inverse sphere-to-sphere mapping
files were also generated, which allows transporting of data (such as
regions of interest) from the dynamic group average back to individual
meshes.

fMRI functional data processing
General preprocessing
All functional runs were screened for motion and magnet artifacts by
examining the movement time courses and motion plots created with
the motion correction algorithms (three translation and three rotation
parameters). Data from a run was discarded if translation exceeded
1 mm or rotation exceeded 1° between successive volumes. Based on this
screening, all data from two participants and one run from an additional
participant was discarded. Examination of the remaining data indicated
negligible motion artifacts in time courses (as will be shown in later
figures).

Functional runs were co-registered with the anatomic data using
boundary-based registration (Greve and Fischl, 2009). We subsequently
performed slice-scan time correction, motion correction and MNI nor-
malization. Next, we performed linear-trend removal and temporal
high-pass filtering (using a cutoff of three sine and cosine cycles on the
fast Fourier transform of the time courses).

Volumetric to surface-based time courses
Volumetric time courses were first aligned with the respective partici-
pant’s anatomic scan using boundary-based registration to ensure opti-
mal alignment (Greve and Fischl, 2009). Volumetric time courses were
then transformed to the respective participant’s standardized folded
mesh using depth integration along the vertex normal (sampling from
�1 to 3 mm relative to the gray-white matter boundary). Once func-
tional runs were transformed into surface space, they were spatially
smoothed. Finally, functional runs in individual standard mesh space,
could then be mapped onto the dynamic group average mesh using
sphere-to-sphere mapping files that were generated during cortex-based
alignment. This approach enabled us to model the averaged brain activa-
tion across all participants onto the group mesh and define ROIs based
on hotspots of strongest activations in surface space.

Region of interest-based analysis
For the current project, we performed a ROI-based analysis of cortical
regions within the hemisphere contralateral to the acting hand at the
peak foci for task-related activity. To allow for better intersubject consis-
tency and statistical power, we used cortex-based alignment for defining

ROIs (Goebel et al., 2006; Frost and Goebel, 2012). We were primarily
interested in cortical areas that constitute the cortical grasping and
reaching networks that have been investigated in previous studies of our
group (Cavina-Pratesi et al., 2018) and others (Ariani et al., 2018). As in
previous projects (Gallivan et al., 2013; Fabbri et al., 2016), we consid-
ered only the contralateral hemisphere as it is well established that hand-
object actions are strongly lateralized and elicit only limited activation in
the ipsilateral hemisphere (Culham et al., 2006). Moreover, as our analy-
sis of the left cerebral hemisphere already included 17 regions and we
performed multiple analyses, some at many time points, we wanted to
limit the complexity of the results and find a balance between statistical
rigor and statistical power.

We chose an ROI approach rather than a whole-brain cortex-
based searchlight to optimize statistical power and computational
processing time (Kriegeskorte, 2008; Frost and Goebel, 2012; Etzel
et al., 2013). Because of the large number of comparisons per-
formed in a searchlight analysis, only the most robust effects sur-
vive the correction for multiple comparisons (Kriegeskorte, 2008;
Kriegeskorte and Kievit, 2013). Moreover, tMVPA relies on single-
trial correlations which are computationally very intensive. Performing
this analysis on the voxel-based searchlight level would likely take mul-
tiple months.

Defining regions of interest
To localize our regions of interest on the group mesh, we applied a gen-
eral linear model (GLM) on our data in surface space. Predictors of in-
terest were created from boxcar functions convolved with the two-g
hemodynamic response function (HRF). We aligned a boxcar function
with the onset of each phase of each trial within each run of each partici-
pant, with a height dependent on the duration of each phase. We used
three TRs for the Presentation phase, six TRs for the Plan phase and one
TR for the Execution phase. The six motion parameters (three transla-
tions and three rotations) were added as predictors of no interest. Each
incorrect trial was also assigned a unique predictor of no interest. All
regression coefficients (b weights) were defined relative to the baseline
activity during the intertrial interval. In addition, time courses were con-
verted to percent signal change before applying the random effects GLM
(RFX-GLM).

To specify ROIs for our analyses, we searched for brain areas,
on the group level, involved in the experimental task. We con-
trasted brain activation for all three phases with baseline. This con-
trast was performed across all conditions to ensure that ROI
selection based on local activation patterns was not biased by
differences between specific conditions (e.g., Grasp vs Turn).
Specifically, the contrast was: {Presentation [Grasp left 1 Grasp right 1
Turn left to right 1 Turn right to left] 1 Plan [Grasp left 1 Grasp right 1
Turn left to right 1 Turn right to left]1 Execute [Grasp left 1 Grasp right 1
Turn left to right 1 Turn right to left]}. baseline. This contrast enabled us
to identify regions that showed visual and/or motor activation associ-
ated with the task.

In BrainVoyager, area selection on a surface generates a hexagon sur-
rounding the selected vertex. We decided on an area selection size of 100
(arbitrary units) as this value provided a good balance between inclusion
of a sufficient number of vertices/voxels around each hotspot for multi-
variate analyses and avoiding overlap between ROIs (especially in the pa-
rietal lobe).

Regions of interest
Selected regions of interest (Fig. 2) were defined in the left hemisphere.
Most regions of interest were defined using the contrast above (all condi-
tions. baseline), with two exceptions, as detailed below.

First, the involvement of the cortical grasping network (Gerbella et
al., 2017) was investigated by including sensorimotor and visuomotor
regions (Gallivan et al., 2011, 2013; Fabbri et al., 2016; Ariani et al., 2018;
Cavina-Pratesi et al., 2018).

• Primary motor cortex (M1): hotspot of strongest activation near the
“hand knob” landmark (Gallivan et al., 2013; Yousry et al., 1997).
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Figure 2. Brain areas selected for multivariate analysis based on a univariate contrast. Cortical areas that exhibited larger responses during the experimental trials [(presentation1 plan1
execute) . baseline] are shown in yellow to red activation. Results calculated across all participants (RFX GLM) are displayed on the dynamic group average surface across participants. The
selected ROIs were selected in BrainVoyager software, which uses a hexagonal selection area, and then transformed to individual volumetric MNI space. Each ROI is linked to the group average
of corresponding % signal change of BOLD activity (y-axis) over time (x-axis; each X-ticks represents one TR of 2 s, based on a deconvolution analysis) for each of the four conditions. Vertical
dashed lines on the graphs indicate start of the Planning phase (TR 3) and the Execution phase (TR 9). For the time courses, statistical analysis was done for the shaded areas (e.g., average
time points 2 and 3) averaged across the four conditions. If significantly.0, when Bonferroni corrected within ROI-only, a small asterisk is depicted. If significantly.0, when Bonferroni cor-
rected for all comparisons, a large asterisk is depicted. On the surface brain, sulcal landmarks are denoted by white lines (stylized according to the corresponding legend). ROI acronyms are
spelled out in the methods. tMVPA results are indicated using different types of circles (e.g., dashed vs solid). RSA results are shown by color-coding the tMVPA circles using a Venn diagram.
Note that the RSA and tMVPA results are discussed in the results section as well as in Figures 5 and 6.
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• Dorsal premotor cortex (PMd): hotspot of strongest activation near
the junction of the precentral sulcus and the superior frontal sulcus
(Picard and Strick, 2001; Pilacinski et al., 2018).

• Ventral premotor cortex (PMv): hotspot of strongest activation in-
ferior and posterior to the junction of the inferior frontal sulcus;
Tomassini et al., 2007).

• Primary somatosensory cortex (S1): hotspot of strongest activation
anterior to the anterior intraparietal sulcus, encompassing the post-
central gyrus and sulcus (Gallivan et al., 2011, 2013).

• Anterior intraparietal sulcus (aIPS): hotspot of strongest activation
directly at the junction of the intraparietal sulcus and the postcen-
tral sulcus (Culham et al., 2003).

• Caudal intraparietal sulcus (cIPS): hotspot of strongest activation
on the lateral side of the brain, anterior and superior to the junction
between the intraparietal sulcus and the posterior occipital sulcus
(Grefkes and Fink, 2005; Beurze et al., 2009). Comparisons with the
Julich atlas (Richter et al., 2019) suggested overlap with hIP7 and/or
hP01.

• Anterior superior parietal occipital sulcus (aSPOC): hotspot of
strongest activation on the medial side of the brain, anterior and
superior to the parietal-occipital sulcus (Cavina-Pratesi et al., 2010),
thought to correspond to area V6A (Pitzalis et al., 2015).

• Posterior superior parietal occipital sulcus (pSPOC): hotspot of
strongest activation on the medial side of the brain, posterior and
inferior to the parietal-occipital sulcus (Cavina-Pratesi et al., 2010),
thought to correspond to area V6 (Pitzalis et al., 2015).

Second, the following medial and frontal regions were selected
because of their involvement in motor planning and decision-making
(Ariani et al., 2015; Badre and Nee, 2018; Cavina-Pratesi et al., 2018).

• Dorsolateral prefrontal cortex (DLPFC): hotspot of strongest acti-
vation near the middle frontal gyrus (Mylius et al., 2013).

• Supplementary motor area (SMA): hotspot of strongest activation
adjacent to the medial end of the cingulate sulcus and posterior to
the plane of the anterior commissure (Picard and Strick, 2001).

• Presupplementary motor area (pre-SMA): hotspot of strongest acti-
vation superior to the cingulate sulcus, anterior to the plane of the
anterior commissure and anterior and inferior to the hotspot of
strongest activation selected for SMA (Picard and Strick, 2001).

Third, we included the superior parietal lobule (SPL) because of the
extensive activation evoked by our task and in hand actions more gener-
ally (Ariani et al., 2018; Cavina-Pratesi et al., 2018). We defined the SPL
as the area on the lateral/superior side of the brain that is bordered ante-
riorly by the postcentral sulcus, inferiorly by the intraparietal sulcus and
posteriorly by the parietal-occipital sulcus (Scheperjans et al., 2008a, b).
Because of the large swathe of activation evoked by our contrast, we
defined four ROIs within the SPL based on their relative position to each
other (to ensure minimal overlap) and the anatomic landmarks border-
ing the SPL. We decided on four ROIs as well as their names based on
Scheperjans et al. (2008a).

• 7PC: hotspot of strongest activation located on the posterior wall of
the postcentral sulcus and superior to the intraparietal sulcus.
Given we defined aIPS as well, 7PC was also defined as superior to
AIPS.

• 5L: hotspot of strongest activation located just posterior to the post-
central sulcus and superior to area 7PC.

• 7P: hotspot of strongest activation superior to the intraparietal sul-
cus and anterior to the parietal-occipital sulcus.

• 7A: hotspot of strongest activation in the postcentral gyrus, superior
to 7PC, posterior to 5L and anterior to 7P.

Finally, two visual regions were selected.

• Dorsal primary visual cortex (V1d): given that primary visual cortex
(V1) responds to visual orientation (Kamitani and Tong, 2005) we
wanted to investigate its response here. Because our target objects
(and participants hands) fell within the lower visual field (below the
fixation point), they would stimulate the dorsal divisions of early
visual areas (Wandell et al., 2007).

• Extrastriate body area (EBA): we were also interested in examining
the response of the extrastriate body area, which has been impli-
cated not only in the visual perception of bodies (Downing et al.,
2001) but also in computing goals during action planning (Astafiev
et al., 2004; Zimmermann et al., 2016). Because the EBA is not easy
to distinguish from nearby regions of the lateral occipitotemporal
cortex, we utilized the EBA from the Rosenke atlas. Briefly, this pro-
cess is nearly identical for the other ROIs. The only difference was
that we aligned all individual standard meshes to the template of
Rosenke (instead of the dynamic group average). This provided
sphere-to-sphere and inverse sphere-to-sphere mapping files. The
latter could then be used to transport EBA from the Rosenke tem-
plate to the individual standard meshes and perform all other steps
identically as for the other ROIs. We defined EBA as the combina-
tion of all body-selective patches, being OTS-bodies, MTG-bodies,
LOS-bodies, and ITG-bodies (for the full explanation of these
regions see Rosenke et al., 2021).

After ROIs were defined in group surface space, they were trans-
formed to individual surface space, using the inverse transformation files
generated during cortex-based alignment and then to individual volu-
metric MNI space, using depth expansion (inverse of depth integration,
see above, fMRI functional data processing, Volumetric to surface-based
time courses) along the vertex normals (�1–3 mm). This approach
allowed us to define ROIs on the group surface but extract functional
data from the individual volumetric level.

Analysis of functional data
Functional data were extracted to perform deconvolution general linear
models (deconvolution GLMs; Hinrichs et al., 2000), representational
similarity analysis (Kriegeskorte, 2008) and temporal multivoxel pattern
analysis (tMVPA; Vizioli et al., 2018). All analyses described below,
excluding initial processing of fMRI data and the univariate analyses
(which where both done in BrainVoyager), were done with in-house
MATLAB scripts.

Univariate analysis
We used a random-effects GLM with deconvolution to extract the time
courses of activation in each ROI during the experimental task. For each
experimental condition, we used 15 matchstick predictors (time points
0–14), the first predictor (“predictor 1”) was aligned with time point
zero (Fig. 1D; “light on”) and the last predictor (“predictor 15”) was
aligned with the drop in signal at the end of the trial (time point 14).
Because of this clear drop in signal at time point 14, we did not include a
predictor (nonexisting “predictor 16”) for the last time point (existing
time point 15; see Fig. 1). For each functional voxel in each ROI, baseline
z-normalized estimates of the deconvolved BOLD response, representing
the mean-centered signal for each voxel and condition relative to the
standard deviation of signal fluctuations, were extracted for all condi-
tions. Voxel activation was then averaged across voxels within each ROI.
This provided us with an estimate of the averaged time course of brain
activation for each condition for each ROI and for each participant.

Given previous work from our group demonstrating the involvement
of our selected ROIs in hand-object interactions (Gallivan et al., 2009;
Monaco et al., 2011; Fabbri et al., 2016), we included univariate time
courses for comparison as they indicate changes in the signal and reveal
the degree to which differences in activation levels are present (or not).
The univariate time courses also demonstrate that our quality-assurance
procedures, particularly motion screening, succeeded in generating clean
data.

Time courses were generated for each ROI (as shown in Fig. 2) sepa-
rately for each of the four conditions. However, the differences in uni-
variate signals between conditions were small or negligible. Thus, to
simply evaluate whether or not there was significant activation during
each of the three phases of the trial, we performed statistical comparisons
of the average activation levels (collapsed across the four conditions)
compared with the intertrial baseline (time 0).

First, for each ROI in each participant we averaged the data across
conditions. Second, to reduce the number of statistical comparisons
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while targeting peak responses, we defined three distinct phases by
averaging two datapoints for each. These phases were response (1) to
Presentation, by averaging time points 2 and 3; (2) to Planning, by
averaging time points 6 and 7; (3) and to Execution by averaging time
points 11 and 12. Third, we investigated significant changes com-
pared with baseline (i.e., .0) using one-sample t tests. Accordingly,
per ROI we performed three one-sample t tests. Fourth, we corrected
for multiple comparisons. It is well known that balancing Type I and
Type II errors in fMRI research can be challenging because of the
amount of data and number of comparisons involved. Although data
between ROIs is independent, the number of comparisons in total
across ROIs increase the likelihood of Type I errors. Because of this
predicament, we decided to correct the univariate analysis for multi-
ple comparisons using the Bonferroni method in two manners being
(1) only including comparisons within ROIs (i.e., three comparisons
within each ROI thus a¼ 0.05/3) and (2) including all comparisons
(i.e., three comparisons within each of the 17 ROIs thus a¼ 0.05/51).
The results can be found in Figure 2; a small asterisk indicates that
the values are significant against the standard correction (three com-
parisons), a larger bold asterisk indicates that the values are signifi-
cant against the strict correction (51 comparisons). The values in the

results reflect mean 6 SEM p-values will be referred to as p and p
(strict) for the 3-comparison and 51-comparison corrections, respec-
tively. Note that we provide the p-values corrected for the compari-
sons. For instance, if we found a p-value of 0.0035, it would be
reported as p¼ 0.0105 (corrected for three comparisons) and p
(strict)¼ 0.1785 (corrected for 51 comparisons).

Temporal multivoxel pattern analysis
For tMVPA we relied on the approach developed in Ramon et al. (2015)
and Vizioli et al. (2018). Briefly, tMVPA has been developed to investi-
gate the temporal development of neural representations by relying on
multivariate analyses with a trial wise approach. The tMVPA methods
are schematized in Figure 3. For each voxel of each ROI of each partici-
pant, we performed a deconvolution GLM for every trial separately,
which was then transformed into BOLD percent signal change by divid-
ing the raw BOLD time course by its mean. Note that for tMVPA we
performed deconvolution GLMs for each trial (of the same condition)
separately whereas for the univariate analysis and RSA (see below) we ran
deconvolution GLMs for each condition (i.e., across same-condition trials).
After computing the single-trial activation patterns, we computed single-
trial representational dissimilarity matrices (stRDMs; dissimilarity¼ 1 – r)

A

B

D

E

F

C

Figure 3. Overview of the steps to perform temporal multivoxel pattern analysis (for full explanation, see Materials and Methods). The figure represents the steps taken for each participant
separately. Within each condition single trial representational distance matrices (RDMs) are calculated for each time point of each trial pairing (A shows example for grasping trials and B for
turning trials). C, Gray cubes represent voxels of the same ROI during different time points for two sample trials to exemplify how cells for each RDM are calculated. After calculating single trial
RDMs, a condition average is calculated (middle column; D, E for grasping and turning, respectively), which are then subtracted from each other (last column; F, red and blue matrix). Not
shown on picture (for results see Figs. 4, 5): the subtraction matrices are then used for bootstrapping to determine whether the group average differs significantly from zero and to investigate
whether one condition is more similar than the other for each given time point.

Rens et al. · Decoding of Isolated and Task-Directed Grasping J. Neurosci., August 9, 2023 • 43(32):5831–5847 • 5837



using Pearson correlations for each condition of each ROI of each par-
ticipant. As shown in Figure 3A, a stRDM is generated by computing
dissimilarity between the activation patterns of voxels at each time
point of a given trial (“trial m”) with the activation pattern of the same
voxels for each of the time points for another trial (“trial n”). This pro-
cess is iteratively repeated until all unique within-condition trial pair-
ings are run. stRDMs were then averaged across the main diagonal to
yield a diagonally symmetric matrix. That is, the data matrix was aver-
aged position-wise with its transpose matrix. We performed this aver-
aging as we were only interested in between-condition differences and
not in differences between same-condition trials.

To further clarify calculation of the dissimilarity metric: in Figure 3B,C,
the green highlighted square indicates the dissimilarity between all the
voxels (of a given ROI) at time point 2 of Turn Left to Right trial m with
the activation of the same voxels at time point 2 of Turn Left to Right
trial n. The magenta highlighted squares indicate the averaged dissimi-
larity between time points 2 and 10 of trial m and n. As explained before,
we averaged the dissimilarity between time point 2 of trial m and time
point 10 of trial n (magenta highlighted square below diagonal) with the
dissimilarity between time point 10 of trial m and time point 2 of trial n
(magenta highlighted square above diagonal). Finally, the blue high-
lighted square indicates the dissimilarity between time points 10 of trial
m and n. In sum, values on the main diagonal show dissimilarity
between within-condition trials at the same time point. Values that are
off the main diagonal show the dissimilarity between within-condition
trials at different (i.e., earlier or later) time points.

stRDMs were calculated for the four conditions separately, Fisher
z-transformed and then averaged (10% trimmed mean; Vizioli et al., 2018)
within conditions (e.g., average RDM for grasp left). Finally, the averaged
RDMs were then averaged across orientations (e.g., averaging of RDMs
between left and right start orientations to produce average Grasp and
Turn RDMs; Fig. 3D,E, respectively). This was done as we were primarily
interested in investigating differences in neural representations between
singular (grasping) and sequential actions (grasping then turning) and we
did not expect that these differences would depend on the start orienta-
tion. As such, this approach resulted in two RDMs for each participant.

In line with Vizioli et al. (2018), we performed statistical analysis on
the Fisher z-transformed data; however, we used the nontransformed
data for visualization purposes to render the values visually more inter-
pretable. To test for statistically significant differences between the grasp
and turn RDMs, we subtracted for each participant the turn RDM from
the grasp RDM resulting in a subtraction matrix (Turn vs Grasp; Fig.
3F) and investigated where the subtraction differed significantly from
zero. As such, a given value in the subtraction matrix that is positive
indicates that grasping trials are more dissimilar than turning trials at
that given time point. Conversely, a value that is negative indicates that
turning trials are more dissimilar than grasping trials at that given time
point. Note that we decided to statistically test whether each cell differed
from zero instead of the increasingly larger sliding window analysis used
in Ramon et al. (2015) and Vizioli et al. (2018). Our rationale was that
the earlier studies relied on a visual task (face recognition) whereas our
study relied on a motor task. Arguably, during motor preparation/execu-
tion, neural representations might evolve differently than purely visual
responses. As such, we argued that statistically testing each cell separately
might reveal more information on the temporal evolution of motor exe-
cution as, for instance, transitions between activation patterns between
Planning and Execution might be brief or abrupt. Note that because we
had averaged values across the main diagonal when calculating the dis-
similarity matrices (Fig. 3 and Fig. 5), these matrices were symmetrical
reflections across the diagonal. However, we performed statistical analy-
ses only on the values on and above the main diagonal of the Turn ver-
sus Grasp subtraction matrices (Fig. 3F).

To test for statistical significance, we performed (1 – a) bootstrap
confidence-interval analysis (critical a¼ 0.05) by sampling participants
with replacement 500 times. As described above, we investigated
whether tMVPA differed significantly from zero in either direction.
Importantly, we excluded the first two time points (time points 0 and 1)
and the last one (time point 14) from the statistical analyses (resulting in
12 time points included in the analysis: time points 2–13) because no

differences were expected before the BOLD response to emerge at the
start, because later time points reflect the poststimulus undershoot phase
of the BOLD response, and to reduce the number of comparisons requir-
ing Bonferroni correction for multiple comparisons. See Figure 1 for the
trial timing and Figure 3 for the time points in the tMVPA analysis.

As for the univariate analysis, we accounted for multiple compari-
sons using Bonferroni correction in two manners. Our first, standard,
correction did not take multiple comparisons between regions in
account but only the number of comparisons within an ROI. This
resulted in correcting for 78 tests: the binomial coefficient of 12 time
points (which excludes the diagonal) plus the 12 included time points
on the diagonal. The second, strict, correction, included multiple com-
parisons between all regions at all time points and resulted in 936 tests.
Accordingly, the critical a was Bonferroni corrected for the number of
tests in the bootstrap confidence-interval analysis. Because of the
impracticability of reporting our tMVPA data in text or table format,
we provide these results only in figure format (see data availability
statement). In Figures 5 and 6, cells that differ significantly from zero
have a dashed outline or solid outline for the standard and strict cor-
rection, respectively. To end, we will also qualitatively discuss the grasp
and turn RDMs (which subtraction constitutes the tMVPA subtraction
matrix that is statistically tested) to facilitate conceptual understanding
of the data. Please note that this qualitative discussion will not be incor-
porated in the results and discussion because of the lack of the statisti-
cal analysis (which has been done on the subtraction matrix instead).

Hierarchical clustering
The tMVPA matrices (stRDMs) for Grasp and Turn revealed that differ-
ent ROIs showed different temporal profiles. For example, some regions
showed similar activation patterns throughout the entire trial; whereas,
other regions showed similar patterns only during motor execution (see
Fig. 5). To make it easier to group these different ROI timing patterns
for display and discussion, we used hierarchical clustering. To do so,
we averaged within-participants the grasp and turn RDMs to generate
one RDM per participant. Next, we calculated for each participant the
Spearman correlations between all ROIs using the averaged RDMs. The
ROI correlation matrix for each participant was then transformed into a
dissimilarity measure (1 – r). Finally, hierarchical clustering was then
performed using the ROI dissimilarity matrix of all participants.

Representational similarity analysis
We used RSA to examine the degree to which the pattern of activa-
tion across voxels within each ROI at each time point represented
the start orientation, the end (goal) orientation, and the task, as
illustrated in Figure 4A–C. For RSA, we relied on the methods
described by Kriegeskorte (2008). By examining the degree to which
different conditions evoke a similar pattern of brain activation
within a ROI, the nature of neural coding (or representational ge-
ometry; Kriegeskorte and Kievit, 2013) can be assessed.

For each voxel of each ROI of each participant, we performed a
deconvolution GLM. This was done for each condition and each run
(but not trial as for tMVPA) separately, providing the average develop-
ment of brain activation over time for each condition in each voxel in
each ROI of each run of each participant. Then for each voxel separately,
activations of the four conditions were normalized by subtracting the
grand mean (i.e., average across conditions) from the value of each con-
dition in that voxel (Haxby et al., 2001). Note that this was done for each
run separately. These steps resulted in the normalized brain activation
over time averaged across trials of the same conditions within one run.
This was done for each condition for each voxel of each ROI for each
run of each participant.

Subsequently, we computed representational dissimilarity matrices
(RDMs) within each ROI. Pearson correlations were calculated at each
time point between all voxels of a given ROI, i.e., “within time point cor-
relations,” and then transformed into dissimilarity metric (1 – r). This
was done within-condition (e.g., grasp left activations at time point 1
correlated with itself at time point 1) and between conditions (e.g., grasp
left activations at time point 1 correlated with turn left to right at time
point 1). In this manner, RDMs can quantify the dissimilarity in
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activation patterns between conditions, i.e., “how well is activity at any
time point in a given set of voxels in a given condition correlated with
the activity at the same time point of the same voxels during a different
condition.” Please note that we did not perform autocorrelations (e.g.,
correlate grasp left activations during run 1 with itself thus leading to
correlation values of 1). Instead to test within-subject reliability of the
RDM calculations, we used cross-validation by splitting data into all
potential combinations of runs yielding two sets of four runs each (two
examples: split 1¼ correlate all even runs with the uneven runs; split 2¼
correlate the first four runs with the last four runs). Split data provides
data-based estimates of dissimilarity even for the same condition as no
autocorrelations are performed whereas, in unsplit data, the dissimilarity
is necessarily zero. Data for all cells in the RDM is necessary for RSA on
factorial designs to ensure that contrasts are balanced across orthogonal
factors. Finally, the RDMs were Fisher transformed to have a similarity
metric with a Gaussian distribution.

To test whether each region contained information about condition
differences, we measured correlations between the RDM in each region
(Fig. 4D,E) and three separate models that capture orthogonal compo-
nents of the experimental task (Fig. 4A–C). This was done for each time
point separately (15 time points included in the GLM being time points
0–14; time-resolved decoding). Note that in contrast to the tMVPA we
included all time points because of our selection of models which
included “two visual models,” which may decode already during the ear-
liest time points. In total, we used three models that capture specific task
attributes: (1) start orientation, regardless of task (i.e., grasp or turning),
a time point with an RDM that correlates with this model would indicate
an encoding of the initial orientation of the handle (i.e., left or right); (2)
end orientation, regardless of the performed action (i.e., grasp or turn-
ing), a time point with an RDM that correlates with this model would
indicate an encoding of the final orientation of the handle (i.e., left or
right) after task execution; (3) motor task, regardless of the initial/final
handle’s orientation (i.e., left or right), a time point with an RDM
that correlates with this model would indicate an encoding of the task

goal (i.e., grasping or turning). The metric was calculated by computing
the Spearman correlation (r ) between the Fisher-transformed split
RDMs and each model for each ROI for each participant. For each ROI
we also calculated the upper and lower bound of the noise ceiling.
Briefly, the noise ceiling is the expected RDM correlation achieved by
the (unknown) true model, given the noise of the data and provides an
estimate of the maximum correlations that could be expected for a given
model in a given ROI (Kriegeskorte, 2008). RDMs were first rank trans-
formed, following the original z-transformation. The upper bound of the
noise ceiling, considered an overestimate of the maximum correlation,
was calculated as iteratively correlating one participant’s RDM with the
average RDM of all participants (thus including the given participant)
and then averaging across all participants. The lower bound of the noise
ceiling, considered an underestimate of the maximum correlation, was
calculated as iteratively correlating between one participant’s RDM with
the average RDM of all other participants (thus excluding the given par-
ticipant), and then averaging across participants.

We used one-way Student’s t tests (a, 0.05) to assess whether
model correlations were significantly greater than zero for each time
point in each ROI. Importantly, as for the tMVPA we decided to exclude
the first two time points (time points 0 and 1) and the last one (time
point 15). This resulted in 13 time points included in the analysis. Note
that we did not compare whether models outperformed each other as we
were primarily interested in whether which ROI embodied what type of
information. To be in line with previous studies combining motor tasks
and RSA (Gallivan et al., 2013; Di Bono et al., 2015; Monaco et al., 2020),
we performed corrections for multiple comparisons using the false dis-
covery rate. As for the univariate analysis, we performed multiple com-
parisons for each ROI separately (i.e., 12 time points� 3 models) and in
a stricter manner across all regions (strict comparison: 12 time points �
3 models � 17 ROIs). The results can be found in Figure 6 models at
any given time point that are significantly larger than zero for only the
within-ROI corrections are indicated with a “plus sign.” When the
model at the time point also reaches significance for the strict threshold,

A B C

D E

Figure 4. Models used for representational similarity analysis (RSA). The first row shows the models for start orientation (A), end orientation (B), and turn versus grasp (C). The second row
shows example data for one single time point for two regions of interest (D: V1d; E: area 7A) of one participant.
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this is indicated by an asterisk instead. Because of the amount of data
(i.e., 12 time points � 3 models � 17 ROIs), we provide a specific selec-
tion of values in the results section. Akin to the univariate analysis, we
provide data for time points 2 and 3 for the Presentation phase, 6 and 7
for the Planning phase, and 11 and 12 for the Execution phase in Table 2
for the subset of ROIs in Figure 6. Again, note that we performed statisti-
cal tests and performed multiple comparisons for 12 time points and not
just the six time points mentioned here to keep the statistical analysis in
line with our tMVPA approach. In addition, note that here we do not av-
erage time points for each phase (e.g., no averaging of time points 2 and
3 into one “Presentation phase”) for the same reasons. The values in
Table 2 reflect the q values resulting from the strict false discovery
rate correction as well as the confidence intervals, given as [lower
threshold mean upper threshold], which are Bonferroni corrected
for multiple comparisons in the strict manner (12 time points � 3
models � 17 ROIs). Note that we had to correct confidence intervals
using Bonferroni given the step-by-step approach FDR, which is not
common for confidence intervals. As such, it is possible that our
actual interpretation of the statistical analysis using FDR (shown in
Fig. 6) reveals significant effects despite the confidence intervals
using Bonferroni (shown in Table 2) containing zero.

Results
Qualitative examination of the deconvolution time courses
(Fig. 2) and the tMVPA results indicated that different regions
had different temporal profiles of activity. As shown in Figure
5, hierarchical clustering of the RDMs averaged across Grasp
and Turn facilitated conceptual grouping of the ROIs for fur-
ther investigation.

Notably, ROIs differed in the time ranges over which they
showed reliable activation patterns across trials of the same type.
Most strikingly, V1d and cIPS showed strong temporal similarity
in activity patterns throughout the Plan and Execute phases of
the trial, as indicated by the large block of high similarity (dark
red) beginning early in Planning and continuing through late
Execution (Fig. 5). That is, in these regions, voxel activation pat-
terns were not only similar during the same phase (along the di-
agonal cells) but were also similar across time points throughout
Planning and Execution (off-diagonal cells in the Planning and
Execution phases). This indicates consistency in the neural repre-
sentation throughout the trials. Similar but weaker similarity pat-
terns were also observed in other regions, particularly aSPOC,
pSPOC, 7P, EBA, 7A, 7PC, and 5L.

In contrast, other regions, aIPS, M1, S1, pre-SMA, SMA,
and PMd, showed trial-consistent activation patterns predomi-
nantly for the peak Execution period (dark red blocks in the
Execution phase, i.e., in lower right corners of Grasp and Turn
matrices). In some cases, there was also some consistency of
patterns between the peak Execution phase and earlier time
points during Plan and Execute of which M1 is a clear example
in Figure 5 (off-diagonal cells between Planning and Execution
phase, as indicated by the reddish “wings” above and left of the
peak similarity). PMv and DLPFC showed only weak consis-
tency of patterns across trials, highest in the peak of Execution.

Interesting patterns were also observed in the tMVPA differ-
ence in trial-by-trial consistency between turn and grasp (Fig. 5,
final column). Notably many of the regions showed higher con-
sistency during Turn actions than Grasp actions.

Based on these observations from Figure 5, we focused subse-
quent analysis and interpretation on a subset of ROIs that is
shown in Figure 6.

Visual regions of V1d and cIPS
Univariate analysis
The first column in Figure 6 shows the deconvolution time
courses for V1d and cIPS. V1d and cIPS show a steep
increase in average voxel activation following object pre-
sentation (V1d¼ 0.316 0.06, p, 0.001, p(strict)¼ 0.008;
cIPS¼ 0.466 0.07, p, 0.001; p(strict), 0.006 compared
with baseline. This initial increase is maintained throughout
the Planning (V1d¼ 1.316 0.19, p, 0.001, p(strict), 0.001;
cIPS¼ 1.096 0.19, p, 0.001; p(strict), 0.001) and Execution
phases (V1d¼ 1.076 0.22, p, 0.001, p(strict)¼ 0.013; cIPS¼
1.156 0.18, p, 0.001; p(strict), 0.001).

Qualitative (nonstatistical) assessment of the condition RDMs
In Figure 6, the second and third columns show the condition
RDMs for grasp and turn, respectively. For both regions, activation
pattern similarity within conditions strongly increases following
object presentation. Because of the sluggish nature of the hemody-
namic response and our findings for the univariate analysis, it is
plausible that this early increase of similarity in the activation pat-
terns is primarily driven by a visual response. Notably, the cIPS
within-condition similarity in activation patterns increases toward
the peak Execution (approximately time points 11–13).

Temporal multivoxel pattern analysis
The fourth column in Figure 6 depicts the subtraction Turn
minus grasp on which we performed statistical analyses as previ-
ously described. For V1d, tMVPA is unable to discriminate the
grasp and turning condition for matched time points (along the
diagonal) during motor Planning. That is, subtracting the grasp
dissimilarity from the turn dissimilarity (Fig. 6, second and third
columns) does not result in a difference that differs statistically
from zero. Interestingly, tMVPA is able to discriminate the
activation patterns of grasping and turning during late Execution
(i.e., the “plus sign” of significant squares in the Grasp vs Turn
RDM for V1d), which indicates that V1d may encode change in
visual information (e.g., increased motion during) or motor com-
ponents that are nonvisual. Interestingly, tMVPA was also able to
discriminate activity patterns related to grasping versus turning
when dissimilarity calculations were done between time points
of the late Planning phase and time points of the late Execution
phase (i.e., the three adjacent significant squares in the Grasp vs
Turn RDM for V1d). These findings suggest that the activation
patterns in V1d become tuned toward either grasping or turning

Table 1. Number of voxels per region of interest

Region of interest Number of functional voxels

M1 986 7
S1 1236 11
PMv 1076 8
PMd 2176 9
aSPOC 1786 14
pSPOC 1386 7
aIPS 2686 17
cIPS 1726 10
Pre-SMA 1086 7
SMA 1326 10
DLPFC 1296 9
V1d 1526 13
Area 5L 1676 10
Area 7A 1946 12
Area 7P 1506 9
Area 7PC 1986 13
EBA 11636 23

The average number of functional (1-mm iso-)voxels per region of interest. Values shown are mean 6 SEM.
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during late motor Planning and may not be limited to solely
encoding visual information. Similar but stronger effects were
found for cIPS. tMVPA was able to discriminate cIPS activation
patterns duringmost of the Execution phase as well as when dissim-
ilarity calculations were done between time points of the Execution
phase and early and late time points of the Planning phase (i.e., the
vertical and horizontal “wings” of significant squares above and left
of the Execution phase). This suggests that in cIPS, representations
of the task emerge early in the Planning period.

Representational similarity analysis
For the RSA, we tested how well multivariate activation patterns
fit three models for the representation of start orientation, end
orientation, and task (Turn vs Grasp) over time (Fig. 6, last col-
umn). The confidence intervals and q-values for a selection of
time points (Fig. 6, last column, time points within transparent
rectangles with dashed gray outlines) is provided in Table 2.
Notably, although all three types of information appear to be rep-
resented in both V1d and cIPS during action execution, starting
orientation appeared to be represented during the early Planning
phase. In addition, during the late Planning phase, both starting
orientation and Grasp versus Turn also appeared to be repre-
sented in V1d (see Table 2 for values for time points 6 and 7).
Although the decoding of start orientation during Planning and
end orientation during Execution may reflect the processing of
simple visual orientation information (Kamitani and Tong,
2005), coding of both start and end orientation overlapped dur-
ing Execution (Fig. 6, last column, V1d and cIPS; green and red
trace), suggest a much more complex representation. Notably,
V1d, represented the task during Planning, before any action
had been initiated, perhaps because of anticipation of the visual
consequences of the upcoming action.

In sum, while our findings are consistent with a role for V1d
and cIPS as predominantly visual regions, the similarity in acti-
vation patterns (tMVPA) between the Planning and the
Execution phase, in particular for cIPS (Fig. 6, fourth column) as
well as V1d coding the motor task during Planning (Fig. 6, last
column, blue trace) suggest that these regions may encode motor
components already during the Planning phase.

Regions of the SPL: 7A, 7PC, 5L, and 7P
Univariate analysis
Despite only 7A showing a significant increase following object pre-
sentation (area 7P¼ 0.136 0.05, p¼ 0.09, p(strict)¼ 1.00; area
7A¼ 0.166 0.05, p¼ 0.037, p(strict)¼ 0.63; area 7PC¼ 0.11 6
0.06, p¼ 0.36, p(strict)¼ 1.00; area 5L¼ 0.156 0.05, 0.040. p
(strict)¼ 0.679), all regions showed a significant increase following
action Planning (area 7P¼ 0.406 0.08, p, 0.001, p(strict), 0.001;
area 7A¼ 0.426 0.08, p, 0.001, p(strict)¼ 0.01; area 7PC¼
0.256 0.07, p¼ 0.006, p(strict)¼ 0.103; area 5L¼ 0.286 0.06,
p¼ 0.001, p(strict)¼ 0.017), and Execution (area 7P¼ 0.366 0.07,
p, 0.001, p(strict)¼ 0.009; area 7A¼ 0.496 0.09, p, 0.001, p
(strict)¼ 0.003; area 7PC¼ 0.306 0.08, p¼ 0.006, p(strict)¼ 0.104;
area 5L¼ 0.546 0.09, p, 0.001, p(strict)¼ 0.002). As shown in
the first column in Figure 6, given that the activity within this
ROIs show a different trend than cIPS and V1d (i.e., primarily a
significant increase in activation following action planning, not
object presentation), it seems plausible that the subregions of
the SPL have primarily a visuomotor involvement.

Qualitative (nonstatistical) assessment of the condition RDMs
The condition RDMs of Figure 6 show that the ROIs within the
SPL show activity patterns that are similar to each other. First,
similarity between trials within each condition increases following

Table 2. Values represent model correlation values for each ROI at specific time points

Presentation Planning Execution

Time point 2 Time point 3 Time point 6 Time point 7 Time point 11 Time point 12

ROI Phase CI q CI q CI q CI q CI q CI q

V1d Start Ori �0.728 �0.187 0.355 0.979 �0.411 0.231 0.873 0.192 20.246 0.36 0.966 0.048 �0.337 0.155 0.648 0.244 20.033 0.302 0.637 0.008 20.164 0.187 0.538 0.07

End Ori �0.551 0.009 0.569 0.691 �0.494 �0.009 0.476 0.732 �0.395 0.115 0.626 0.365 �0.234 0.173 0.581 0.14 20.156 0.298 0.752 0.034 �0.284 0.258 0.799 0.103

GvT �0.619 �0.018 0.583 0.753 �0.452 0.036 0.523 0.602 �0.201 0.067 0.334 0.331 20.164 0.24 0.644 0.048 20.136 0.315 0.767 0.026 20.231 0.293 0.817 0.059

cIPS Start Ori �0.698 �0.049 0.6 0.81 �0.313 0.191 0.695 0.179 �0.407 0.133 0.673 0.333 �0.497 0.16 0.817 0.338 �0.183 0.209 0.6 0.069 0.067 0.311 0.555 0.001

End Ori �0.321 0.004 0.33 0.694 �0.163 0.111 0.385 0.155 �0.377 0.049 0.475 0.53 �0.253 0.044 0.342 0.478 20.072 0.209 0.49 0.023 0.037 0.351 0.665 0.002

GvT �0.599 �0.036 0.528 0.795 �0.439 �0.018 0.403 0.773 �0.378 0.076 0.529 0.451 �0.397 0.195 0.788 0.229 0.119 0.515 0.912 0.001 0.243 0.609 0.974 0.001

7P Start Ori �0.573 �0.218 0.137 0.996 �0.7 �0.138 0.425 0.943 �0.253 0.124 0.502 0.229 �0.297 0.111 0.519 0.299 �0.358 0.062 0.482 0.479 �0.288 0.076 0.439 0.394

End Ori �0.59 0 0.59 0.699 �0.583 �0.062 0.459 0.858 �0.275 0.004 0.283 0.691 �0.342 0.098 0.537 0.371 �0.216 0.209 0.633 0.092 20.11 0.195 0.501 0.038

GvT �0.611 �0.049 0.514 0.824 �0.521 �0.058 0.405 0.86 �0.691 �0.031 0.628 0.776 20.127 0.369 0.865 0.023 20.031 0.484 1 0.008 20.156 0.404 0.964 0.025

7A Start Ori �0.722 �0.089 0.544 0.873 �0.328 0.213 0.754 0.164 �0.314 0.209 0.732 0.158 �0.278 0.133 0.545 0.235 20.037 0.311 0.659 0.009 �0.2 0.169 0.537 0.116

End Ori �0.677 �0.111 0.455 0.916 �0.481 �0.04 0.401 0.829 �0.473 �0.044 0.384 0.842 �0.51 0 0.51 0.699 20.054 0.32 0.694 0.01 20.101 0.24 0.58 0.026

GvT �0.508 0.04 0.588 0.602 �0.278 0.2 0.678 0.145 �0.317 0.253 0.823 0.129 20.171 0.364 0.899 0.029 20.078 0.462 1.002 0.01 0.061 0.533 1.005 0.002

7PC Start Ori �0.57 �0.133 0.304 0.969 �0.53 �0.036 0.459 0.808 �0.383 �0.022 0.339 0.795 �0.473 0.004 0.482 0.699 �0.414 0.04 0.494 0.58 �0.403 0.062 0.527 0.504

End Ori �0.597 �0.142 0.313 0.97 �0.481 �0.031 0.419 0.806 �0.392 0.102 0.597 0.395 �0.528 �0.009 0.51 0.731 �0.175 0.138 0.45 0.131 �0.264 0.164 0.593 0.177

GvT �0.527 0.044 0.616 0.599 �0.656 �0.129 0.399 0.943 �0.26 0.258 0.775 0.09 �0.263 0.227 0.716 0.113 20.071 0.435 0.941 0.01 20.202 0.369 0.939 0.036

5L Start Ori �0.769 �0.227 0.316 0.988 �0.463 0.04 0.543 0.596 �0.395 0 0.395 0.699 �0.519 �0.004 0.51 0.716 �0.209 0.151 0.511 0.144 �0.3 0 0.3 0.699

End Ori �0.381 �0.053 0.274 0.887 �0.434 0.058 0.549 0.526 �0.236 0.062 0.36 0.393 �0.262 0.182 0.627 0.151 20.029 0.346 0.722 0.008 �0.322 0.098 0.518 0.353

GvT �0.554 0.013 0.581 0.68 �0.513 0.098 0.709 0.461 �0.299 0.222 0.743 0.14 �0.717 �0.009 0.699 0.723 0.026 0.426 0.826 0.003 �0.328 0.329 0.986 0.088

aIPS Start Ori �0.543 �0.151 0.241 0.983 �0.567 �0.062 0.443 0.86 �0.192 0.244 0.68 0.059 �0.321 0.098 0.517 0.352 �0.245 0.195 0.636 0.129 �0.325 0.049 0.423 0.505

End Ori �0.39 �0.018 0.354 0.776 �0.593 �0.089 0.416 0.897 �0.579 0.04 0.659 0.613 �0.489 0.022 0.533 0.651 �0.25 0.169 0.588 0.156 �0.385 0.093 0.571 0.403

GvT �0.47 0.036 0.541 0.602 �0.665 �0.071 0.522 0.858 20.076 0.338 0.751 0.013 �0.271 0.235 0.742 0.112 20.175 0.338 0.85 0.033 20.14 0.338 0.816 0.026

EBA Start Ori �0.172 0.191 0.554 0.072 �0.364 0.089 0.542 0.403 �0.476 0.004 0.485 0.699 �0.501 0.009 0.519 0.689 �0.239 0.107 0.452 0.25 �0.238 0.08 0.398 0.327

End Ori �0.502 0.027 0.555 0.641 �0.537 0.013 0.563 0.679 �0.661 �0.004 0.652 0.716 �0.479 �0.018 0.443 0.769 20.135 0.369 0.872 0.024 �0.397 0.133 0.663 0.327

GvT �0.297 0.227 0.75 0.135 �0.439 0.138 0.715 0.343 20.17 0.267 0.703 0.044 �0.439 0.107 0.652 0.403 20.058 0.413 0.884 0.009 20.047 0.48 1.007 0.008

Values depict mean 6 confidence interval and is written as [lower threshold mean upper threshold]. Note that the confidence intervals are Bonferroni corrected in the strict manner (critical a divided by 12 time points �
3 models � 17 ROIs). q-statistic represents the p-value that is FDR corrected in the same strict manner. Significant values (outlined in bold) were defined as a having a a q-value, 0.05 (see Materials and Methods,
Representational similarity analysis). RSA values for ROIs shown in Figure 6.
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object presentation, in particular, during
early planning. Second, similarity in acti-
vation patterns is then maintained until
a second increase during the Execution
phase. Notably, this pattern (in the con-
dition RDMs of the SPL regions) is simi-
lar to that of V1d and cIPS, although it
seems weaker (i.e., less red). Most impor-
tantly, the increase in within-condition
trial similarity following object presen-
tation seems weaker for the SPL regions
than for V1d and cIPS suggesting that
these regions are likely less modulated
by this type of motor task.

Temporal multivoxel pattern analysis
In line with the assessments of the
univariate analysis and the condition
RDMs, tMVPA indicate that the regions
of the SPL may be involved in the motor
task, in particularly during motor exe-
cution (Fig. 6, column 4). For area 7A,
tMVPA was able to discriminate activa-
tion patterns for grasping and turning
during the later Execution phase. In-
terestingly, we found similar results
for area 7PC as for cIPS (as explained
above, in Visual regions of V1d and
cIPS). tMVPA was able to discrimi-
nate grasping and turning throughout
both earlier and later stages of the
Execution phase as well as when dis-
similarity calculations were done be-
tween time points of the Planning phase
and time points of the Execution phase.
These findings indicate that area 7PC
might anticipate turning actions already
during the Planning phase. The results
for area 5L are somewhat similar to the
findings for areas 7A and 7PC. That is,
tMVPA is primarily able to differentiate
between grasping and turning during
the later Execution phase but also, in a
more limited manner than area 7PC,
when dissimilarity was calculated on
time points of the early/late Planning
phase and time points of the Execution
phase. For area 7P, tMVPA could signif-
icantly discriminate activation patterns
associated with grasping and turning
only during the Execution phase.
Finally, it can be seen that tMVPA can
discriminate between grasping and
turning by relying on the activation patterns of each of the four
regions. However, this ability to discriminate the task is the
weakest in 7P, stronger in 7A and 5L, and the strongest in 7PC.

Representational similarity analysis
The RSA results (Fig. 6, column 5) indicate that the regions of
the SPL could rather have a visuomotor involvement than a
purely visual one: starting orientation cannot be decoded from
the SPL (Fig. 6, last column, 7P, 7A, 7PC, and 5L, green trace)
during the Planning phase. In support of our tMVPA results,

grasping versus turning can be decoded from all four regions in
the SPL (Fig. 6, last column, 7P, 7A, 7PC, and 5L, blue trace).
RSA is primarily able to do this when relying on the Execution
phase. Significant decoding is also observed during the late
Planning phase for the regions 7A and 7P (see Table 2 for values
for time points 6 and 7). Interestingly, in area 7PC only turning
versus grasping can be decoded, suggesting that this region
might be mainly involved in rotating the wrist, regardless of the
direction, and may not integrate visual information. Indeed,
from the other regions (areas 7A, 5L, and 7P) both start and end
orientation can be decoded during the action Execution phase

Figure 5. Left, Hierarchical clustering of all the ROIs based on the averaged representational dissimilarity matrices (RDMs) of
the Grasp and Turn condition. We refer the reader to the legend of Figure 3 for the full explanation of the heatmaps. Note that
T–G represents “Turn minus Grasp” and represents the final tMVPA result showing statistically significant similarities (small red
boxes ¼ Turn . Grasp; small blue boxes ¼ Grasp . Turn). The outline of the significance box indicates significance level.
When the outline is dashed, the square was significant only when Bonferroni corrected for within-ROI comparisons. When the
outline is solid, the square was significant when Bonferroni corrected for all comparisons across all ROIs. Note that we only
tested whether boxes were significantly different from zero (and not from each other).
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Figure 6. Selection of ROIs that showed prominent differences for the tMVPA analysis. Some data are reproduced from subsets of Figures 2 (column 1) and 5 (columns 2–4, at higher resolu-
tion) to facilitate inspection and comparisons across analysis methods for key regions. Column 1 shows the group average deconvolution time courses for the four conditions. The x-axis repre-
sents time (in 2 s TRs) and the y-axis represents % signal change in the BOLD signal. Vertical dashed lines represent onset of the Planning phase (TR 3; after the initial Presentation phase) and
the Execution phase (TR 9) following the Planning phase. Columns 2 and 3 show the group average condition representational dissimilarity matrices for the grasp (column 2) and turn condition
(column 3). Each cell/square of the matrix represents the dissimilarity between trials of the same condition between two time points. Dashed horizontal and vertical lines represent the same
time points as those in column 1, i.e., the first dashed horizontal/vertical line represents the start of the Planning phase (TR 3) and the second dashed vertical/horizontal line represents the
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suggesting that these regions may encode specific wrist orienta-
tions, or may still be involved in visuomotor integration.

In sum, both tMVPA and RSA seem to provide evidence for
the involvement of the SPL in decoding sequential actions. That
is, sequential (grasping then turning) actions can be differenti-
ated from singular grasping actions based on the activation pat-
terns from the regions 7A, 7PC, 5L, and 7P. In particular, for
areas 7A and 7P, our findings highlight that RSA is already able
to do so during motor Planning.

EBA and aIPS
Univariate analysis
As shown in Figure 6, EBA shows an initial response to
object presentation (EBA¼ 0.196 0.05, p¼ 0.011, p(strict)¼
0.184), which is maintained throughout action planning
(EBA¼ 0.276 0.07, p¼ 0.008, p(strict)¼ 0.140) and execution
(EBA¼ 0.296 0.06, p¼ 0.002, p(strict)¼ 0.037). In contrast,
for aIPS, the univariate analysis reveals only a significant
response to action execution (aIPS¼ 0.246 0.07, p¼ 0.016,
p(strict)¼ 0.273) that is absent for the presentation (aIPS¼
0.036 0.06, p¼ 1.00, p(strict)¼ 1.00) and Planning phase
(aIPS¼ 0.256 0.05, p¼ 0.07, p(strict)¼ 1.00).

Qualitative (nonstatistical) assessment of the condition RDMs
In line with the univariate analysis, the condition RDMs for aIPS
show that activation patterns remain very dissimilar and then
show an increase following action execution. As such, the condi-
tion RDMs indicate that aIPS is primarily involved in action exe-
cution. In the condition RDMs for EBA, a clear visual response
can be seen as within-condition similarity increases early during
trials. Interestingly, in line with the univariate analysis, within-
condition similarity increases again following task execution sup-
porting the notion of EBA’s involvement in motor execution
and/or visual feedback of the hand, which in the case of the con-
dition RDMs would relate to the difference in perceived motion.

Temporal multivoxel pattern analysis
tMVPA can discriminate activation patterns in aIPS related to
grasping and turning during the early Execution phase, again
supporting the notion that aIPS is involved in the execution of
hand-object interactions. Interestingly, tMVPA was able to dis-
criminate activation patterns related to grasping and turning
during the Planning phase as well as when dissimilarity was cal-
culated between time points of the Planning phase and time
points of the Execution phase. EBA showed sporadically signifi-
cant differences between the two tasks during the early visual
response and planning.

Representational similarity analysis
From aIPS, RSA could discriminate the activation patterns asso-
ciated with grasping and turning during the Planning phase as
well as during the Execution phase (Fig. 6, last column, aIPS;
blue trace; Table 2 for data of time points 6 and 7). For EBA, the
RSA revealed an early visual response as it was able to decode
starting orientation from the activation patterns following
object presentation (Fig. 6, last column, EBA, green trace).
Interestingly, in with the previous analyses, RSA was able to
decode Grasp versus Turn in both the Planning phase as well
as the Execution phase (Fig. 6, last column, EBA, blue trace).

In sum, our findings for aIPS are in line with previous studies
that showed its involvement in motor Planning and Execution
(Singhal et al., 2013). Interestingly, our multivariate analyses sup-
port the suggestion that EBA, perhaps along with hand-selective
divisions of the lateral occipitotemporal cortex, is not a purely
visual region but is also involved in analyzing visual feedback of
the body and hand during motor execution (Astafiev et al., 2004;
Zimmermann et al., 2016; van den Heiligenberg et al., 2018).

Other regions of interest
We focused the presentation of the results above in the most
interesting findings about how hand-object interactions unfold
over time. Other regions showed effects that were absent,
weaker, or less surprising. The condition RDMs and tMVPA
results for the previously discussed ROIs and other ROIs can
be found in Figure 5. The RSA findings of all regions can be
found on GitHub (https://github.com/GuyRens/OvenDials).

Briefly, we found weak effects (no significant tMVPA) for the
parietal regions of pSPOC and aSPOC (tMVPA: no significant
squares; RSA: no significant models), which have been consid-
ered to be typically involved in hand-object interactions. For
DLPFC the tMVPA revealed only one significant difference for
Grasp versus Turn during late execution. RSA revealed that both
the end orientation and motor task model were significant for at
least one time point (when applying strict FDR, i.e., taking all
ROIs in account when correcting for multiple corrections) indi-
cating the involvement of DLPFC in motor execution. For SMA
and pre-SMA, the RSA revealed that the start orientation model
was significant for SMA at time point four and the end orienta-
tion model at time point 10 for pre-SMA. Both regions showed
significant negative values (Grasp. Turn) for limited cells when
correlations were computed on the Planning and Execution
phases. For S1, RSA showed significance for the start orientation
and motor task during late execution. This is supported by
tMVPA results which showed higher similarity for turn than for
grasp during this phase. Finally, both PMv and M1 show no
response in the tMVPA results. It should be noted in Figure 5
that the subtraction matrix shows a significant cell for M1 being
a correlation between the presentation phase and the Execution
phase. Similarly, for the RSA results the end orientation model
is significant PMv time point 3. Both these results are likely to
be analytical anomalies as participants had no information about
the upcoming motor task at these stages of the experimental trials.
To end, both PMv and M1 reached significance for the Grasp
versus Turn model for one time point during motor execution,
further supporting the well-accepted involvement of these regions
in motor control.

Discussion
Our results (summarized by the outlined circles in Fig. 2) pro-
vide new insights into how neural representations unfold over

/

start of the Execution phase (TR 9). Column 4, tMVPA results. Dashed lines have the same
representation as explained for columns 1–3. Red squares indicate dissimilarity metrics
between time points where turning trials are significantly more similar (less dissimilar) than
grasping trials. blue squares represent the opposite (grasping more similar than turning).
Column 5, Representational similarity analysis using three models, as explained in the color
legend, for each time point of the experimental trials. Solid lines represent the correlation
between the data and the model over time. The shaded gray area represents the noise ceil-
ing with the lower and upper edges representing the lower and upper bounds. Dashed verti-
cal lines have the same representation as explained for the previous columns. Colored “plus
signs” indicate time points with statistically significant correlations for the respective model
when FDR corrected for all within-ROI comparisons against zero. Colored asterisks indicate
the same when FDR corrected for all comparisons (across all ROIs) against zero.
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time for a simple prehension task versus a more complex manip-
ulation task. While prior work has shown that different types of
grasp sequences can be decoded (Gallivan et al., 2016), the cur-
rent study examines the temporal coding of this information
across Planning and Execution, as well as the nature of the infor-
mation being represented in individual brain regions over time.
In addition, our study examines the activity of regions within the
SPL, not previously explored in the prior work. Our additions
corroborate earlier findings (Gallivan et al., 2016, 2019) that
action sequences are represented in visual areas (such as V1 and
EBA), but also implicate functional subdivisions of the SPL
(areas 7A, 7PC, 7P, and 5L).

Using RSA, we found that while some regions, particularly
V1, coded start orientation during Planning, multiple regions
(V1, cIPS, SPL, and EBA) coded a combination of start orienta-
tion, end orientation and task during Execution. This finding
suggests that the activation patterns in these areas reflect more
than simple visual-perceptual information such, as the visual
orientation of the dial (Kamitani and Tong, 2005); instead,
these patterns reflect the combination of the initial goal, the
motor specific act, and the final outcome. Moreover, the simi-
larity of tMPVA activation patterns across Planning and
Execution, particularly in cIPS and area 7PC, suggests that an
action and its outcome are anticipated well before the move-
ment begins.

Temporal unfolding of complex versus simple actions
We investigated the temporal unfolding of complex versus sim-
ple actions using multiple measures of neural responses: univari-
ate time courses (Fig. 1), RSA for sequential volumes (Figs. 4, 6),
and tMVPA (Figs. 3, 5, 6). These different measures provide a
fuller picture of how actions unfold over time than considering
each approach in isolation. For example, univariate signals reveal
that both V1 and cIPS show robust visual signals in all three
phases of the trial (presentation, plan and execute), as do SPL
regions and EBA to a lesser degree. tMVPA shows consistency in
the patterns of activation in these areas throughout the trial.
However, RSA shows that different areas are representing differ-
ent kinds of information at different points in the trial. For
example, V1 represents start orientation early in the trial and
task later, while 7PC represents task primarily starting from task
onset. Moreover, tMVPA shows that trial-by-trial similarity dur-
ing Execution and between Execution and Planning is higher for
Turn than Grasp trials.

These results build on earlier work examining univariate and
multivariate time courses during motor tasks (Gallivan et al.,
2016; Ariani et al., 2018). They also provide a valuable comple-
ment for EEG studies that reveal temporal coding with even finer
temporal resolution but poorer spatial resolution. An EEG study
by Guo et al. (2019) showed that grasp orientation (defined by
instruction rather than object attributes) can be classified during
both a visual preview and action execution, with similar repre-
sentations between the two phases; moreover, their most inform-
ative electrodes were over left caudal parietal cortex, though
source localization indicated diverse potential sources (that may
include cIPS, SPL, and EBA).

One of the more surprising results of our TMVPA and RSA
findings was the involvement of SPL in showing differences
between Turn and Grasp actions, in particular areas 7A and
7PC. The role of the SPL in hand actions has been relatively less
studied than areas in the IPS (especially cIPS and aIPS) and
SPOC (V6/V6A), for which clear homologies between humans
and other primates have been proposed (Culham and Kanwisher,

2001; Grefkes and Fink, 2005). One partial exception is area 7PC,
an SPL region dorsal to aIPS, that has been proposed as the
human homolog of the macaque medial intraparietal sulcus
(mIPS) and/or parietal reach region (PRR), albeit with limited
consensus about locus (Gallivan and Culham, 2015) and putative
homologies (Culham et al., 2006). These SPL areas likely
form part of the dorsomedial (or dorsal-dorsal) visual stream
(Rizzolatti and Matelli, 2003) and have been postulated as an
integration zone for visual, motor, and somatosensory infor-
mation for goal-directed movements (Passarelli et al., 2021).
Human and macaque SPL have similar structural organiza-
tion with the anterior sector, 7PC (macaque homolog: VIP;
Caminiti et al., 2015) and 5L (macaque homolog: PE;
Gamberini et al., 2020), being predominantly somatosensory
and the more caudal parts, 7A (macaque homolog: PEc;
Gamberini et al., 2020) and 7P (macaque homolog: V6A;
Gamberini et al., 2020), being both somatosensory and visual
(Gamberini et al., 2020). The anterior regions of the SPL (5L
and 7PC) fall on the more somatosensory side of the visual-
to-somatosensory gradient from the posterior to anterior
SPL. As such, they may be involved in anticipating the sen-
sory (perhaps largely somatosensory) and motor require-
ments and consequences of the action.

Orientation processing
Our experiment explicitly involved tasks that required processing
of object orientation for grasping and turning. While processing
of object location for reaching and object shape and size for
grasping have been well characterized behaviorally and neurally
(Cavina-Pratesi et al., 2010), the influence of object orientation
on reach-to-grasp actions has only recently been investigated in
the monkey and human. These studies have suggested that object
orientation and/or wrist/grip orientation rely on V6A/aSPOC
(Battaglini et al., 2002; Monaco et al., 2011) and the adjacent
cIPS (Shikata et al., 2001; Valyear et al., 2006; Rice et al., 2007)
perhaps along with aIPS (Breveglieri et al., 2023). One fMRI
study that had participants grasp a dial much like ours found
that “bistable” object orientations (which equally afforded two
possible grip postures) evoked greater activation in cIPS than sta-
ble orientations (which afforded only one grip posture; Wood et
al., 2017). Moreover, this study found that two neuropsychologi-
cal patients with unilateral damage to cIPS showed deficits in
grasping bistable orientations with the contralateral hand. We
find that cIPS codes a combination of start orientation, end ori-
entation, and task during action execution. Moreover, cIPS acti-
vation is more consistent throughout a trial in a complex turning
task, where object orientation must be changed through a grip
rotation, than a simpler grasp-only task, corroborating the pro-
posed role of cIPS in processing orientation for action. To our
surprise, we did not observe any orientation coding in aSPOC or
pSPOC.

Akin to cIPS, early visual cortex has been increasingly impli-
cated in motor Planning and Execution (Gallivan et al., 2014,
2019; Gutteling et al., 2015; Monaco et al., 2020). Our findings
suggest that the visual cortex (V1) codes the start orientation of
the object throughout the trial with increases in the task repre-
sentation toward the end of Planning and during Execution.
This suggests that V1 activation patterns are not solely driven in
a bottom-up fashion by current visual cues (Kamitani and Tong,
2005) but come to incorporate the complexity of the task and vis-
ual information as the action unfolds.

Although studies of EBA have focused on its role in body per-
ception (Kontaris et al., 2009), EBA has also been implicated in
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processing body posture during Planning and Execution of goal-
directed actions (Gallivan et al., 2016; Zimmermann et al., 2018).
We found some evidence for this notion: EBA has strong repre-
sentations of task and orientations during Execution but only
limited ones during Planning. As such, EBA may be mainly
driven by the perceptual consequences of the action.

Methodological considerations
Our “grasping” actions were atypical in that they required grip-
ping the dial between the knuckles of the index and middle
fingers, in a way that was similar between grasping, turning to
the left, and turning to the right. This choice of posture was
deliberate, to ensure that the representations of the upcoming
task were not confounded with differences in initial grip pos-
ture. Nevertheless, this strategy differs considerably from the
approach that participants would likely have undertaken with-
out such instruction (Rosenbaum et al., 1990). Nevertheless,
we found multivariate differences even in the case when the
low-level grasp posture remained constant (Ariani et al., 2015;
Ramon et al., 2015). Finally, we focused on the dorsal pathway
given the low motor complexity (Goodale and Milner, 1992).
However, using more complex objects could be used to
explore ventral stream involvement: Dijkerman et al. (2009)
highlighted its involvement in high-level grip selection. In
addition, it has been argued that the ventral stream, in partic-
ular EBA (Zimmermann et al., 2016) provides an initial struc-
ture to the motor plans for grasping whereas regions of
the SPL might be more feedback-driven (Scheperjans et al.,
2008b). Techniques with high temporal resolution such as
TMS and EEG could explore the relationship between these
regions that have similar activation patterns in our study (Fig.
6) but that have been considered to be functionally different.

In conclusion, we investigated the neural underpinnings of
how hand-object interactions unfold on a moment-to-moment
basis. Importantly, we found that the neural underpinnings of
grasping and turning actions could best be differentiated in occi-
pital cortex (particularly cIPS and V1) and SPL. These results
corroborate the importance of cIPS in processing object and grip
orientation and suggest that SPL may play a larger role in action
sequences than previously realized. Our results also show how
tMVPA can be used to understand how motor actions are repre-
sented across different phases of the trial.
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