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The evolution of reduced-order vocal fold models into clinically useful tools for subject-specific

diagnosis and treatment hinges upon successfully and accurately representing an individual patient

in the modeling framework. This, in turn, requires inference of model parameters from clinical

measurements in order to tune a model to the given individual. Bayesian analysis is a powerful

tool for estimating model parameter probabilities based upon a set of observed data. In this

work, a Bayesian particle filter sampling technique capable of estimating time-varying model

parameters, as occur in complex vocal gestures, is introduced. The technique is compared with

time-invariant Bayesian estimation and least squares methods for determining both stationary and

non-stationary parameters. The current technique accurately estimates the time-varying unknown

model parameter and maintains tight credibility bounds. The credibility bounds are particularly

relevant from a clinical perspective, as they provide insight into the confidence a clinician should

have in the model predictions. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4948755]

[ZZ] Pages: 2683–2696

I. INTRODUCTION

Human speech production is a complex nonlinear pro-

cess comprising coupled interactions between the airflow

emanating from the lungs, tissue motion, and concomitant

sound generation at the vocal folds, and acoustic resonances

of the vocal tract and subglottal system.1 Owing to this com-

plexity, researchers studying the mechanics of human phona-

tion often rely on simplified models designed to capture the

predominant physics while eschewing higher order mechan-

ics. Developed models have varying levels of sophistication,

ranging from lumped element tissue models with one-

dimensional flow and plane wave acoustic solvers2–5 to high

fidelity finite element and computational fluid dynamics

models;6–11 see Mittal et al.12 and Erath et al.13 for recent

reviews of the fluid mechanics of phonation and reduced-

order vocal fold modeling, respectively.

Simplified models of human phonation have proven

extremely valuable in elucidating the fundamental mechan-

ics of speech. For example, reduced-order models have

successfully predicted and reproduced the self-oscillating

behavior of the vocal folds,2 the modal response of the

vibrating vocal folds,14 illuminated the importance of

nonlinear fluid-tissue-acoustic coupling in speech,15,16 and

captured the propagation and transmission of acoustic waves

within the vocal tract, subglottal system, and biological

tissues.3,17 Recently developed models are capable of gener-

ating an acoustical output similar to that of a human speaker,

with reasonable agreement with relevant clinical measure-

ments, including fundamental frequency, sound pressure

level, and flow rate.13,18,19

Beyond the ability to mimic physiological and patho-

logical vocal fold kinematics and acoustical output, consid-

erable research has focused on developing models into

diagnostic and treatment tools.20,21 Numerical models can

provide an array of synchronous signals and data that are

difficult or currently impossible to measure clinically,

including contact forces between colliding vocal folds.22

Lumped element models can also be used to explore com-

pensatory behaviors for vocal hyperfunction and how these

influence other speech measures. For example, Za~nartu

et al.23 used a modified body-cover model to explore the

influence of posterior glottal opening (PGO) size on acous-

tic output and the ramifications of increasing lung pressure

to compensate for reduced sound pressure level due to

the gap.

Simplified vocal fold models have long held the promise

of eventually becoming useful diagnostic and treatment

tools, though the reality is that few efforts have successfully

bridged the gap between modeling and clinical utility. Thisa)Electronic mail: peterson@mme.uwaterloo.ca
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is due, in part, to structural properties of the model being

based upon average measured or observed values from

in vivo and ex vivo experiments.2,4,5,13 Recently, consider-

able efforts have focused on transitioning from generic vocal

fold models to more clinically useful patient-specific repre-

sentations by estimating model parameters from clinical data

of individual subjects.24–30 Early efforts extracted vocal fold

medial surface kinematics from high speed video at one

location, and then inference techniques were employed to

estimate reduced-order model parameter values by minimiz-

ing the least square residual between specifically chosen

Fourier coefficients of the measured waveform and the

Fourier coefficients of the waveform produced by the model.

The Fourier coefficients which were chosen represented a

smooth version of the waveform.24 Further refinements have

used multiple points on the glottis27,31 and the full glottal

area waveform for matching,32,33 and extended from two- to

three-dimensional (3D) models.30,34 Patient-specific models

determined from non-linear least squares-based analysis

have been used, for example, to classify pathologies25 and

vibratory modes in the vocal folds,26 while synthetic vocal

fold models have been employed to demonstrate that fre-

quency dependent viscoelastic properties can be extracted

using these methods.29

While making great strides toward developing clinically

useful models, the least squares-based framework is inher-

ently limited in that it cannot account for measurement

uncertainty in the clinical data, incorporating multiple clini-

cal measurements into the estimation is cumbersome, and

there is no mechanism to quantify uncertainty associated

with the predicted model parameters and the overall model

outputs. That is, optimization-based techniques produce a

single estimate with no weight given to any other possible

combinations of the parameters that also explain the

observed data. This can be limiting in the case of vocal fold

modeling, as different combinations of the physiological

parameters, such as subglottal pressure and a PGO,23 could

explain the measured data equally well in the presence of

measurement noise. By simply searching for a fit with mini-

mal residual between the nonlinear vocal fold model and the

noisy clinical data, it is not always possible to assess the

level of information available in the data. As a result, it is

not necessarily straightforward for a clinician to assess the

degree of confidence they should have in the model predic-

tions when making diagnosis and treatment decisions based

upon model outputs.

Bayesian estimation,35 in contrast, is a stochastic frame-

work that enables estimation of parameters and their associ-

ated uncertainties. These estimates and uncertainties provide

users with a probability which is easily understood and

applicable to clinical decision making. Cataldo et al.36 laid

the groundwork for incorporating Bayesian analysis into

vocal fold parameter estimation. Their work used sampling

methods to estimate stationary (time-invariant) parameters

of a vocal fold model and demonstrated the capabilities of

Bayesian inference to estimate both the model parameters

and their uncertainties. Herein, we extend the work of

Cataldo et al. by introducing a non-stationary Bayesian in-

ference framework capable of estimating time-varying vocal

fold model parameters. Often the changes in structural vocal

fold parameters, such as muscle activation or subglottal pres-

sure, during running speech or certain vocal gestures, are

indicative of pathologies.37–40 The stationary techniques cur-

rently used to infer physiological parameters in vocal fold

models inevitably lose and ignore information present in

such time-varying measurements. Consequently, the result-

ing parameter estimates and uncertainties are often poor and

misleading.

Herein, a particle filter technique is introduced to facili-

tate estimation of time-varying parameters. By considering

the estimation problem in a non-stationary setting we are

able to incorporate knowledge of the uncertainties present

within the vocal fold dynamics in a robust manner. We dem-

onstrate that by using non-stationary techniques, estimates

can be improved and uncertainty reduced, even when esti-

mating time-invariant parameters, though this is at the cost

of increased computational effort. The capabilities of the

non-stationary stochastic framework are demonstrated by

employing the particle filter estimation scheme to recover

model parameters of a low-order vocal fold model represen-

tation when simulated measurements (inputs to the particle

filter) are corrupted with Gaussian noise. We further investi-

gate the propagation of uncertainty in the measured (input)

data into the parameter estimation and associated credibility

intervals.

The paper is organized as follows: the stationary

Bayesian estimation scheme is reviewed briefly and the

non-stationary framework with the associated particle filter

technique is developed in Sec. II; the vocal fold model

employed in this study is presented in Sec. III; the capabil-

ities and limitations of the time-variant and invariant

schemes applied to vocal fold modeling are demonstrated

in Sec. IV; and Sec. V provides conclusions and future

directions.

II. BAYESIAN ESTIMATION APPLIED TO VOICED
SPEECH

The main shortcoming of the traditional least squares

framework is that it treats the inference problem as a quest

for the single “true” value without consideration of parameter

uncertainty. For instance, optimization techniques can com-

pare one candidate solution to another and determine which

is more appropriate in terms of the size of a predefined func-

tional, such as a sum-of-squares residual. However, problems

arise when the sum-of-squares residual is small; many

researchers erroneously equate this scenario to having identi-

fied the “exact” solution, while, for ill-posed inverse prob-

lems, there may be a large set of candidate solutions that

could explain the data within measurement uncertainty. This

is especially the case for models involving multiple degrees

of freedom.35

In contrast, the Bayesian framework treats all parameters

and measurements as random variables and considers the

propagation of uncertainty through the measurement equa-

tions. Furthermore, while naive least-squares regression

focuses on information provided from a set of measurements,
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Bayesian inference facilitates the inclusion of other informa-

tion sources into the inference procedure, which can further

narrow the probability densities of the inferred parameters.

From a clinical standpoint, incorporating the uncertainty

present in clinical measurements into patient-specific model

development and propagating that uncertainty into the esti-

mated model parameters provides clinicians with quantifiable

information about the reliability of the model being

developed.

It can be argued that measurement uncertainty could be

roughly obtained using sensitivity analysis. However, such

an approach is tantamount to simply mapping the posterior

probability distribution, whereas additional insights on

the measurement uncertainty could be obtained using the

Bayesian approach outlined herein. Furthermore, by consid-

ering the problem in a Bayesian framework a range of new

techniques, such as the particle filter presented in this paper,

are available.

To date, Bayesian estimation applied to speech model-

ing has assumed that model parameters are stationary,28

even though these parameters are typically non-stationary. In

Secs. II A and II B, the notation and language of the

Bayesian framework for estimating stationary and non-

stationary parameters are introduced. Since this work

compares a non-stationary estimation technique with current

stationary estimation methods, we include a description of

the previously demonstrated stationary estimation scheme,

along with the new non-stationary method. The two schemes

are then employed to infer parameters of a body-cover vocal

fold model5 in Sec. IV.

A. General overview

The foundation of Bayesian inference is Bayes’ theorem41

p hjyð Þ ¼ p yjhð Þppri hð Þ
p yð Þ

/ p yjhð Þppri hð Þ; (1)

where pðhjyÞ is the posterior probability density function,

which contains all probabilistic information about the

parameters of interest h given the observed measurements y.

In the case of lumped element speech modeling, h is the set

of reduced-order model parameters of interest that are to be

determined from the clinical measurements y. The density

ppriðhÞ is the “prior” probability density, pðyjhÞ is the

“likelihood,” and pðyÞ is the “evidence.” The prior contains

known or expected statistical properties of the estimation pa-

rameters based on all knowledge available prior to obtaining

the measurements. For instance, if subglottal pressure is a

model parameter to be inferred, it is known ahead of time

that the value cannot be negative, and is likely within a

specified bound. The likelihood quantifies the probability of

an observed measurement occurring given fixed parameter

values; that is, given a particular model with set parameters,

what is the likelihood that the measured data would be

observed. Lastly, the evidence is given as

pðyÞ ¼
ð

pðyjhÞppriðhÞ dh; (2)

which is a normalization constant that ensures that the poste-

rior density satisfies the Law of Total Probability.

In practice, computation of the full posterior is often

arduous, particularly for non-linear models;35 as a result, pos-

terior densities may be approximated with point and spread

estimates by assuming that the distribution is Gaussian. Two

common point estimates are the maximum likelihood esti-

mate (MLE) and the maximum a posteriori (MAP) estimate.

The MLE is the parameter set which maximizes the likeli-

hood density and is the set of parameter values that result in

the model most closely matching the data. These parameter

values typically correspond to the solution obtained by a

weighted least-squares regression.35 In contrast, the MAP

maximizes the posterior density and represents the most

probable parameter set when the measurements are consid-

ered in conjunction with any prior information available

about the model parameters. The MAP and MLE estimates

coincide when no a priori information is available,35 which

is termed an “uninformed” prior [i.e., ppriðhÞ ¼ 1], as there is

no particular h which is preferred by the prior density.

One additional benefit of the Bayesian framework is the

ability to quantify the uncertainty present in an estimate. A

typical spread estimate is defined by a credibility set, which

is reminiscent of confidence intervals from standard experi-

mental uncertainty.42 Herein, we use so-called marginal

credibility intervals to quantify uncertainty in the estimates.

These intervals are found by considering the marginal poste-

rior probability densities, the density found when the other

parameters are integrated out of the joint posterior density,

and computing the end points so that the true value falls

within the interval with 95% probability. This procedure

requires integration over multiple parameters, which

becomes increasingly computationally inefficient as the

number of parameters increases. To overcome this problem,

sample-based methods can be employed. Various random

sampling techniques have been developed, of which Markov

chain Monte Carlo is the most well-known.41 All sampling

methods involve the evaluation of the densities in Eq. (1) for

a range of randomly selected parameter sets; the various

techniques have unique ways of identifying the random

parameter sets that approximate the posterior distribution.

Sample-based methods are versatile, as they easily handle

non-linear models and non-standard probability distribu-

tions; however, they typically require a large number of sam-

ples in order to compute meaningful estimates.35

B. Stationary estimation

To the best of our knowledge, the only instance to date of

Bayesian estimation applied to voiced speech is by Cataldo

et al.,28,36 wherein they employ a sample-based method,

called importance sampling, to estimate stationary vocal fold

model parameters. The fundamental premise of importance

sampling is that certain values of the inputs are more impor-

tant to the parameter being estimated than others. As such, a

greater weight is allocated to those regions in the parameter

space that have a better fit to the measurements. In particular,

this involves taking random samples of h drawn from some

proposal distribution and evaluating how well each of the
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random draws fits the likelihood distribution. This evaluation

of the random draw is then used to allocate a weight to that

sample; a new ensemble is then constructed by sampling from

the random draws in proportion to their computed weight. If

the proposal distribution is chosen to be the prior density,

then the importance sampling algorithm will approximate the

posterior density.43

The importance sampling algorithm requires knowledge

of the likelihood density, which can be difficult to derive for

highly non-linear models. Furthermore, with the inclusion of

measurement noise and uncertainty in other model parame-

ters, the true likelihood density can prove impossible or

impractical to compute. In speech modeling, uncertainty in

physiological parameters and clinical measures, coupled

with a highly non-linear model, renders direct computation

of the weights infeasible. To overcome this, Cataldo

et al.28,36 proposed the use of a sample based approximation

of the likelihood density. Specifically, for three parameter

values relating to the vocal fold model they generated a ran-

dom ensemble. Using each of the sampled parameter sets

and a fixed value of the parameter of interest, an ensemble of

fundamental frequencies were computed by evaluating the

vocal fold model. The likelihood density was then approxi-

mated from the samples of the fundamental frequency using

kernel density estimation.44 By changing the fixed value of

the parameter of interest, they were then able to approximate

the likelihood density and subsequently use the importance

sampling algorithm to estimate the posterior density.

C. Non-stationary estimation

In the general case of vocal fold modeling, particularly

during vocal gestures and running speech, model parameters

(e.g., muscle activation, subglottal pressure, etc.) are not

constant in time. Rather, these parameters are continuously

varying, and are not well captured by stationary parameter

estimation procedures. The risk of misdiagnoses is likely to

increase when the dynamics of these parameters is not accu-

rately inferred. When stationary estimation techniques are

used for non-stationary problems, information is inevitably

lost and the resultant estimates and their associated uncer-

tainties are often misleading.35,45

Vocal fold models regularly consist of a series of

coupled unsteady differential equations that are approxi-

mated via finite difference in time,2,4,18 which can be repre-

sented with a discrete state-space model

xkþ1 ¼ f ðxk; hk; tk; ukÞ; (3)

yk ¼ gðxk; hk; tk; vkÞ; (4)

where the subscript k ¼ 0; 1;…;K denotes evaluation at

time tk, xk is the state of the system at time tk, uk is a vector

of the state noise, and f is a function describing the evolution

of the vocal fold model. Similarly, yk; vk, and g represent

the measurements, observation noise, and the measurement

model of the observations, respectively. By representing the

problem in a discrete form, sample-based methods can be

applied to estimate parameter values and the corresponding

uncertainties.35,41,46

The inclusion of observation noise vk is natural since all

practical measurements are corrupted by some form of mea-

surement error. The state noise uk, alternatively referred to

as process noise, models the disconnect between the true

physical dynamics and those modeled by the evolution

model f. Neglecting state noise implies that there is a greater

level of certainty about how the state evolves, which can

reduce the influence of the measurements and cause esti-

mates to be misleading in cases where such certainty in the

state evolution is not justified. Lumped-element vocal fold

models represent a complex physiological system using rela-

tively simple components (masses, springs, and dampers),

and as such incorporating state noise is important, as it

enhances the predictive power of the non-stationary

Bayesian framework.

There are multiple techniques in the Bayesian frame-

work which consider the state xk and observations yk to-

gether and enable a thorough analysis of their evolution.46

These techniques usually model both the state fxkg1k¼0 and

observations fykg
1
k¼0 as stochastic processes. Moreover, it is

common to treat the state as a Markov process, such that

pðxkþ1jx0; x1;…; xkÞ ¼ pðxkþ1jxkÞ; (5)

and the measurements as a Markov process with respect to

the history of xk, such that

pðykjx0; x1;…; xkÞ ¼ pðykjxkÞ: (6)

Combining the above Markov properties with the state-space

model from Eqs. (3) and (4) yields a so-called Hidden

Markov Model.46

Traditionally, stochastic filters such as a particle or

Kalman filter are used to model or predict the evolution of

the system state xk from the observations yk when the system

parameters hk are known. Herein, we employ a particle filter

to exploit the information present within the Hidden Markov

Model and consequently infer the non-stationary vocal fold

model parameters hk and their distributions. Particle filters

are a sequential Monte Carlo method in which a set of point

masses (or “particles”) are used to approximate the sequence

of posterior densities.46 In the present work, we are inter-

ested in inferring the distribution of the parameters; to

achieve this, the time-varying parameters in hk are treated as

additional elements of the state xk. By extending the state

space in this manner, the particle filter estimates the densities

relating to hk simultaneously with those densities relating to

the state xk. Hence, using a particle filter to explore and infer

the extended state space admits an estimate of the parameter

distributions.

The goal of a particle filter is to sequentially produce an

ensemble of samples for each time tk, referred to as particles

ðxð1Þk ; hð1Þk Þ; ðx
ð2Þ
k ; hð2Þk Þ;…; ðxðNÞk ; hðNÞk Þ which are distributed

according to the posterior density for the kth time step,

pðxk; hkjy1:kÞ, where y1:k ¼ fy1; y2;…; ykg. Loosely, each

particle can be considered to be an independent model simu-

lation, with the parameters of each model differing between

particles. The most common way to ensure these particles

are distributed according to the correct distribution is
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through repeated application of Bayes’ theorem and Monte

Carlo integration,35,46 accomplished via the sequential im-

portance resampling47 algorithm:

(1) Initialization: Set k¼ 0 and draw a random ensemble

fxð‘Þ0 ; hð‘Þ0 g
N
‘¼1 from the prior distribution pðx0; h0Þ.

(2) (a) Prediction: For each of the N particles at time tk,

draw one new particle ðxð‘Þkþ1; h
ð‘Þ
kþ1Þ from

pevoðxkþ1; hkþ1jxð‘Þk ; hð‘Þk Þ by evaluating Eq. (3)

and pevo is defined by the distribution of the

state noise.

(b) Update: When the measurement at tkþ1 is com-

puted, calculate the relative likelihoods for the

new particles

w ‘ð Þ
kþ1 ¼

1

W
plike ykþ1jx

‘ð Þ
kþ1; h

‘ð Þ
kþ1

� �
; (7)

where

W ¼
XN

n¼1

plikeðykþ1jx
ð‘Þ
kþ1; h

ð‘Þ
kþ1Þ; (8)

and plike is defined by the distribution of the obser-

vation noise.

(c) Resample: Generate another ensemble

fð~xð‘Þk ; ~h
ð‘Þ
k Þg

N
‘¼1 by sampling each ðxð‘Þk ; hð‘Þk Þ with

probability w‘
k.

(3) Loop: If k¼K then end, otherwise increase k ! k þ 1

and repeat from step (2).

At first, the algorithm may not appear to approximate the

desired distributions. However, the prediction step is intuitive,

in that if we have an acceptable state particle xn
k at time tk, then

the evaluation of the evolution model, Eq. (3), will inform us

of how we expect that state to change in the next time step. By

doing this to the entire ensemble of particles we have N inde-

pendent particles sampled from pðxkþ1; hkþ1jy1:kÞ. The updat-

ing and resampling steps, steps (2a) and (2b), respectively,

implement importance sampling and resampling, which is ca-

pable of approximating the posterior.43,47

Intuitively, at the kth time step, the particle filter works

by sampling N different values for xk and considering how

well each value fits the current observation for that time

step. The value with the best fit is then chosen to be the value

of the estimate for that time step (or the estimate is chosen to

be a weighted sum of all values) and the rest of the samples

are weighted according to their goodness of fit and are used

to inform about the uncertainty (i.e., the shape and width of

the density at that current time step). These values are then

propagated to the next time step via the evolution model and

the weighting procedure is repeated. By considering N possi-

bilities for xk we are able to select an estimate and comment

on its accuracy.

III. VOCAL FOLD MODEL DESCRIPTION

While the ultimate aim and utility of Bayesian estima-

tion applied to vocal fold modeling lies in relating the

parameters of an abstract lumped element model to data

obtained from patients in the clinical setting, herein we

employ synthetic data generated from a reduced order model

as the observation data. This allows direct comparison of

estimated parameter values with known physics and “ground

truth” values from the generating model. The reduced order

model employed is the body cover model (BCM),18 which

modifies the classic two-mass model2,4 by functionally

dividing the vocal folds into body and cover layers. The

BCM comprises a series of masses connected with springs

and dampers, as shown in Fig. 1. The air flow passes

between the cover masses, resulting in a driving pressure

and concomitant lateral movement of the masses. Included

in the model is a PGO at the location of the arytenoid carti-

lages, which results in non-vibratory incomplete glottal

closure.23 It has been suggested that the PGO is part of the

normal phonation structure and that its presence is ubiqui-

tous in both normal and disordered voices;48–50 furthermore,

it is an important parameter in the relation of energy transfer

and collision forces.23,51–53

The vocal fold dynamics associated with the BCM

depicted in Fig. 1 is governed by a system of second-order

non-linear coupled ordinary differential equations, written in

compact form as

MðhÞ€x þ CðhÞ _x þ KðhÞxþ hðx; _x; hÞ ¼ 0; (9)

where x ¼ ½xu; xl; xb�T is a vector of the displacements of the

upper, lower, and body masses over time, with T indicating

vector transposition, h is a vector that contains all of the

model parameters (i.e., the damping and spring coefficients

d and k, respectively), and h is a vector valued function that

contains all of the non-linear components of the system,

including aerodynamic loading. The entries in the coefficient

matrices (M, C, and K) are determined by the parameter val-

ues contained within h. Collision is modeled as an additional

spring and damper for repelling the medial surfaces of over-

lapping left and right cover masses and extracting some col-

lision energy.2,4

In order to reduce the number of degrees of freedom of

the system, we consider only symmetric vocal fold parame-

ters and motions; that is, analogous spring and damper coef-

ficients for the left and right vocal folds are equivalent and

FIG. 1. 3D BCM representation with PGO area from Ref. 23 reproduced

with permission.
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initial conditions are symmetric. We note, however, that the

use of asymmetric tissue properties does not change the

approach used to infer the parameters of interest. It simply

changes the model used to approximate the movement of the

masses. Using asymmetric tissue properties, more parame-

ters are introduced that need to be estimated, thus increasing

the number of degrees of freedom of the estimation, and con-

sequently larger uncertainties in the parameter estimates.35,46

Since asymmetric tissue parameters and motion is common

even in healthy subjects,4,54 exploring Bayesian estimation

of asymmetric tissue parameters will be considered in future

work.

The flow solution employed assumes one-dimensional

Bernoulli flow with an ad hoc viscous flow separation cor-

rection during the divergent phases of the glottal cycle.1,18

Sound wave propagation is incorporated into the model via

the Wave Reflection Analog (WRA) algorithm with level 2

interactions.3 The area of each section in the vocal tract is

based upon 3D magnetic resonance images during sustained

vowels.55 Turbulent sound production is not included in

either the membranous nor PGO portions of the glottis in

order to reduce the memory and computational time of the

WRA algorithm implemented in the state space model dur-

ing simulation and estimation. When turbulence is included

it acts as an additional time varying noise source propor-

tional to the flow source. As a result, the level of uncertainty

present in the problem will increase, but the fundamental

dynamics should be minimally affected.23,56

There are several anatomic and physiological character-

istics that directly affect the different types of phonation,

including the mass of the vocal folds, muscular density and

viscosity, muscle tension and activation, and bone structure.

Manipulation of these characteristics, such as by muscle acti-

vation and/or positioning, modifies the phonatory dynamics,

which can be captured in the BCM through simultaneous

adjustment of the mass, spring, and damper coefficients.

Parameter modification accounting for physiological varia-

tions during vocal gestures is based upon muscle activation

rules.5 Specifically, cricothyroid, thyroarytenoid, and lateral

cricoarytenoid muscle activation parameters, act; ata, and alc,

respectively, act to modify the constants assigned to the dif-

ferent elements in the vocal fold model. This is advanta-

geous as (i) there is a correlation between changes in the

primitive vocal fold model parameters and a physiological

behavior, namely, changes in muscle activation; and (ii) it

reduces the number of independent vocal fold model param-

eters, thus decreasing the number of parameters requiring

estimation.

IV. DEMONSTRATION OF THE BAYESIAN
FRAMEWORK

In this section we employ the Bayesian estimation

framework to infer vocal fold model parameters from syn-

thetic observed data. The minimum glottal area4 (minimum

projected area of the membranous glottal area as viewed

from an endoscope) generated from the BCM described in

Sec. III is used as the measured (observed) data; these data

are generally available to clinicians through the use of high-

speed video endoscopy.57

Since we are employing a modified BCM, which is

computationally implemented following the discretization

scheme presented by Galindo et al.,58 to generate the obser-

vation data as well as the fitting model for the Bayesian

estimation, we must take care to avoid so-called “inverse

crimes,” wherein the observed data are absent of noise and

perfectly compatible with the model being fitted.45

Consequently, while a vocal tract is included when generat-

ing the synthetic observed data, no vocal tract is included in

the fitting model. Furthermore, we corrupt the observed glot-

tal area data with additive Gaussian noise with standard

deviation equivalent to 5% of the measurement maximum.

Physically, this error simulates the measurement uncertainty

inherent to clinical measures of the glottal area waveform.

All estimates are computed from the noisy simulated

glottal area waveform when the first 50 ms have been

removed. This is done to ensure that the simulated pressure

has stabilized, thereby minimizing any uncertainties associ-

ated with this process. If estimates were to be computed

prior to the pressure stabilization, the level of accuracy of

the estimates would be dramatically reduced and the uncer-

tainty would be large.

We treat the cricothyroid muscle activation parameter

act as the unknown to be estimated. Since act is bounded by

zero and one,5 the prior distribution is chosen as a uniform

distribution over this range. This choice is motivated by the

Principle of Maximum Entropy, which states that a prior

should only reflect the state of testable information.59–61 The

choice of prior distribution can often fill in information

when an information deficit is present in a problem, but it

should not unduly bias the posterior density toward a subjec-

tive prior belief or expectation, that is, a “self-fulfilling

prophecy.”

In order to compare the proposed particle filter method

with the current stationary estimation techniques we con-

sider three simulations: the first simulation models act as

being constant over time. In this case we are inferring a pa-

rameter which does not change over time, and as such this

case will present stationary estimation schemes in the best

light. Two additional cases involve act varying over time,

wherein we expect the non-stationary scheme introduced

here to be superior. For these three simulations, estimates

are computed using: (i) the particle filter; (ii) the importance

sampling method introduced by Cataldo et al.;36 and (iii)

least squares minimization.

When the importance sampling method is used, the

sample-based likelihood density is estimated from 1000 sam-

ples following the procedure of Cataldo et al.36 in which ata,

Ps, and APGO are independently sampled from Gaussian dis-

tributions with means of 0.2, 700, and 0.01, respectively, and

standard deviations of 0.1, 350, and 0.005, respectively. The

alc parameter is fixed at 0.5 since the BCM is sensitive to

this parameter, which can produce numerically unstable

oscillations of the glottal area.5

The least squares minimization is performed in order to

compare the presented Bayesian techniques with state-of-

the-art optimization-based techniques for inferring vocal
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fold model parameters. In order to directly compare the per-

formance of the least squares minimization with the results

from the Cataldo approach, we define the minimization

functional as the normalized root-mean-square (RMS) of the

difference between the fundamental frequency of the

observed glottal area data and that of the BCM for various

values of act. The Nelder-Mead algorithm62 is employed to

compute the minimizer of this functional. D€ollinger et al.24

suggest that the vocal fold model is close to being non-

convex, and as a result gradient-based techniques such as

Levenberg-Marquardt, fail to converge. The non-convexity

of the model leads to the use of the Nelder-Mead algorithm.

However, convergence of the Nelder-Mead algorithm

depends upon the starting or “seed” location. In order to

examine the effect of the seed locations, 20 random seeds

between 0 and 1 are used and the corresponding estimates

are computed in parallel.

We note that the adapted Nelder-Mead algorithm pro-

posed by D€ollinger et al.24 is not used here, as it is specific

to the voice production model for which it was designed,

and cannot be exactly implemented for other cases. Their

approach chooses the four seed particles used in the Nelder-

Mead algorithm, based on the direct relation between funda-

mental frequency and the model parameters of interest. Our

use of a three-mass BCM with muscle activation rules5 and

non-linear source-filter interactions removes the possibility

of obtaining a set of candidate particles from a solution due

to the complex relationships that control the model behavior.

In this case, the entropy of the candidates increases and

selecting candidates from a probabilistic point of view seems

more appropriate. We posit that a random selection of

particles from a uniform distribution is the most similar

approach (and the natural extension) to the candidate selec-

tion proposed in D€ollinger et al.,24 and is thus used herein to

represent the state-of-the-art in least squares optimization for

vocal fold model parameter estimation.

A. Results and discussion for a constant act

Initially, the particle filter is used to estimate the value

of act, assuming it to be constant over time, as occurs during

sustained vowels. Two hundred milliseconds of observation

data were generated by solving Eq. (9) using an explicit first

order time marching scheme with a fixed time step of

1:428653�10�2 ms. The model parameters were: act¼ 0:15;
ata¼ 0:2; alc¼ 0:5, a PGO area of APGO¼ 1mm2, and a sub-

glottal pressure of Ps¼ 700Pa. The generated glottal area A
time series is presented in Fig. 2. Note that the glottal area

time series have been shifted so that the closure of the

masses corresponds to a glottal area of 0, though there is a

non-zero PGO. When computing the estimates, the addi-

tional activation parameters, the PGO area, and the sub-

glottal pressure are treated as fixed and known.

Three hundred particles were used to estimate act and its

associated distribution assuming Gaussian densities for the

state and observation noise using our proposed particle filter

method. The state and observation noise models were chosen

to be unbiased (i.e., mean of zero) and have a standard devia-

tion equivalent to 5% of the maximal value of the simulated

state and observations. Figure 3 shows the MAP estimate of

act, as well as the associated displacements of the upper,

lower, and body masses. The particle filter estimates the pos-

terior density at each time step; the peak of these densities

comprises the MAP estimate [see Fig. 3(a)]. This estimate

fluctuates about the true value of act, resulting in the noise in

the time series of the MAP; however, over time, the estimate

consistently hovers around the true value and the 95% credi-

bility bounds always contain the true value. We note

that during certain periods there are large excursions in the

credibility intervals [e.g., at �68�70 ms in Fig. 3(a)]. These

periods correspond to the closed phases of the glottal cycle,

wherein the glottal area is zero and there is no information

about the position of the vocal fold masses. Specifically, the

BCM models collision by allowing the masses to cross the

mid-line (see Sec. III), but since we are only using glottal

area, all information relating to the positions of the masses is

lost during such overlap.

The estimated displacements of the masses presented in

Fig. 3(b) show reasonable agreement with the actual mass

positions of the observation data. The estimate of the upper

mass displacement tracks the true displacement, although the

displacements of the lower and body masses exhibit more

deviation from the actual values. The disparity between the

estimated and true displacement values are most likely due to

the noise observed in the act estimate. The noise level in the

estimate would decrease by inclusion of additional particles

in the estimation process, although such improvement comes

at a computational cost. Thus, there is a balance between

computational efficiency and desired accuracy. Alternatively,

other techniques such as an extended Kalman filter, which is

not a sample-based technique, could be used, smoothing

could be applied to the estimate, or the state evolution model

in Eq. (3) could be modified to include expected properties of

act, such as smoothness or a penalty term for larger than

expected changes in the mass displacements.

Posterior densities estimated using the importance sam-

pling and Nelder-Mead techniques are shown in Fig. 4(a),

along with the density which results from averaging the par-

ticle filter estimates over time. The resulting summary statis-

tics of these densities can be found in Table I. For both of

the Bayesian techniques, the peaks of the density distribu-

tions are near the true value, with the MAP estimate of the

FIG. 2. (Color online) Simulated time series of glottal area used as observa-

tion data for the stationary estimation problem.
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particle filter method of 0.151 being slightly more accurate

than the importance sampling estimate of 0.145 (recall that

the true value is 0.15). Twelve of the 20 estimates from the

Nelder-Mead algorithm fall within 0.01 of true value, though

there is no assurance that the true value is estimated, as dem-

onstrated by the 8 estimates that have values of 0.7 or above.

The true power of the Bayesian estimation framework is

not just in the estimate itself, however, but rather in the quan-

tification of the uncertainty in that estimate, which is illus-

trated by the widths of the distributions for the importance

sampling and particle filter methods, which are quantified in

Fig. 4(a). Such uncertainty estimates are not possible using

traditional optimization based methods. The credibility inter-

vals from the particle filter are tighter because they are com-

puted using the full time series data, which contains more

information about act than a single fundamental frequency

measurement; hence, there is less uncertainty in the estimated

value of act. We note that the improved credibility bounds

come at the cost of significantly increased computational

effort, however, and may not be worth the expense when it is

known that a parameter does not change with time.

Figure 4(b) illustrates the impact of increased measure-

ment uncertainty on both the importance sampling method

of Cataldo et al., as well as the current particle filter scheme

by artificially increasing the noise in the observed data.

Specifically, the posterior densities are compared for these

two techniques wherein the input glottal area waveform has

been corrupted by 5% and 10% Gaussian random noise. As

expected, increasing the noise of the input signal results in

broader peaks of the posterior densities for both of the esti-

mation procedures. Specifically, the credibility intervals

increase by approximately 38% when doubling the noise

in the observed data. The particle filter technique still

provides tighter credibility intervals when compared to the

importance sampling approach due to the increased informa-

tion present in the time-varying signal.

B. Results and discussion for time varying act

While all three techniques are reasonably successful at

estimating act from observation data in which that parameter

is constant over time, the advantage of the particle filter

method is highlighted when performing non-stationary pa-

rameter estimation. As a demonstration, we consider three

additional sets of observed data. The first is generated using

the BCM with act initially set at 0.1 for the first 130 ms of

the simulation, followed by a linear ramp to 0.2 over the

next 40 ms, then held steady at 0.2 for the final 80 ms, see

Fig. 5(a). The generated glottal area time series is presented

in Fig. 5(d). The second set of observed data is generated

with act at a base value of 0.1 then exhibiting two smooth

peaks rising to 0.25 and falling back to the base level. These

peaks occur at t ¼ 120 ms and t ¼ 230 ms, see Fig. 5(b). The

generated glottal area time series is presented in Fig. 5(e).

FIG. 3. (Color online) (a) Time series

of the act MAP estimate computed

using the particle filter (dashed line)

and the associated credibility bounds

for each time step (dotted line). The

true value for act is the horizontal solid

line. Spikes in the credibility limits

occur when the glottis is closed. The

inset shows the behavior of the esti-

mate between glottal closures. (b)

Time series of the estimated (dashed

line) and true (solid line) displacement

of the upper, lower, and body masses.

FIG. 4. (Color online) (a) Estimated posterior distributions of act computed with: the current non-stationary particle filter method (dashed line); the stationary

importance sampling method (solid line); and the least squares Nelder-Mead algorithm (histogram). The histogram is the frequency of estimated act computed

from the 20 random seeds. The true value is marked by the dotted line. (b) Estimated posterior distributions of act computed using the current non-stationary

particle filter method (no symbols) and the stationary importance sampling method (symbols) for two levels of measurement noise. Dashed lines correspond to

5% additive Gaussian random noise, while solid lines correspond to 10% noise.
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Finally, the third simulation has a baseline act of 0.5 with a

drop down to 0.35 occurring at 100 ms and sustaining for

50 ms, and then a rise to 0.65 occurring at 200 ms which sus-

tains for 50 ms. See Fig. 5(c) for the act and Fig. 5(f) for the

corresponding glottal waveform.

All other simulation parameters for these non-stationary

data sets are the same as for the stationary simulation; that is,

ata ¼ 0:2; alc ¼ 0:5; APGO ¼ 1 mm2, and Ps ¼ 700 Pa.

Again, the glottal area time series have been shifted so that

the closure of the masses corresponds to a glottal area of 0,

though there is a non-zero PGO. The particle filter uses 300

random samples at each time step to estimate the distribution.

Also, the state and observation noise models were chosen to

be Gaussian and unbiased, and have a standard deviation

equivalent to 5% of the maximal value of the simulated state

and observations, as for the time-invariant case.

Figure 6 presents time series of the act MAP estimates

and associated mass displacements as determined using the

proposed particle filter method with the observed data in

Figs. 5(d)–5(f). Analogous to the results for a constant act

presented in Fig. 3, the estimates of act fluctuate about the

true value with tight credibility intervals, except during

vocal fold collision. In all cases we see that even when these

collisions occur the MAP estimate continues to track the true

time series, only the credibility intervals are affected by the

collisions. When there is no collision the width of the credi-

bility intervals is approximately 0.06 for all simulations.

Table II summarizes the estimates at 70, 150, and 230 ms.

We note that in all cases the true value of act falls within the

estimated credibility bounds.

Importantly, the variation of act with time is accurately

captured. Over time, the evolution of act is accurately cap-

tured in both simulations and the mean squared error due to

the noisy nature of the MAP estimate is between 0.012 and

0.022 for all cases. The displacements of the masses are

well-estimated, with the best accuracy for the upper mass, as

was the case for the stationary estimation. Again we see that

the body mass is the most poorly estimated. This reduction

of accuracy could be due to the fact that displacement of the

body mass can be approximated by a correlated change in

the displacement of both the upper and lower masses. More

work is required to investigate whether the accuracy of xb

improves with additional measurements, such as electroglot-

tography, or by improving model fidelity.

To elucidate how the state and observation noise

impacts the estimates, the three simulation cases were run

for combinations of state and observation noise variances.

Table III summarizes how increasing the various noise con-

ditions influences the accuracy of the estimate in terms of

the mean squared error of the MAP estimates, and the aver-

age width of the estimated credibility interval. Table III

shows that no matter the source of the noise, whether state or

observation, as the noise increases the MAP estimate

becomes less accurate on average and the credibility inter-

vals grow wider. The reduction in accuracy of the MAP esti-

mate with the increasing noise model indicates that a wider

combination of parameters fits the observation data well.

This means that the noisy nature of the particle filter will be

exaggerated since a greater variety of particles are now ac-

ceptable. The credibility intervals widen since the greater

noise level means we are less certain about the estimated

value of act. We also find that when the state noise is

increased the error in the MAP estimate is primarily

affected, whereas, when the observation noise is increased

the credibility intervals are primarily affected. This occurs

because the state noise is directly related to the propagation

FIG. 5. (Color online) (a)–(c) The time

varying act used in the three simula-

tions. (d)–(f) Simulated time series of

glottal area waveform resulting from

the different act time series.

TABLE I. Summary statistics of the particle filter and importance sampling

estimates of the stationary muscle activation parameter act, when the simu-

lated measurements are corrupted by 5% and 10% noise. The credibility

interval limits are for 95% confidence.

5% Noise 10% Noise

MAP Credibility MAP Credibility

Estimate Interval Estimate Interval

Particle filter 0.151 (0.113, 0.186) 0.158 (0.091, 0.236)

Importance sampling 0.145 (0.088, 0.228) 0.146 (0.0519, 0.316)
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of the estimate through the evolution model, and the obser-

vation noise affects the goodness of fit.

1. Estimation using importance sampling and
Nelder-Mead

In order to estimate act using the importance sampling

and Nelder-Mead methods, we must assess the fundamental

frequency of the glottal area signal; however, since act varies

in time, so too does the fundamental frequency. In order to

facilitate estimation using these methods, we estimate the

fundamental frequency at each time tk through a fast Fourier

transform (FFT). This produces a time series of the funda-

mental frequency shown in Fig. 7.

Estimates for act computed using importance sampling

are shown in Figs. 8(a)–8(c), and those computed using

Nelder-Mead are shown in Figs. 8(d)–8(f). For all test cases,

the importance sampling method quickly converges to the

initial value of act ¼ 0:1, but is unable to follow the value of

act as it changes in time. The credibility bounds are initially

large, as only a small amount of data has been used to esti-

mate the fundamental frequency and, as such, there is a high

degree of uncertainty surrounding the value. At approxi-

mately 100 ms in the first simulation, sufficient information

is obtained from the measurement data to shrink the esti-

mated credibility bounds. However, once the value of act

begins to change, uncertainty of the fundamental frequency

increases and the credibility bounds respond accordingly.

A similar pattern occurs for the second test case. At first

the credibility bounds shrink as measurements are added to

the inference procedure, but then the change in act causes the

level of uncertainty to increase again. Also, there is a slight

rise in the MAP estimate. This rise is damped because the

entire history up to the given time is considered in the

FIG. 6. (Color online) (a)–(c) show the time series of the act MAP estimate computed using the particle filter (dashed line) and the associated credibility

bounds for each time step (dashed line) for the three cases. The true value for act is the solid line. (d)–(f) Time series of the mass displacement MAP estimates

computed using the particle filter (dashed line) and the true displacement of the masses is the solid line.

TABLE II. Three non-stationary estimates for 70, 150, and 230 ms. The

bold number is the true value, the italicized interval is the 95% credibility

interval, and the normal text is the MAP estimate.

Simulation (a) Simulation (b) Simulation (c)

Estimate 0.101, 0.1 0.098, 0.1 0.501, 0.5

at 70 ms ð0:0726; 0:131Þ ð0:069; 0:127Þ ð0:473; 0:528Þ
Estimate 0.135, 0.15 0.106, 0.1 0.315, 0.35

at 150 ms ð0:112; 0:161Þ ð0:076; 0:134Þ ð0:297; 0:364Þ
Estimate 0.189, 0.2 0.265, 0.25 0.661 (0.65)

at 230 ms ð0:16; 0:216Þ ð0:24; 0:29Þ ð0:624; 0:688Þ

TABLE III. The root-mean-squared error (normal text) and width of the

95% credibility intervals (bold text) for the different noise models.

State noise 5% State noise 10% State noise 5%

Observation

noise 5%

Observation

noise 5%

Observation

noise 10%

Simulation 0.0126 0.0291 0.0187

(a) 0.0594 0.0654 0.0871

Simulation 0.0182 0.027 0.0243

(b) 0.0595 0.0623 0.0855

Simulation 0.0223 0.0315 0.0288

(c) 0.0612 0.0713 0.082
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estimation, causing the peak to be missed. After the first

peak the estimate and credibility bounds shrink once again,

but the estimate of act is larger than before the first peak,

since this rise is now in the fundamental frequency history.

Finally, the last rise is missed in the MAP estimate but the

credibility bounds expand due to the change. The poor per-

formance of the importance sampling method occurs since

the fundamental frequency measure is computed from the

entire history of the glottal area time series. As a result, the

estimation process cannot detect the increases in act and

greater uncertainty in the estimates is induced.

The estimates of the third test case show too much

uncertainty for any useful inference to be made at all times.

The general fall and rise over time are captured but the

actual structure in the time series is completely missed.

Moreover, the uncertainty never decreases as in other

simulations. This is likely due to the difference in the over

activation of the tissue making the oscillations more frequent

in the glottal area. This makes it harder to infer anything

from the fundamental frequency.

The Nelder-Mead estimate for the first case in Fig. 8(d)

appears very accurate, with all plotted estimates within

0.001 of the true value; however, care must be taken in inter-

preting these results, as the estimate which provides the low-

est RMS out of the 20 seeds for each time step is plotted.

The other random seeds had varying performance; around

40% of the seeds for each time step estimate act to be above

0.5. As discussed previously, the most important aspect,

however, is that there is no way to comment on the uncer-

tainty surrounding such an estimate.

The estimate for the second and third cases, shown in

Figs. 8(e) and 8(f), respectively, captures the changes in act

FIG. 7. (Color online) The fundamental frequency time series from an FFT of the glottal area time series for the first case, shown in Figs. 6(d)–6(f).

FIG. 8. (Color online) (a)–(c) Estimates for the three test cases when the importance sampling method is used. (d)–(f) Estimates for the three cases when the

Nelder-Mead method is used. The dashed lines are the time series of act estimated by each respective technique, while the solid line corresponds to the true value.

Bounding dashed lines in (a)–(c) are the credibility bounds.
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better than the importance sampling approach, but are unable

to accurately capture the peaks of the changes. This may be

due to the fact that the changes are rapid in comparison to

the first simulation, and the history of the fundamental

frequency has a similar damping effect as observed for the

importance sampling estimates.

2. Revisiting importance sampling

An obvious strategy to improve the importance sampling

method to estimate non-stationary parameters is to employ a

running average (or windowing) of the time-varying observa-

tion data, as opposed to its entire time history. This technique

was explored by taking FFTs of sequential 50 ms segments of

the time series data from the simulation shown in Figs.

5(d)–5(f) to compute the “instantaneous” fundamental fre-

quency for use as the measure in the importance sampling

method. The resulting estimate and uncertainty bounds are

shown in Fig. 9.

During the initial phase of the first case, when the true

value of act is constant at 0.1, the estimated value is rela-

tively close to the actual value. The estimate is not as accu-

rate as when using the full measurement history, however,

due to the reduced information content available for the esti-

mation process. The estimated value deviates from the actual

value when the latter is changing in time in the linear transi-

tion region from act ¼ 0:1 to 0.2, but again provides a decent

estimation when the value of act is constant in time. This is

in contrast to the estimation employing the full time history

in Fig. 8(a), wherein the estimation procedure was inaccurate

once act began varying in time. The credibility limits are ini-

tially wide, and then tighten to a fixed width leading up to

the transition region. The limits are fixed in width due to the

limited information available in the window, whereas the

credibility intervals continually tighten in this region when

using the full time history. In the linear transition region the

credibility intervals fluctuate before obtaining a fixed value

again once act is again constant.

The windowed importance sampling approach was able

to detect both increases in act for the second case, see Fig.

9(b). As was the case for the windowed estimate of the first

case, the uncertainty bounds are significantly wider than

those obtained from the full measurement history.

Furthermore, the peaks of the rises are not completely

estimated; this is likely due to the windowed nature of the

estimate. That is, the peak is damped due to the lower values

before and after the peak being included in the window. This

behavior is similar in the third simulation. The estimate in

Fig. 9(c) locates the decrease and increase in act, but does

not quite reach the full peaks.

In general, the windowed estimates are a considerable

improvement over the importance sampling scheme which

employs the full time history [Figs. 8(a)–8(c)]. If windowing

is applied to compute the fundamental frequency, then the

importance sampling method is able to track changes in act,

though with considerably less accuracy during transient

regions of the observation when compared to the estimates

computed with the particle filter approach. This uncertainty

would be reduced when more particles are used to estimate

the distribution, however, this comes with an increased com-

putational cost. For time-variant property estimation we rec-

ommend the proposed particle filtering method.

V. CONCLUSIONS

Bayesian estimation is a powerful framework for infer-

ring model parameters and their associated uncertainties

using observed data and available a priori knowledge of the

parameters. To date, the Bayesian framework had only been

applied to estimate vocal fold parameters that do not change

with time; this condition is encountered in, for example, sus-

tained vowel phonation. However, during more complex

vocal gestures, model parameters have to vary in time in

order to capture the observed phenomena.

In this manuscript we introduced the Bayesian frame-

work using a particle filter technique for estimating time-

varying parameters in a vocal fold model. The particle filter

was used to estimate parameters which are constant, as well

as those which vary over time, from simulated glottal area

data corrupted by Gaussian noise. In all cases, the particle

filter gave accurate estimates with tight credibility bounds,

except when the vocal folds were colliding, wherein the

credibility bounds became quite large. This was due to the

paucity of information in the observed data during collision;

that is, the glottal area is APGO during collision, the informa-

tion content is dramatically reduced, causing increased

uncertainty in the measurement.

FIG. 9. (Color online) The true act time series (solid line) plotted with the MAP estimate (dashed line) and 95% credibility bounds (dashed line) computed

using importance sampling when the fundamental frequency measure is computed using a moving time window for the three time varying act simulations.
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Performance of the particle filter method was assessed

through comparison with the importance sampling method

employed by Cataldo et al.36 and the Nelder-Mead algorithm

used to minimize a least squares functional, which has been

used for model parameter inference in speech.24 The latter

method provides only an estimate of the parameter value,

but no information regarding confidence in that estimation.

All methods accurately estimated the parameter value when

it was stationary (i.e., when the synthetic observation data

were generated using a parameter that was constant over

time), with the particle filter estimating the closest value. In

addition, the credibility intervals were tightest for the parti-

cle filter method, as more information from the observation

data were employed in the estimation process. This came at

the cost of additional computational expense, however.

In the case of synthetic data constructed using time-

varying parameters, the particle filter was again successful at

inferring the unknown, now time-varying, model parameter.

How the state and observation noise models affect the parti-

cle filter estimates was examined and, as expected, we found

that as the noise increased, no matter the source, the quality

of the estimates decreased and the uncertainty, in the form of

an estimated credibility interval, increased. In contrast, the

importance sampling technique was unable to track the var-

iations in the parameters, as this technique was sensitive to

the time history of the observed data. Modifying this method

to use only observation data from moving windows as

opposed to the full time history improved the estimation of

time-varying parameters, though estimates were still poor

when the parameter was changing rapidly, and the confi-

dence bounds were wide. The least-squares method was able

to accurately capture and track the temporal variations in the

unknown parameter when the variation was slow; however,

being a non-stochastic estimation, it provided no uncertainty

information making it hard to assess the appropriateness of

any single estimate. This latter method also struggled with

rapid changes in the value of the inferred parameter.

This first implementation of particle filters to estimate

time-varying parameters in reduced order models of speech

shows good promise as a tool for ultimately developing

patient-specific vocal fold models. To reach this goal, further

work is required to include more model complexities, such

as turbulence and asymmetric tissue properties, along with

clinical data and the associated uncertainties into the estima-

tion process. Through the Bayesian framework, these uncer-

tainties propagate into the parameter estimations and model

predictions, providing quantitative evaluations of model

quality. Furthermore, Bayesian estimation can provide

insight into appropriate model complexity and guide model

selection, which will be critical information for clinicians

looking to models to aid in diagnosis and treatment

decisions.
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