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Abstract
Confounding variables are a recurrent challenge for causal discovery and inference. 
In many situations, complex causal mechanisms only manifest themselves in extreme 
events, or take simpler forms in the extremes. Stimulated by data on extreme river 
flows and precipitation, we introduce a new causal discovery methodology for heavy-
tailed variables that allows the effect of a known potential confounder to be almost 
entirely removed when the variables have comparable tails, and also decreases it suf-
ficiently to enable correct causal inference when the confounder has a heavier tail. 
We also introduce a new parametric estimator for the existing causal tail coefficient 
and a permutation test. Simulations show that the methods work well and the ideas 
are applied to the motivating dataset.

Keywords Causation · Causal tail coefficient · Confounder · Extreme value 
statistics · Generalized Pareto distribution

1 Introduction

The field of causal inference has developed massively in recent decades (e.g., Pearl 
2009; Peters et al. 2017), with much recent work on the detection of causality from 
observational data (e.g., Maathuis and Nandy 2016). Most of this literature concerns 
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central quantities such as expectations, but certain causal mechanisms manifest them-
selves only in rare events and/or may simplify in distribution tails. Standard methods 
of causal inference are ill-suited for such situations, and recent work has begun to link 
causality and extreme value theory. Examples are Gissibl and Klüppelberg (2018), 
who define recursive max-linear models on directed acyclic graphs, Klüppelberg and 
Krali (2021), who propose a scaling technique to determine the causal order of the 
variables in such graphs, Kiriliouk and Naveau (2020), who use multivariate general-
ized Pareto distributions to study probabilities of necessary and sufficient causation 
as defined in the counterfactual theory of Pearl, and Mhalla et al. (2020), who con-
struct a causal inference method for tail quantities relying on Kolmogorov complex-
ity of extreme conditional quantiles. See surveys by Naveau et al. (2020) on extreme 
event attribution and by Engelke and Ivanovs (2021) on the detection and modeling 
of sparse patterns in extremes.

Our work stems from that of Gnecco et  al. (2021), who propose an estimator of 
the causal tail coefficient and an algorithm that, under mild conditions, consistently 
retrieves a causal order on an underlying graph even in the presence of hidden con-
founders. Such an order helps to exclude some causal structures, but does not provide 
evidence for the existence of a specific structure, as in general a given order is causal 
for several possible graphs; in particular, all orders are causal for the empty graph cor-
responding to absence of causality. Although it is asymptotically invariant to hidden 
confounders, this estimator can suffer from confounding in finite samples when infer-
ence on the direct relationship between two variables is needed, when these effects are 
too strong or when the confounders have heavier tails than the two variables.

This paper addresses a central challenge in causal inference: the presence of con-
founders. In theoretical development it is often assumed that all the relevant variables 
are observed and can be included in the model, but in practice one can rarely be sure 
of this. The available variables are often subject to external influences, observed or 
unobserved, that affect the variables of interest and can make it harder or even impos-
sible to infer a correct causal relationship. Our goals are to mitigate the effect of a set 
of known confounders on an extremal causal analysis by treating them as covariates, 
and to present a permutation test for direct causality between the two observed varia-
bles. Our approach relaxes the assumption of Gnecco et al. (2021) that the confound-
ers have the same tail index as the two main variables of interest, and thus encom-
passes a much broader range of situations, such as that in our application. Such a 
model enables causal discovery and inference for a greater variety of situations.

Our work was stimulated by average daily discharge data from 68 gauging sta-
tions along the Rhine and Aare catchments in Switzerland, see Fig. 1. The data 
were collected by the Swiss Federal Office for the Environment (hydro daten. 
admin. ch), but were provided by the authors of Engelke and Ivanovs (2021), with 
some useful preliminary insights. We focus on the causal relationship between 
extreme discharges, for which precipitation is an obvious confounder, and use 
daily precipitation data from 105 meteorological stations, provided by the Swiss 
Federal Office of Meteorology and Climatology, MeteoSwiss (gate. meteo swiss. 
ch/ idaweb). Unlike in our simulation experiments, we know neither the true tail 
properties of the discharges and precipitation nor the effect of the confounder. We 
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use precipitation as a covariate in our test, allowing inference on the direct causal 
relationships between discharges for the majority of the station pairs, with at least 
95% estimated confidence, which was impossible without our proposed approach.

The paper is organised as follows. Section 2 discusses the causal tail coeffi-
cient, its interpretation and its properties. Section  3 introduces a new paramet-
ric estimator for it based on generalized Pareto modelling of threshold excesses, 
which allows a known confounder to be used as a covariate. A simulation study 
in Section 4 underlines the strengths and limitations of the two estimators. Sec-
tion 5 presents a permutation test intended to detect direct causality between two 
heavy-tailed variables, which is also assessed via simulation. Section  6 applies 
the methodology to the river discharges, and Section 7 gives a brief discussion.

2  Causal tail coefficient and its estimation

2.1  Existing work

We first give some basic notions needed to describe the setting in which causal rela-
tionships between random variables can be recovered.

Fig. 1  Topographic map of Switzerland showing the 68 gauging stations (red dots) along the Rhine, the 
Aare and their tributaries. Water flows towards station 68. Adapted from Engelke and Ivanovs (2021)
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Definition 1 A linear structural causal model (LSCM) over a set of random vari-
ables X1,… ,Xp satisfies

where V ∶= {1,… , p} is a set of nodes representing the corresponding random vari-
ables, pa(j) ⊆ V  is the set of parents of j, �jk ∈ ℝ ⧵ {0} is called the causal weight 
of node k on node j, and �1,… , �p are jointly independent noise variables. We sup-
pose that the associated graph G = (V ,E) , in which the directed edge (i, j) ∈ V × V  
belongs to E if and only if i ∈ pa(j) , is a directed acyclic graph (DAG).

In a DAG G = (V ,E) , we say that i ∈ V is an ancestor of j ∈ V in G, if there exists 
a directed path from i to j. The set of the ancestors of j in G is denoted by An(j,G) , and 
we define an(j,G) ∶= An(j,G) ⧵ {j} . In a LSCM over random variables X1,… ,Xp , 
with associated DAG G = (V ,E) , we say that Xi causes Xj , if i ∈ an(j,G) . We call Xi a 
confounder (or common cause) of Xj and Xk if there exist directed paths from i to j and 
from i to k in G that do not include k and j, respectively. We say that there is no causal 
link between Xi and Xj if An(i,G) ∩ An(j,G) = � . For any i, j ∈ V we let �i→j denote 
the sum of the products of the causal weights along the distinct directed paths from 
vertex i to vertex j; we set �j→j ∶= 1 and �i→j ∶= 0 if i ∉ An(j,G).

Let Xi and Xj be random variables from a LSCM with respective distributions Fi 
and Fj . The causal (upper) tail coefficient of a random variable Xi on another ran-
dom variable Xj is defined as (Gnecco et al. 2021)

if the limit exists. This coefficient lies between zero and one and captures the causal 
influence of Xi on Xj in their upper tails: if Xi has a linear causal effect on Xj , Γ1,2 
will be close to unity. The coefficient is asymmetric, as extremes of Xj need not lead 
to extremes of Xi , and in that case, Γji will be appreciably smaller than Γij . As Γij 
only depends on the rescaled margins of the variables, it is invariant to monotone 
increasing marginal transformations.

If both tails are of interest, the causal tail coefficient can be generalized to cap-
ture the causal effects in both directions, by considering the symmetric causal tail 
coefficient of Xi on Xj , i.e.,

if the limit exists, where � ∶ x ↦ |2x − 1| . As Fi(Xi) ∼ Unif(0, 1),

The interpretation and properties of Ψij are similar to those of Γij . The symmetric 
version captures the causal influence of Xi on Xj in both of their tails.

Xj =
∑

k∈pa(j)

�jkXk + �j, j ∈ V ,

(1)Γij ∶= lim
u→1−

�
{
Fj(Xj) ∣ Fi(Xi) > u

}
,

Ψij ∶= lim
u→1−

�
[
𝜌
{
Fj(Xj)

}
∣ 𝜌

{
Fi(Xi)

}
> u

]

Ψij = lim
u→1−

1

2
�
[
𝜌
{
Fj(Xj)

}
∣ Fi(Xi) > u

]

�����������������������������������������������
=∶Ψ+

ij

+ lim
u→0+

1

2
�
[
𝜌
{
Fj(Xj)

}
∣ Fi(Xi) < u

]

�����������������������������������������������
=∶Ψ−

ij

.
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For simplicity we focus on Γij in this paper, though all of our results and meth-
ods can be generalized to both tails by considering Ψij instead, if the assumptions 
for the upper tails are also satisfied in the lower tails of the variables considered.

Before stating the theorem that describes how the underlying causal relationships in 
a set of random variables can be recovered, we define the concept of regular variation.

Definition 2 A positive measurable function f is said to be regularly varying with 
index � ∈ ℝ , written f ∈ RV� , if for all c > 0 , limx→∞ f (cx)∕f (x) = c� . If f ∈ RV0 , 
then f is said to be slowly varying.

Definition 3 The random variable Xj is said to be regularly varying with index 
𝛼 > 0 , if, for some � ∈ RV0 , ℙ(Xj > x) ∼ �(x)x−𝛼 as x → ∞.

Independent regularly varying random variables X1,… ,Xp are said to have com-
parable upper tails if there exist c1,… , cp > 0 , 𝛼 > 0 and � ∈ RV0 such that, for 
each j ∈ {1,… , p} , ℙ(Xj > x) ∼ cj�(x)x

−𝛼 as x → ∞.
The following theorem describes how the causal relationships underlying a set 

of random variables can be recovered from their causal tail coefficients.

Theorem 1 (Gnecco et al. 2021) Let X1,… ,Xp be random variables from a LSCM, 
with associated directed acyclic graph G = (V ,E) and suppose that

(a) the coefficients �jk of the linear structural causal relationship Xj =
∑

k∈pa(j,G) �jkXk + �j 
are strictly positive for all j ∈ V and k ∈ pa(j,G) , and

(b) the real-valued noise variables �1,… , �p are independent and regularly varying 
with comparable upper tails.

Then the values of Γij and Γji allow one to distinguish between the different possible 
causal relationships between Xi and Xj summarized in Table 1.

Under the theorem’s assumptions, the blank entries in Table 1 cannot occur. Theo-
rem 1 is generalizable to the Ψij variant of the coefficient and possibly negative �ij 
values if the assumptions are also satisfied in the lower tails of the variables.

Gnecco et al. (2021) show that under the setup and assumptions of Theorem 1, the 
causal tail coefficient (1) for any distinct i, j ∈ V , and with Aij ∶= An(i,G) ∩ An(j,G) , is

(2)Γij =
1

2
+

1

2

∑
h∈Aij

��
h→i

∑
h∈An(i,G) �

�
h→i

.

Table 1  Equivalence of the 
possible values of Γij and Γji 
with the underlying causal 
relationship between Xi and Xj

Γji = 1 Γji ∈ (1∕2, 1) Γji = 1∕2

Γij = 1 Xi causes Xj

Γij ∈ (1∕2, 1) Xj causes Xi common cause only
Γij = 1∕2 no causal link
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Without loss of generality we set i = 1 and j = 2 in what follows, and thus consider 
the causal effect of X1 on X2.

If 
{
(Xi,1,Xi,2)

}n

i=1
 are independent replicates of (X1,X2) , with the random variables 

Xi and Xj from the LSCM, then the non-parametric estimator of Γ1,2 is defined to be

for some k ∈ {1,… , n − 1} , where 1(⋅) denotes the indicator function, X(h),1 denotes 
the hth order statistic and F̂j is the empirical cumulative distribution function of Xj , i.e.,

This estimator is the empirical counterpart to (1), as X(h),1 = F̂←

1
(h∕n) is a quantile 

of the corresponding empirical distribution. The value of k controls the number of 
data pairs in the upper tail of X1 that contribute to the estimator. Under the assump-
tions of Theorem 1 and a “very mild assumption that is satisfied by most univariate 
regularly varying distributions of interest”, estimator (3) is consistent as n → ∞ , for 
a choice of k such that k → ∞ and k∕n → 0 (Gnecco et al. 2021).

2.2  Practical limitations

A strength of the causal tail coefficient approach is its asymptotic robustness to hid-
den confounders. Studies of causation frequently presuppose that all the relevant 
variables have been observed, which is usually moot, but Theorem  1 holds even 
when some variables in the underlying LSCM are unobserved. This capacity to deal 
with confounders both when studying the causal relationship between two variables 
and when retrieving a causal order is not generally shared by other approaches in 
causal inference, as argued by Gnecco et al. (2021, Section 4.2), but the unobserved 
variables must satisfy a regular variation assumption that is hard to check and may 
be unrealistic. In practice, moreover, the tail behaviour of the confounders may dif-
fer from that of X1 and X2 , violating assumption (b) of Theorem 1. In our motivating 
setting, for example, the tail of the confounder, precipitation, may not behave like 
the tails of the river discharges. This problem worsens when the confounder has a 
heavier tail than the variable of interest. Furthermore, distinguishing between dif-
ferent causal situations using empirical estimates may be difficult; an increase in the 
strength of the causal effect of a common confounder of X1 and X2 will increase Γ1,2 , 
making it harder to tell whether a high value of Γ̂1,2 indicates that Γ1,2 = 1 or that 
Γ1,2 ≲ 1 , as we shall see in Section 4.

The discussion above suggests that conditioning on the values of known con-
founders might be valuable. In the presence of a vector � of potential confounders 
we therefore define

(3)Γ̂1,2 =
1

k

n∑

i=1

F̂2(Xi,2)1(Xi,1 > X(n−k),1)

F̂j(x) =
1

n

n∑

i=1

1(Xi,j ≤ x), j = 1, 2.
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If there is no direct dependence of X2 on X1 , then X2 is independent of X1 conditional 
on � , so Γ1,2∣� = 1∕2 , whereas Γ1,2 lies in [1/2, 1) but might be close to unity. Thus 
Γ1,2∣� < Γ1,2 unless there are no confounders. If X1 causes X2 , on the other hand, 
then Γ1,2∣� = Γ1,2 = 1 . In the presence of potential confounders, therefore, (4) seems 
preferable to Γ1,2 . The difficulty is that the estimation of  (4) requires the model-
ling of the dependence of both X1 and X2 on � . The first is more straightforward, 
because for large u only the upper tail of X1 need be considered, whereas the second 
ostensibly requires a model for the entire distribution of X2 , and this may be com-
plex. We compromise by fitting similar models to both variables, letting the upper 
tails alone vary with � . As we shall see below, this can greatly improve estimation 
of the causal dependence structure relative to the original approach. Moreover fit-
ting such a model should highlight simpler, potentially linear, structures in the tails, 
rather than more complex ones in the body of the data. This leads us to propose a 
peaks-over-threshold approach to estimating the conditional dependence of X1 and 
X2 on � (Section 3). Another useful tool, a reliable statistical test for direct causality, 
is discussed in Section 5.

3  Parametric tail causality and confounder dependence

3.1  Generalized Pareto causal tail coefficient

As mentioned above, we use the generalized Pareto distribution (GPD) to model the 
tails of our variables (Coles 2001, Chapter 4). For j = 1, 2 , and under mild condi-
tions on Xj , for a large enough threshold uj large enough, we have

with a scale parameter 𝜎j > 0 and a shape parameter �j ∈ ℝ:

• �j = 0 corresponds to light-tailed distributions, and then Xj lies in the maximum 
domain of attraction of the Gumbel distribution;

• 𝜉j > 0 corresponds to heavy-tailed distributions, and then Xj lies in the maximum 
domain of attraction of the Fréchet distribution; and

• 𝜉j < 0 corresponds to distributions with bounded upper tails, and then Xj lies in 
the maximum domain of attraction of the (reverse) Weibull distribution.

Any random variable satisfying the assumptions of Theorem 1 satisfies (5), as a regu-
larly varying random variable with index 𝛼 > 0 lies in the Fréchet maximum domain 
of attraction. If the threshold uj is chosen to be the q quantile of Xj for some q ∈ (0, 1) , 
then we can write

(4)Γ1,2∣� ∶= lim
u→1−

�(X1,X2,�)

{
F2(X2 ∣ �) ∣ F1(X1 ∣ �) > u

}
.

(5)ℙ(Xj − uj ≤ x ∣ Xj > uj) ≈ G(x;𝜎j, 𝜉j) = 1 −
(
1 + 𝜉jx∕𝜎j

)−1∕𝜉j
+

, x > 0,
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and using the empirical distribution F̂(x) to estimate ℙ(Xj ≤ x) and maximum likeli-
hood estimation using the excesses of uj to obtain �̂�j and 𝜉j yields a hybrid estimator 
of the distribution function Fj(x) of Xj , i.e.,

The choice of q involves a bias–variance trade-off: q should be chosen large enough 
for the tail to be well approximated by a GPD, thus reducing the bias, but small 
enough to have enough exceedances, thus reducing the variance of the estimator. 
Using hybrid estimators for F1 and F2 for an integer k ∈ {1,… , n − 1} yields the 
parametric GPD causal tail coefficient estimator for Γ1,2,

where kg ∶= |{i ∈ {1,… , n} ∶ F̂1(Xi,1;�̂�1, 𝜉1) > 1 − k∕n}| . Unlike with the non-
parametric estimator (3), the number of data pairs kg used in (6) may not equal k, as 
it depends on the fit of F̂1(Xi,1;�̂�1, 𝜉1).

The GPD model can be extended to allow dependence on covariates of interest by 
expressing its parameters in the form 𝜃(i) = h{�⊤�(i)} , where � denotes one or both of 
� and � , h is an inverse link function, � is a vector of parameters and �(i) is the vector 
of explanatory variables on which the model might depend (Davison and Smith 1990).

We wish to reparametrise the model to reduce or remove the effect on Γ1,2 of a vector 
of potential confounders � of X1 and X2 . If � is part of the LSCM then under the setup 
in Section 2 it is straightforward to show that � affects the scale parameters of the GPD 
model that applies to X1 and X2 above high thresholds, but not their shapes, so we write

where �i is the replicate of � corresponding to the observations (Xi,1,Xi,2) of (X1,X2).
This yields, for k ∈ {1,… , n − 1} , the parametric �-conditional linear generalized 

Pareto distribution (LGPD) causal tail coefficient estimator,

where kl ∶= |{i ∈ {1,… , n} ∶ F̂1{Xi,1;�̂�1(i), 𝜉1} > 1 − k∕n}| . Estimation of �0
j
 , �1

j
 

and �j is performed by maximum likelihood. In applications it is preferable to center 
and rescale each confounder in � componentwise to unit variance and zero mean, to 
avoid numerical issues. Although the confounder is here assumed to be part of the 
LSCM, this does not seem to be necessary in practice, as non-linear effects can be 
approximated linearly, especially in the tail region. We investigate the effect of vary-
ing the tail index in Section 4.2.

ℙ(Xj ≤ x) ≈
{
G(x − uj;𝜎j, 𝜉j)(1 − q) + q

}
1(x > uj) + ℙ(Xj ≤ x)1(x ≤ uj),

F̂j(x;�̂�j, 𝜉j) = F̂(x)1(x ≤ uj) +
{
G(x − uj;�̂�j, 𝜉j)(1 − q) + q

}
1(x > uj).

(6)Γ̂GPD
1,2

=
1

kg

n∑

i=1

F̂2(Xi,2;�̂�2, 𝜉2)1
{
F̂1(Xi,1;�̂�1, 𝜉1) > 1 − k∕n

}
,

(7)𝜎j(i) ∶= 𝜎0
j
+ �

1⊤
j
�i, i = 1,… , n, j = 1, 2,

(8)Γ̂GPD
1,2∣�

=
1

kl

n∑

i=1

F̂2{Xi,2;�̂�2(i), 𝜉2}1
[
F̂1{Xi,1;�̂�1(i), 𝜉1} > 1 − k∕n

]
.
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3.2  The positive linear scale issue

Linear modelling of the GPD scale parameter may not yield positive scale estimates 
�̂�j(i) > 0 for each i = 1,… , n and j = 1, 2 . The use of a nonlinear link function to 
ensure that the scale estimates were positive would not agree with the assumption of 
extremal linearity of the causal relationships, as the effect of � on the scale is also 
necessarily linear. We now describe two different solutions to this problem, which 
we compare by simulation in Section 4.

The first solution, post-fit correction, replaces �̂�j(i) in (8) by max{�̂�j(i), 𝜖} for some 
arbitrary but small positive � . The second solution, the constrained approach, applies 
the following linear constraints to the estimates when maximizing the likelihood

where mini=1,…,n �i and maxi=1,…,n �i represent the vectors of componentwise minima 
and maxima. When the data have a known distribution, box constraints can be used 
instead of (9). For example, in the case of a single confounder H and if X1 , X2 and Xh = H 
have t� distributions, then �0

j
= uj∕� and �1

j
= −�h→i∕� . Thus, if 𝜎j(i) = 𝜎0

j
+ 𝜎1

j
Hi > 0 

(j = 1, 2;i = 1,… , n) , then

where the lower and upper bounds are needed for positive and negative Hi , respectively.

4  Simulation study

Here we perform a simulation study using the Student t, Pareto and log-normal noise 
distributions. The first two lie in the Fréchet maximum domain of attraction and 
are regularly varying with index 𝛼 = 1∕𝜉 > 0 . We write Pareto(a, �) for the Pareto 
model with scale parameter a and tail index � ; recal that lower values of � indicate 
heavier tails. This distribution satisfies Definition  3 exactly, so one might expect 
Pareto data to show better behaviour than Student data. The log-normal distribution, 
LogN(�, �2) lies in the maximum domain of attraction of the Gumbel distribution 
and is not regularly varying, but finite samples from it can appear to be heavy-tailed.

We focus on the behaviour of the causal tail coefficient estimators  (3) and  (8) 
between two variables X1 and X2 in their causal configurations, as shown in Fig. 2. 
As we study the estimators of causal effects of both X1 on X2 and of X2 on X1 , we 
generated simulations only for the four causal cases, A, B, C and D. The LSCM 
causal weights �2,1 , �1h and �2h were chosen to equal 1.0, by default, for each existing 
edge in all four cases. Hence, in D, X2 is caused by X1 and the single confounder H 
with equal strength, even though H has another effect on X2 through X1.

Unless stated otherwise, each estimate is based on a random sample of n = 106 
triples (X1,X2,H) , of which k = 2⌊n0.4⌋ = 502 were chosen — Gnecco et al. (2021) 
found that the optimal fractional exponent of n for choosing k seems to lie between 

(9)𝜎0
j
+ �

1⊤
j

min
i=1,…,n

�i > 0, 𝜎0
j
+ �

1⊤
j

max
i=1,…,n

�i > 0, j = 1, 2,

(10)−
uj

𝜈maxi=1,…,n Hi

< 𝜎1
j
< −

uj

𝜈mini=1,…,n Hi

,
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0.3 and 0.4. The factor 2 doubles the number of data pairs used in the estimator, thus 
decreasing its variability, but does not introduce much bias for such large values of n. 
The GPD-based estimators are based on the top (1 − q)n observations, where we take 
q = 0.9 , though only around k of the largest observations are used to estimate the coef-
ficients Γij . Setting q = 0.95 yields similar results. One thousand independent repli-
cates were generated for each of the four causal configurations and three distributions.

We present only the highlights of the study; the code and all the results are avail-
able from github. com/ opasc he/ Extre malCa usalM odell ing.

4.1  Variables with comparable tails

Detailed results for variables with comparable tails may be found in Section S.1 of 
the Supplementary Material. In this case it is essentially always possible to infer 
the existence and direction of any causality between X1 and X2 , based on the non-
parametric or �-conditional LGPD estimators, (3) or  (8), of Γ1,2 and Γ2,1 alone. 
When the causal effects of H on X1 and X2 , i.e., �1h and �2h , are increased relative to 
the noise variance and any causal effect �2,1 of X1 on X2 , both Γ1,2 and Γ2,1 increase 
in configuration B, and Γ2,1 increases in configurations C and D. This increase is 
larger with the non-parametric estimators of Γ1,2 and Γ2,1 , which are biased upwards 
in these configurations. When the confounder has a high causal impact, inference 
based on the non-parametric estimator (3) for direct causal link between X1 and X2 
can fail, as Γ̂1,2, Γ̂2,1 ≈ 1 and hence |Γ̂1,2 − Γ̂2,1| ≈ 0 in configurations B and D.

Use of the �-conditional LGPD estimator (8) greatly reduces the effect of H on 
the coefficient estimates in configurations B and D. For Pareto and log-normal data, 
the results are indistinguishable from those without the confounder, both in terms 
of location and variability, as if the effect of H had been entirely removed. The esti-
mates based on Student data are also shifted to around the same values as in the 
corresponding confounder-free configurations, though their upper tails are margin-
ally heavier. These few greater values remain appreciably lower than without H as 
a covariate. For configurations A and C, unlike for B and D, the estimator is almost 
unaffected by the addition of H as a covariate when it is not a confounder. This is 
also a useful property, as it could allow tests of whether a specific covariate is a con-
founder of two variables, based on changes to the estimated coefficients.

Fig. 2  The six possible causal 
configurations between X1 and 
X2 with a possible confounder 
H, separated into the four cases 
studied in the simulations, and 
the two omitted by symmetry
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4.2  Confounder with a different tail

One generalisation allows the tail of the distribution of H to be heavier or lighter 
than those of X1 and X2 . A lighter tail does not negatively affect whether the non-
parametric and �-conditional LGPD estimators can infer a direct causal relation-
ship between X1 and X2 , as the tails of X1 and X2 then dominate. Figure 3 shows the 
sampling distributions of Γ̂1,2 and Γ̂2,1 for all four causal structures when the tail of 
H is heavier than those of X1 and X2 . The true coefficient values are unknown, as 
assumption (b) of Theorem 1 is not satisfied, though the coefficient for comparable 
tails, (2), is shown for comparison.

When H has a heavier tail than X1 and X2 , the non-parametric estimators Γ̂1,2 and 
Γ̂2,1 in configuration B and Γ̂2,1 in configuration D are shifted well towards unity. 
With an even heavier-tailed, Student t2 , distribution for H (not shown here), the Stu-
dent results resemble those for the Pareto and log-normal distributions. In all these 
cases it becomes impossible to infer a direct causal relationship between X1 and X2 , 
owing to the effect of the heavier confounder tail on the non-parametric estimators.

Figure  3 shows that in configurations B and D the non-parametric estimator is 
badly affected by the heavier tail of H. Figure 4, which displays the sample distribu-
tions of Γ̂GPD

1,2∣H
 and Γ̂GPD

2,1∣H
 with post-fit correction when the tail of H is heavier than 

those of X1 and X2 , shows that the use of H as a covariate solves this problem: the esti-
mates shift towards the coefficient values in the corresponding confounder-free cases, 
and consistently yield positive values of the difference of estimates Γ̂GPD

1,2∣H
− Γ̂GPD

2,1∣H
 for 

configuration D and differences centred at zero for configuration B; see also Section S.1 
of the Supplementary Material. The estimates in configurations A and C, without the 
confounder causal effect, are barely changed by using H as a covariate.

Simulation results for Γ̂GPD
1,2∣H

 and Γ̂GPD
2,1∣H

 with the constrained fit are very similar to 
those for post-fit correction for the Pareto and log-normal distributions, but not for 
the Student distribution. Figure 5 shows the sample distribution of Γ̂GPD

1,2∣H
 and Γ̂GPD

2,1∣H
 

with the constrained fit, for a heavier confounder tail. For the Student distribution, 
the confounder affects the estimator appreciably more for the constrained fit than for 
post-fit correction, compared to the non-parametric results. As the Student distribu-
tion is heavy in both tails, the lower constraint in (9) forces �̂�j(i) ( j = 1, 2 ) to have an 
appreciably smaller slope, explaining this reduced effect. In configurations with a 
confounder, the absolute values of the constrained �̂�1

j
 may be up ten times smaller 

than those for post-fit correction. With both approaches �̂�1
j
 rarely differs greatly from 

zero for configurations without a confounder.
Both types of constraint yield very similar estimates for the Student distribution; 

see github. com/ opasc he/ Extre malCa usalM odell ing.
To summarize, the simulations show that both the non-parametric estimator  (3) 

and the �-conditional LGPD estimator (8) perform well when the theoretical assump-
tions are met and the influence of a hidden confounder is limited. When this influ-
ence grows, it becomes increasingly difficult to confidently infer the causal relationship 
between the variables using the non-parametric estimator, but the �-conditional LGPD 
estimator allows us to detect this relationship by reducing the effect of the confounding.
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5  Testing for direct causality

5.1  Permutation test

In situations such as the causal analysis presented in Section 6, the distributions 
of the Γ1,2 and Γ2,1 estimators must be estimated to be used for inference. One 
way to obtain such distributions would be bootstrap resampling, but the extremal 
nature of the causal tail coefficient would require an unrealistically large sample 
size for its bootstrap distributions to be trustworthy, as these distributions tend to 
be too discrete in the extremes.

−20

0

20

0.6 0.8 1.0

Independent variablesA

−25

0

25

0.6 0.8 1.0

Common hidden confounderB

0

50

100

150

200

0.75 0.80 0.85 0.90 0.95 1.00

X1 −> X2C

−100

0

100

200

0.75 0.80 0.85 0.90 0.95 1.00

X1 −> X2 with confounderD

Non−parametric causal tail coefficients

D
en

si
ty

−20

0

20

0.6 0.8 1.0

Independent variablesA

−200

−100

0

100

200

0.6 0.8 1.0

Common hidden confounderB

0

50

100

150

200

0.8 0.9 1.0

X1 −> X2C

−200

−100

0

100

200

0.8 0.9 1.0

X1 −> X2 with confounderD

Non−parametric causal tail coefficients

D
en

si
ty

Fig. 3  Histograms of Γ̂1,2 (turquoise) and Γ̂2,1 (blue) for t4-distributed �1 and �2 , and t3-distributed H (top 
four panels) and for LogN(0, 1)-distributed �1 and �2 , and LogN(0, 1.5)-distributed H (bottom four pan-
els). Half-lines (black) indicate Γ1,2 and Γ2,1 for comparable tails. The panels for Pareto(1, 3) distributed 
�1 and �2 , and Pareto(1, 1.5) distributed H are very similar to the lower four panels
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Fig. 4  Histograms of Γ̂GPD
1,2∣H

 (turquoise) and Γ̂GPD
2,1∣H

 (blue) with post-fit correction for t4 distributed �1 and 
�2 , and t3 distributed H (top four panels), for Pareto(1, 3) distributed �1 and �2 , and Pareto(1, 1.5) distrib-
uted H (middle four panels), and LogN(0, 1) distributed �1 and �2 , and LogN(0, 1.5) distributed H (lower 
four panels). Half-lines (black) indicate Γ1,2 and Γ2,1 for comparable tails

585



O. C. Pasche et al.

1 3

We therefore propose a permutation test (Davison and Hinkley 1997, Chapter 4) 
for direct causality between two observed variables, measuring the asymmetry in 
their direct causal relationship. Suppose we have a sample 

{
(Xi,1,Xi,2)

}n

i=1
 from a 

LSCM and wish to test the null hypothesis of no direct causal relationship between 
X1 and X2 , H0 ∶ �2,1 = 0 , versus the alternative that X1 causes X2 , HA ∶ 𝛽2,1 > 0 . 
Our proposed procedure is as follows: 

1. Rescale values X̃i,j = F̃j(Xi,j) ( i = 1,… , n , j = 1, 2 ), where known confounders 
can be used in the distribution estimator F̃j , as for Γ̂GPD

1,2∣H
.

2. For r = 1,… ,R , obtain X̃(r)

i,1
 and X̃(r)

i,2
 by randomly permuting the indices j = 1, 2 for 

each pair (X̃i,1, X̃i,2) ( i = 1,… , n).
3. Compute Δ̃1,2 = Γ̃1,2 − Γ̃2,1 on the transformed original data {(X̃i,1, X̃i,2)}

n
i=1

 and 
Δ̃∗r

1,2
= Γ̃∗r

1,2
− Γ̃∗r

2,1
 on their bootstrapped values {(X̃(r)

i,1
, X̃

(r)

i,2
)}n

i=1
 (r = 1,… ,R).

4. Obtain the Monte Carlo p-value, by comparing the value of the test statistic on 
the original rescaled data with the permutation distribution, 

If there are no asymmetric confounding effects on the two variables, i.e. �1h = �2h 
in the case of a single confounder, then Δ1,2 ∶= Γ1,2 − Γ2,1 = 0 under H0 , whereas 
Δ1,2 > 0 under HA ; see Eq. (2) and Theorem 1. This does not hold generally with asym-
metric confounding. The direct causal relationship is symmetric under H0 , i.e., X2 
is as likely to take extreme values when X1 is extreme as is X1 when X2 is extreme. 
If so, then permutations such as those performed in step 2. are equally likely, so 
Δ̃1,2, Δ̃

∗1
1,2
,… , Δ̃∗R

1,2
 have a common distribution centered around zero, and pmc will be 

pmc =
1 + #r{Δ̃

∗r
1,2

≥ Δ̃1,2}

R + 1
.
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Fig. 5  Histograms of Γ̂GPD
1,2∣H

 (turquoise) and Γ̂GPD
2,1∣H

 (blue) with constrained fit for t4 distributed �1 and �2 , 
and t3 distributed H. Half-lines (black) indicate Γ1,2 and Γ2,1 for comparable tails
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uniformly distributed. Under the alternative, the direct causal relationship is “asymmet-
ric”, as X2 is more likely to be extreme when X1 is extreme than conversely; then Δ̃1,2 
is more likely to lie in the upper tail of Δ̃∗1

1,2
,… , Δ̃∗R

1,2
 . Thus the distribution of pmc will 

become increasingly skewed towards zero as the causal strength of X1 on X2 increases.
If all asymmetric confounding effects are captured in F̃j by estimating the distri-

bution conditionally, X1 and X2 have comparable tails and causal effects behave lin-
early in the extremes, then the proposed procedure should provide a reliable p-value 
for testing direct causality of X1 on X2.

5.2  Simulations

We used simulation from different data distributions and for different causal con-
figurations involving X1,X2 and a potential confounder H to assess our proposed 
test. We used values of 0, 0.01, 0.05, 0.1, 0.2 for the causal strength �2,1 of X1 on X2 , 
with confounding effects both present and absent. Symmetric ( �1H = �2H = 1 ) and 
asymmetric ( �1H = 0.8 and �2H = 1 , or �1H = 1 and �2H = 0.8 ) confounding effects 
were considered, and the noise variable were Pareto, Student t and log-normal. We 
generated m = 103 replicate samples of n = 104 independent triples (Xi,1,Xi,2,Hi) 
for each causal configuration and noise distribution. The sample size n was chosen 
closer to practical orders of magnitude, compared to our large-sample study in Sec-
tion 4. Three versions of the permutation test were performed for each sample, cor-
responding to the causal tail coefficient estimators discussed in Sections 2 and 3: the 
non-parametric  (3), and �-conditional LGPD (8) with either post-fit correction or 
constrained fit. Each used R = 103 permutations and the estimator hyper-parameters 
were set to k = 2⌊n0.4⌋ = 78 and q = 0.9.

Figure 6 shows uniform QQ-plots of pmc for the Pareto and Student distributions, 
in the case of heavier confounder tail, with symmetric effects. In the absence of con-
founding the test behaves as expected in both cases, and adding dependence on the 
independent H variable in the modelling through the parametric estimators has no 
visible effect on the distribution of pmc compared to the non-parametric approach. 
For the Pareto distribution, the test has a power of almost 0.9 for a direct causal 
strength of 0.01, and it behaves perfectly for higher causal strengths. For the Student 
distribution, the test reaches a power of 0.3 for a direct causal strength of 0.05, of 
0.7 for causal strength of 0.1 and of near 1.0 for a causal strength of 0.2.

When the confounding effects are added, the test based on the non-parametric 
estimator fails for the Pareto distribution, as most of the pmc then lie outside the 95% 
confidence bands, indicating that the distribution of pmc is highly non-uniform. This 
is corrected when the value of the confounder is taken into account using the para-
metric approaches, with power 0.9 for a direct causal strength of only one twentieth 
of the confounder’s marginal effects. In the Student case, pmc seems to be close to 
uniformity in the absence of direct causality (the difference in tail shape is much 
greater in the Pareto case), but post-fit correction increases the power from below 
0.2 to above 0.4 for a direct causal strength of one fifth of the confounder’s mar-
ginal effects. Similar conclusions to those of Section 4.2 about the constrained fit for 
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distributions with both tails heavy apply, as the constrained fit estimator is not sig-
nificantly better than the non-parametric estimator compared to post-fit correction.

Figure 7 shows the uniform QQ-plots with asymmetric confounding effects for 
the Pareto distribution with comparable tails. Unlike in the corresponding symmet-
ric case, the test here fails when using the non-parametric estimator owing to the 
asymmetry induced by the confounder, but both parametric approaches remove this 
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Fig. 6  Uniform QQ-plots of Monte Carlo p-values pmc , with Kolmogorov–Smirnov confidence bands for 
different causal strengths �2,1 (colors), the three estimators (columns) and optional symmetric confound-
ing effects, �1H = �2H = 1 (rows). Top six panels: Pareto(1, 2) distributed �1 and �2 , and Pareto(1, 1) dis-
tributed H. Bottom six panels: t4 distributed �1 and �2 , and t3 distributed H 

588



1 3

Causal modelling of heavy‑tailed variables and confounders…

unwanted effect by enough that pmc nearly has a uniform distribution, with almost 
perfect power, for a causal strength of one sixteenth and one twentieth of the mar-
ginal confounding effects.

6  Application to Swiss rivers

We now illustrate how our method can discover direct causal relationships between 
the discharge extremes of pairs of river stations. This illustrates our method on a real 
example for which we know the ‘ground truth’ of extremal causality, but unlike in 
the simulations of Section 4, we cannot control and do not know the true tail behav-
iour of the station discharges and their potential confounders.

6.1  Data sources and additional collection

We use the average daily discharges between January 1913 and December 2014 
at the 68 Swiss gauging stations shown in Fig. 1, and add daily precipitation data 
from 105 meteorological stations during the same period. Some additional infor-
mation, such as the station elevation, catchment surface area and mean elevation, 
glaciation percent and coordinates, was collected from the Federal Office for the 
Environment’s website. To reduce any seasonal effects due to unobserved confound-
ers, we only consider data during June, July and August, as the more extreme obser-
vations happen during this period when mountain rivers are less likely to be frozen. 
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Fig. 7  QQ-plot of the pmc estimates against the standard uniform distribution, with Kolmogorov–Smirnov 
confidence bands, for Pareto(1, 2) distributed �1 , �2 and H, for different causal strengths �2,1 (colors), the 
three estimators (columns) and optional asymmetric confounding effects, �1H = 0.8 , �2H = 1 (rows)
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Temporal clustering is likely to appear for average daily discharge data but can be 
captured by considering the average catchment precipitation as a covariate in the 
model for the GPD scale parameter (7).

Figure 8 shows relationships between the estimates, station altitudes and average 
discharges. Altitude does not greatly affect the estimates, but the shape parameter 
estimates broadly decrease with increased average river discharge volume.

6.2  Choice of stations and comonotonicity

For the causal analysis, we consider pairs of stations with known direct causal rela-
tionships, and pairs with no direct causal relationship. Causal pairs are ordered by 
the flow of water, with one downstream of the other. The river volumes for the 
pairs should be as similar as possible, as our exploratory analysis indicated differ-
ent tail behaviours for rivers with very different average discharges. There should 
also be enough confluences between the two stations, otherwise one would observe 
comonotonicity, i.e., almost perfect dependence, between their discharges. If there 
is comonotonicity between X1 and X2 , then F1(Xi,1) ≈ F2(Xi,2) , for all i = 1,… , n , 
and it is impossible to know which variable causes which based on the data alone 
regardless of the approach, even if one is certain both of direct causality and of its 
direction. Confluences between the two stations reduce comonotonicity and make it 
possible to detect the direction of causality.

As we shall use precipitation as the confounding covariate, the stations must 
share likely meteorological effects and must lie in regions where precipitation data 
is available. Based on these criteria, we chose seven causal station pairs: (43,62), 
(42,63), (36,63), (24,61), (44,61), (22,38), (22,35), where the first station of each 
pair lies upstream from the second.

The non-causal station pairs were selected to have similar average volume and 
similar shape parameter estimates. Pairs with stations separated by long distances 
and pairs relatively close to each other were both considered. The 13 pairs selected 
are (30,45), (36,39), (42,34), (32,33), (62,63), (57,60), (13,14), (17,22), (12,21), 
(26,28), (27,31), (23,39), (23,35).

The choice of covariate for the causal pairs was the mean daily precipitation 
among the meteorological stations in the area and the catchment of the two stations. 

Fig. 8  Relation between shape parameter estimates, scale parameter estimates (log scale), station eleva-
tion and average discharge (log scale), with standard errors ( ±SE ) shown as error bars
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The choice of covariate was less meaningful for the non-causal pairs with large 
separating distances, which have different meteorological conditions, so the average 
daily precipitation over the whole country was used. For the pair (42,34), which has 
the closest stations and local precipitation data available, the daily average in the 
local catchments was also considered. In the latter case, the pair will be highlighted 
with an asterisk to avoid confusion.

6.3  Causal analysis results

For each station pair, the permutation test for direct causality was performed using 
the non-parametric  (3) and �-conditional LGPD  (8) estimators with post-fit cor-
rection or constraints, with R = 104 permutations and estimator hyper-parameters 
k = 1.5⌊n0.4⌋ and q = 0.9 . Table 2 shows the values of pmc , the covariate shape esti-
mate and its estimated extremal linear effects for the two stations, the latter esti-
mated without constraints. The number of common observations for the pairs var-
ies from 2024 to 8464, and k lies between 31 and 55. With precipitation covariates 
added, the number of common observations ranges from 1483 to 7820, and k lies 
between 27 and 54.

With the non-parametric approach for the causal stations, the absence of direct 
causality was rejected for four of the seven station pairs at significance level 5% , and 
for two of these four at level 2.5% . Adding daily precipitation as a covariate by either 
parametric approach decreases the p-values but two pairs remain non-significant; 
both lie in the same region and contain station 22.

With the non-parametric approach, the absence of direct causality was not rejected 
for ten of the 13 non-causal station pairs. Adding precipitation as a covariate with the 
two parametric approaches ‘corrected’ the p-value for another station. For the pair 
(42, 34) using local instead of global precipitation as a covariate gave a higher p-value.

We also considered using an exponential rather than a linear inverse-link func-
tion, i.e., taking log �j(i) = �0

j
+ �1

j
Hi (i = 1,… , n; j = 1, 2) , to avoid any need for 

correction or constraints. The resulting pmc values, also shown in Table 2, lead to the 
same conclusions as with the linear approaches.

Using the usual normal approximation, every �̂�1
1 is significantly positive for the 

causal pairs and 10 of the 14 estimates are positive for the non-causal pairs, with 
the highest confidence for the pair using local precipitation. Standard errors for �̂�1

2
 

are systematically larger than those for �̂�1
1
 for the causal pairs, perhaps owing to the 

double causal effect of the covariate on the downstream station, both direct and indi-
rect through the upstream station, as we do not observe this systematically for non-
causal pairs. Consequently, the �̂�1

1
 estimates are significantly positive for only four of 

the seven causal pairs, to be contrasted with 12 of the 14 estimates for the non-causal 
pairs. In particular, only the local precipitation effect is significant for the pair (42, 34).

We compare our results to two classical causal inference approaches appropriate 
to our problem. These are a non-Gaussian method for estimating causal linear struc-
tures based on results from independent component analysis, ICA-LiNGAM (Shimizu 
et  al. 2006), and the PC algorithm, which retrieves the completed partially directed 
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acyclic graph by performing conditional independence tests on the variables. For the 
latter, we consider both the classic PC algorithm (Spirtes et  al.  2000), which uses 
Gaussian conditional independence tests, and the Rank PC algorithm  (Harris and 
Drton 2013), which uses rank-based Spearman correlation to perform the independ-
ence tests and thus is more robust to non-normal variables. The results for the ICA-
LiNGAM method are presented in Table S.1 in the Supplementary Material, which 
shows the linear causal coefficients for the discharge station pairs estimated with the 
ICA-LiNGAM algorithm using either the station pair only (two variables) or the sta-
tion pair and precipitation (three variables). Non-null values indicate significant causal 
effects. The upper-script arrows indicate the estimated direct causal direction between 
the station pair. Although in both cases of the two or three variables, ICA-LiNGAM 
retrieves all the correct causal pairs, with correct direction, all the non-causal pairs are 
indicated by non-null values as significantly causal. Both versions of the PC algorithm, 
once applied to our 21 pairs, provide existing direct causal links (without weights nor 

Table 2  Permutation p-values  pmc  for station pairs using the non-parametric approach (NP), the  �- 
conditional post-fit corrected (PFC) and constrained fit (CF) LGPD approaches, and an �-conditional expo-
nential inverse-link GPD approach (Exp). The shape estimate 𝜉H for the precipitation covariate and the  
unconstrained scale slope estimates are also shown (with standard errors of at most 0.03 for the former 
and in parentheses for the latter)

*Highlights the pair 42-34 that only uses the daily average of local precipitation, as opposed to 42-34 and 
other "non-caus." pairs that use the average precipitation over the whole country. This does NOT apply to 
"causal" pairs! (as they all use local precipitation averages)

Stations Pair type NP PFC CF Exp 𝜉H �̂�1

1
�̂�1

2

43-62 causal 0.01 0.01 0.01 0.01 0.06 0.88(0.3) 1.91(1.3)
42-63 causal 0.03 0.02 0.02 0.04 0.06 6.49(1.1) 8.60(2.2)
36-63 causal 0.03 0.02 0.02 0.03 0.06 5.03(1.1) 7.25(2.8)
24-61 causal 0.06 0.01 0.01 0.00 –0.01 3.42(1.2) –2.34(2.4)
44-61 causal 0.01 0.00 0.00 0.01 0.01 1.89(0.7) –1.21(2.0)
22-38 causal 0.58 0.40 0.40 0.33 0.07 3.43(0.8) 8.00(2.0)
22-35 causal 0.22 0.17 0.17 0.10 0.03 3.43(0.9) 11.67(3.0)
30-45 non-caus. 0.56 0.47 0.47 0.46 0.01 1.01(0.4) 0.89(0.9)
36-39 non-caus. 0.80 0.70 0.70 0.69 0.01 4.61(1.1) 4.17(1.6)
42-34 non-caus. 0.23 0.04 0.04 0.10 0.01 5.97(1.2) 0.43(0.3)
42-34* non-caus. 0.23 0.13 0.13 0.11 0.05 6.29(1.1) 0.66(0.3)
32-33 non-caus. 0.01 0.01 0.01 0.00 0.01 0.63(0.4) 1.00(0.3)
62-63 non-caus. 0.10 0.49 0.48 0.30 0.01 1.08(1.4) 7.67(2.1)
57-60 non-caus. 0.99 1.00 1.00 1.00 0.01 6.31(3.7) 5.23(1.8)
13-14 non-caus. 0.32 0.56 0.56 0.53 0.01 0.59(0.2) 1.19(0.3)
17-22 non-caus. 0.01 0.05 0.06 0.05 0.01 0.78(0.5) 2.18(0.7)
12-21 non-caus. 0.51 0.50 0.50 0.72 0.01 0.71(0.3) 1.33(0.4)
26-28 non-caus. 0.63 0.90 0.89 0.92 0.01 1.90(0.5) 1.63(0.4)
27-31 non-caus. 0.40 0.63 0.62 0.75 0.01 1.71(0.7) 2.91(1.1)
23-39 non-caus. 0.80 0.91 0.92 0.93 0.01 2.50(0.6) 4.27(1.5)
23-35 non-caus. 0.65 0.88 0.89 0.86 0.01 2.50(0.6) 6.66(1.7)
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direction) between all the pairs of stations. Apparently both ICA-LiNGAM and PC 
methods are too eager to detect causality, unlike the tail coefficients. One explana-
tion could be a set of unobserved confounders related to common global weather 
conditions triggering causal effects even between stations that are far apart. Extreme 
discharges depend more on local weather conditions, and particularly on heavy pre-
cipitation. Another explanation could be that causal effects are only linear in the tails, 
perhaps due to ground saturation by precipitation.

7  Discussion and conclusion

This paper addresses the reduction or removal of the unwanted effect of known con-
founders from the extremal causal analysis between two variables and the discovery 
of extremal causal relationships using a parametric estimator of the causal tail coef-
ficient, based on generalized Pareto modelling, and a permutation test for direct cau-
sality. Both allow the use of known confounders as covariates.

In our simulation study, the new estimator removed the confounder’s unwanted 
effect almost entirely for variables with comparable tails, and reduced its effect 
enough to allow correct causal inference on the direct causal relationship in the case 
of a confounder with a heavier tail. The permutation test was shown to provide reli-
able p-values when all asymmetric confounding effects are captured in the model.

When applied to Swiss river discharge data, our methodology allowed correct inference 
on the direct causal relationships between discharges for the majority of the chosen station 
pairs, and the parametric approach captured the confounding effect of precipitation.

In many real-life situations, statistically significant covariates need not corre-
spond to causal effects. Peters et al. (2016) have proposed a methodology for causal 
discovery, for when data from different settings or regimes are observed. Their 
method constructs invariant causal regression or classification models that should 
still make accurate predictions under interventions on the covariates or a change of 
environment. Adapting this approach to our setting would lead to a better under-
standing of causality of extremes.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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