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An artificial intelligence method 
using FDG PET to predict 
treatment outcome in diffuse large 
B cell lymphoma patients
Maria C. Ferrández 1,2*, Sandeep S. V. Golla 1,2, Jakoba J. Eertink 2,3, Bart M. de Vries 1,2, 
Pieternella J. Lugtenburg 4, Sanne E. Wiegers 1,2, Gerben J. C. Zwezerijnen 1,2, 
Simone Pieplenbosch 2,3, Lars Kurch 5, Andreas Hüttmann 6, Christine Hanoun 6, 
Ulrich Dührsen 6, Henrica C. W. de Vet 7,8, PETRA​ *, Josée M. Zijlstra 2,3 & Ronald Boellaard 1,2

Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell 
lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum 
intensity projection (MIP) images from 18F-fluorodeoxyglucose (18F-FDG) positron emission 
tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years 
and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL 
18F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. 
Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL 
patients) was used to validate the model. Association between the probabilities, metabolic tumour 
volume and Dmaxbulk was assessed. Probabilities for PET scans with synthetically removed tumors 
were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) 
of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of 
the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These 
findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL.

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid malignancy which originates in the B lym-
phocytes and accounts for 30% of the total annual diagnoses of Non-Hodgkin lymphoma in western countries1. 
A widely used first-line therapy in DLBCL combines rituximab, cyclophosphamide, doxorubicin, vincristine, 
and prednisone (R-CHOP). The number of R-CHOP cycles and/or initial usage of more intense chemotherapy 
regimens initially depends on the primary disease stage and the International Prognostic Index (IPI), which 
defines a patient’s risk profile2. IPI score includes age, World Health Organization performance status, Ann Arbor 
stage, serum lactate dehydrogenase level, and number of extranodal sites of disease. 18F-fluorodeoxyglucose 
(18F-FDG) positron emission tomography (PET)—computed tomography (CT) imaging allows highly accurate 
visualization of DLBCL tumours, which is therefore the essential modality for appropriate staging. Moreover, 
18F-FDG PET is frequently used as an early outcome prediction marker, since complete metabolic response early 
throughout (i.e. interim) therapy allows de-escalation of treatment cycles3. This interim-PET adaptive treatment 
approach is increasingly integrated into national recommendations on DLBCL. Despite better identification of 
low-risk patients at baseline and early during treatment, overall, one-third of DLBCL patients do not respond 

OPEN

1Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit 
Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. 2Cancer Center Amsterdam, Imaging and 
Biomarkers, Amsterdam, The Netherlands. 3Cancer Center Amsterdam, Department of Hematology, Amsterdam 
UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 4Department of Hematology, Erasmus MC 
Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands. 5Department of Nuclear 
Medicine, Clinic and Polyclinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany. 6Department 
of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, 
Germany. 7Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, 
Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 8Department of Methodology, 
Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands.  *A list of authors and 
their affiliations appears at the end of the paper. *email: m.c.ferrandezferrandez@amsterdamumc.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-40218-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13111  | https://doi.org/10.1038/s41598-023-40218-1

www.nature.com/scientificreports/

to first-line treatment or relapse1. Therefore, early identification of high-risk patients is important as patients 
might benefit from a more tailored treatment strategy.

Quantitative parameters extracted from 18F-FDG PET/CT scans provide insight into the tumour character-
istics. From these parameters, metabolic tumour volume (MTV) has been repeatedly reported as a promising 
prognostic factor in DLBCL4–6. The inclusion of dissemination features like the maximal distance between the 
largest lesion and any other lesion (Dmaxbulk), in combination with MTV, has further improved risk stratifica-
tion of patients5. To obtain these parameters, tumour segmentation requires user interaction for each 18F-FDG 
PET/CT scan which can be time consuming and depends on the observers interpretation. The implementation 
of artificial intelligence (AI) and convolutional neural networks (CNNs) might be able to reduce and/or replace 
these tasks. CNNs can extract high-level features from multi-dimensional input data (i.e. images). In oncology, 
CNNs are already being investigated to automate different medical image classification tasks: diagnostics7, tumour 
delineation and segmentation8–10, extraction of PET features surrogates11 and disease progression and/or treat-
ment outcome prediction12,13. Two of the main drawbacks of CNNs are the computational expense they entail 
and the high complexity of its extracted features, especially when it comes to 3D image analysis such as with 
PET/CT scans. Alternatively, maximum intensity projections (MIPs) of 18F-FDG PET/CT scans can be used as 
2D inputs for the CNN, decreasing data dimension and complexity and, thereby, decreasing the computational 
load and cost14,15.

The aim of this study was to investigate the feasibility of a CNN for the prediction of 2-year time-to-progres-
sion (TTP) in DLBCL patients using MIP images derived from 18F-FDG PET/CT baseline scans. The models 
outcome is a binary prediction given by the probability of TTP longer than 2 years P(TTP0) or TTP shorter 
than 2 years P(TTP1), where TTP1 indicates an increased risk of tumour progression for the patient. TTP0 may 
indicate absence of tumour progression or absence of recurrence.

Materials and methods
Datasets.  In this study we used two different datasets of baseline DLBCL 18F-FDG PET/CT scans: the 
HOVON-84 dataset16 was used to train the CNN model whereas the PETAL dataset17 was used as an exter-
nal validation of the models performance. All patients from both datasets provided written consent for the 
use of their data. After correction for IPI, there were no significant differences in survival between the PETAL 
and HOVON-84 study18. Both studies were approved by institutional review boards and all included patients 
provided informed consent. The use of all data within the PETRA imaging database has been approved by the 
institutional review board of the VU University Medical Center (JR/20140414).

HOVON‑84.  Three hundred seventy-three DLBCL patients who underwent baseline 18F-FDG PET/CT from 
the multicenter HOVON-84 trial (EudraCT, 2006-005,174-42) were included in this study. The main inclusion/
exclusion criteria from this trial can be found elsewhere16. From these, 317 diagnosed DLBCL patients were 
included in this analysis. Missing essential DICOM (Digital Imaging and Communication in Medicine) infor-
mation and incomplete whole-body scans were the main reason for exclusion. Furthermore, 7 patients were lost 
to follow-up within 2 years and 14 other patients died within 2 years of unrelated reasons. This led to a total 
of 296 DLBCL patients included in the study. Of which, 244 were classified as TTP0 and 52 as TTP1. In this 
paper, we used the exact same data as previously published by Eertink et al.4 to allow for direct comparison of 
our results.

PETAL.  The external validation was performed using diagnosed DLBCL patients from the multicenter PETAL 
trial (EudraCT 2006-001641-33) who underwent baseline 18F-FDG PET/CT. The eligibility for the PETAL trial 
is described elsewhere17. Initially, the trial consisted of 1098 PETAL patients. Reasons to exclude patients were as 
follows: diagnosis other than DLBCL, incomplete scans or with artefacts or missing DICOM information. This 
led to a total of 395 DLBCL patients with associated 18F-FDG PET/CT baselines scans available for this study. 
Moreover, 12 underwent a different treatment to R-CHOP, 24 patients were lost for follow-up within 2 years, and 
19 died without progression. This led to a total of 340 patients. From these, 279 were classified as TTP0 and 61 
as TTP1. The exact same data were used as in Eertink et al.4,19, so that our results can be compared with recently 
published segmentation based approaches.

Quality control of scans.  The participating sites provided the scans in DICOM format. The scans were subse-
quently anonymised. For QC we used criteria described by EANM guidelines: mean standardized uptake value 
(SUVmean) of the liver should be between 1.3 and 3.0 and the plasma glucose level lower than 11 mmol/L3. The 
QC criteria are described in detail elsewhere4.

Maximum intensity projections.  The ACC​URA​TE tool was used to obtain the so-called lesion masks 
which are the images that contain only the lymphoma tumour(s) segmentation20. The segmentation of the 
tumours was performed using a SUV threshold of 4.0. This was found to be the preferred segmentation thresh-
old, as shown by Barrington et al.21. Any physiological uptake adjacent to tumours was manually deleted. The 
conversion to MIP images was performed using a preprocessing tool developed in Interactive Data Language 
(IDL®, NV5 Geospatial Solutions, Inc). This tool generates coronal and sagittal MIPs with size 275 × 200 × 1 and 
a pixel size of 4 × 4 mm. MIPs were generated for lesion MIPs (MIPs containing only tumours) and for the com-
plete PET scans. Examples of these coronal and sagittal MIPs can be found in Fig. 1.The MIPs were normalized 
by a fixed maximum intensity value (SUV = 40). This was selected based on the maximum tumour intensity value 
found across the scans. The values above this maximum were truncated to avoid normalization to be driven by 
the SUV value of high uptake organs such as the bladder.
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Data sampling scheme.  Since the training dataset classes were highly unbalanced (244 TTP0 vs 52 TTP1), 
we applied a data sampling scheme were the TTP0s were divided into 5 equally stratified data subsets: 4 subsets 
of 49 patients (subsets A-D) and 1 subset of 48 patients (subset E). Additionally, 3 randomly selected TTP0 
patients belonging to different subsets, were added to each of these subsets in order to achieve a total of 52 
TTP0s per subset (subset E with 51 TTP0s), which matched the total number of TTP1s. Eventually, each subset 
contained a total of 104 patients with a prevalence of 50% for each class (subset E with 103 patients). The details 
of this scheme can be found in Fig. 2. Each subset (A to E) was trained using a fivefold cross validation (for each 
cross validation run, the data was split into two sets: training set (80%) and internal validation set (20%)).

Convolutional neural network.  The CNN consists of two branches, one receives the coronal MIP as 
input and the other one receives the sagittal MIP as input, which are merged as a last step to yield the final 
prediction. Coronal and sagittal MIPs are analysed independently but in parallel by an identical multi-layer 
architecture. The CNN design consists of 4 convolution layers, each one of these are followed by a max pooling 
layer. In a CNN, the convolution layer uses different filters over the image to extract low level features (e.g. edges, 
gradients) in earlier layers and high level features in deeper layers. In our CNN, the feature maps are doubled at 
each convolution layer, starting at 16 in the first layer and going up to 128 in the last layer, and their dimensions 
continuously decrease by (3,3). In each convolution layer the rectified linear unit (ReLU) activation function 
is applied. After each convolution layer, a dropout of 0.35 is applied, indicating that 35% of the network nodes 
and connections are randomly dropped from the CNN in order to prevent overfitting. Right after the dropout, 
a MaxPooling layer was implemented. The MaxPooling layer acts as the dimensionality reduction layer. There 
are 3 Maxpooling layers in our CNN, each of these with feature map sizes of (3,3), (3,3) and (2,2). After the last 
convolution and SpatialDropout layer, the CNN is connected to a GlobalAveragePooling2D (GAP2D) layer also 
known as ‘flattening’ layer. This layer ‘flattens’ the output from the convolution layers into a less complex shape 
(i.e. a 2D tensor). The coronal and sagittal outputs are then concatenated at the final dense layer or fully con-
nected layer (FCL) which generates an output for two different classes: TTP0 and TTP1. A softmax function is 
introduced to generate a probability for each of these classes, which is the final CNN output the probability of 
TTP longer than 2 years, P(TTP0), and the probability of TTP shorter than 2 years, P(TTP1) both add up to 1. 

Figure 1.   Illustration of the different MIPs implemented in this study. (a) Coronal view. (b) Sagittal view. From 
left to right: MIP, MIP without brain and lesion MIP.
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The classifier was compiled using the Adam optimizer with a learning rate (LRt) of 0.00005 and a decay rate (DR) 
of 0.000001. The CNN structure is illustrated in Fig. 3.

In this study we trained the model following 3 different training schemes. These are illustrated in Supplemen-
tal Figure 1: training based on (1) only-lesion MIPs (Lesion MIP CNN); (2) lesion MIPs and regular MIPs (MIP 
CNN); (3) lesion MIPs and MIPs after removal of the brain, brain removed MIPs (BR-MIP CNN). The network 
architecture is kept the same. This approach was followed in order to explore if the model could be trained to 
recognize pathological patterns.

Figure 2.   Data sampling scheme. Diagram representation of the five data subsets, with four subsets (A–D) 
consisting of 52 stratified TTP0 subjects and all 52 TTP1 subjects. One of the five subsets (subset E) contained 
51 stratified TTP0 and all 52 TTP1 subjects.

Figure 3.   CNN architecture. In the convolution layers, the number of feature maps is shown, followed by 
the size of these matrices. The max pooling layers are depicted with the feature detector dimensions. A spatial 
dropout and the ReLU activation function were applied to each convolution layer. The model was compiled 
using the Adam optimizer, with LRt = 0.00005 and DR = 0.000001. Coronal and sagittal outputs are concatenated 
in the dense layer or fully connected layer (FCL).
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The lesion MIP CNN uses only the lesion MIPs as input (Fig. 1). These MIPs contain only the information 
and intensity of the tumours. The lesions MIPs of both coronal and sagittal views were used to train and validate 
the model for 200 epochs.

The MIP CNN uses both lesion MIPs and MIPs for the training of the model. The lesion masks contain only 
information of the tumours but not the intensity values. The training of the MIP CNN consisted in two subse-
quent steps. Firstly, the lesions masks of both coronal and sagittal MIPs were used to train and validate the model 
for 200 epochs. In the second step, the pre-trained model on the lesion masks was re-trained and re-validated 
for another 300 epochs, this time using the regular coronal and sagittal MIP images instead. The same patients 
were used for training of the two steps.

The BR-MIP CNN follows the same training process as the MIP CNN but instead of the original MIPs, it uses 
MIPs without brain (Fig. 1). MIP brain removal was performed in order to provide greater consistency across 
the dataset since not all scans included the head. The process of removing the brains is described in detail in 
Supplemental Material 122.

In the case of the MIP CNN and the BR-MIP CNN, the classifier required only the MIP images to make 
the predictions. The idea behind these two CNNs was to generate a classifier where the prediction is free of the 
observer-dependent tumour segmentation.

All models were implemented using Python version 3.9.16, Keras version 2.10.0 and Tensorflow library 
version 2.10.0.

Plausibility of the CNN.  To better understand the CNN predictions, we further investigated the output of 
the model by exploring the association between P(TTP1) and two PET extracted features: MTV and Dmaxbulk 
since both have shown potential as prognostic markers in DLBCL4,5,19,23. The process to extract PET features has 
been explained in previous studies4. Moreover, we synthetically removed the tumours from the MIP images to 
simulate tumour-free data and evaluated the CNN predictions on this data. The tumours were masked using 
the lesion MIPs generated using the in-house built preprocessing tool. The voxel values corresponding to the 
tumours were replaced by an average of the voxel intensities excluding the background. This process is shown 
in Supplemental Figure 2.

To facilitate representation, the TTP1 probabilities obtained through the CNN were calibrated by perform-
ing a logistic regression fit with the probabilities as input and the TTP0/TTP1 labels as outcome24. The obtained 
regression fit coefficients were then applied to the CNN TTP1 probabilities generated after removing the tumours 
in order to accordingly calibrate the tumour-free MIPs CNN TTP1 probabilities.

Statistical analysis.  The receiver operating characteristic (ROC) and the area under the curve (AUC) were 
used to evaluate the CNN performance. During training, the fold with the highest cross validated (CV-)AUC 
across the 5 folds was preserved. See Supplemental Material 2 for more details25. The PETAL dataset was used 
to externally validate the CNN model. This performance evaluation process was performed for the lesion MIP 
CNN, MIP CNN and BR-MIP CNN. The cut-off value to determine sensitivity and specificity for every model 
was set to 0.5. AUCs were statistically compared using the Delong test to assess the performance of different 
CNN models to that of an IPI-based prediction model26. This IPI model defines patients with risk factor of 4 
or higher as high-risk patients (i.e. TTP1)4. The association of the TTP1 probabilities and the PET-extracted 
features (MTV and Dmaxbulk) was assessed using Pearson’s correlation coefficient.

Ethical approval.  All individual participants included in the study gave written informed consent to par-
ticipate in the study. The HOVON-84 study was approved by the institutional review board of the Erasmus MC 
(2007-055) and was performed in accordance with the ethical standards as laid down in the 1964 Declaration 
of Helsinki and its later amendments or comparable ethical standards. The PETAL study was approved by the 
Federal Institute for Drugs and Medical Devices and the ethics committees of all participating sites (University 
Hospital Essen and Deutsche Krebshilfe; ClinicalTrials.gov NCT00554164).

Results
A summary of the characteristics of the datasets can be found in Supplemental Table 1.

Internal validation.  The results for the fivefold CV for the 5 data subsets (A–E) can be found in the Sup-
plemental Tables 2–4. The average performance of the models (associated with each subset) can be found in 

Table 1.   Cross-validation (± SD) of AUC, sensitivity, and specificity for training and internal validation 
(HOVON-84 dataset) for the model associated with subset C. AUC​ area under the curve, SD standard 
deviation.

CNN

CV-AUC (SD) Sensitivity (SD) Specificity (SD)

Training Validation Training Validation Training Validation

Lesion MIP 0.81 (0.02) 0.75 (0.07) 0.69 (0.06) 0.63 (0.19) 0.76 (0.02) 0.73 (0.08)

MIP 0.79 (0.03) 0.70 (0.06) 0.76 (0.04) 0.75 (0.08) 0.64 (0.06) 0.55 (0.10)

BR-MIP 0.77 (0.09) 0.72 (0.11) 0.73 (0.17) 0.71 (0.14) 0.69 (0.11) 0.63 (0.19)
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Supplemental Figure 3a. The model trained with subset C was best performing in all cases (Supplemental Fig-
ure 4). The AUCs for the model trained on subset C for Lesion MIP CNN, MIP CNN and BR-MIP CNN are 
illustrated in Fig. 4a and the CV-AUCs are given in Table 1. These values are comparable or better to the ones 
obtained from the IPI prediction model (AUC was reported as 0.68 for the HOVON-84 dataset)4. Delong test 
showed statistical significant differences between the AUC curves for the BR-MIP CNN and the IPI prediction 
model (p value = 0.015).

External validation.  The PETAL dataset was used to externally validate the performance of the CNNs. The 
average performance of the models (associated with each subset) can be found in Supplemental Figure 3b. The 
model trained with subset C was again the best performing trained model (Supplemental Figure 5). The ROC 
plot with the corresponding AUC values for each CNN are shown in Fig. 4b. A summary of the performance of 
the 3 CNNs is given in Table 2. The BR-MIP CNN outperformed the IPI model with an AUC of 0.67, sensitiv-
ity = 0.57 and specificity = 0.68 (Delong test, p-value = 0.035). We provided some examples of the BR-MIP CNN 
predictions in Supplemental Figure 6.

Plausibility of the CNN.  The BR-MIP CNN (trained using subset C) was used to further investigate the 
feasibility of the model for TTP prediction. A moderate association for MTV with P(TTP1) and a weak asso-
ciation for Dmaxbulk with P(TTP1) was found for HOVON-84 (Fig. 5a, b) and a moderate association for both 
MTV and Dmaxbulk with P(TTP1) was found for PETAL (Fig. 5c,d). In all scenarios, higher P(TTP1) seemed 
to be related to higher MTV and Dmaxbulk values. These features have been previously reported as promising 
prognostic factors in DLBCL4–6.

After generating new probabilities for the tumour-free MIPs in the PETAL dataset, we found that these 
were generally lower when compared to the initial probabilities obtained from the images with tumours. This 
is the case, specially, for probabilities over 0.6, which, after tumour removal, were decreased to values below 
0.4. Some examples are given in Supplemental Figure 7 for different patients with decreased probabilities after 
tumour removal. The histogram of P(TTP1)s is shown in Fig. 6 for both datasets: original MIPs (with tumours) 
and tumour-free MIPs.

Discussion
In this study, we investigated the feasibility of a CNN model for the prediction of progression after 2 years in 
DLBCL patients using 18F-FDG PET/CT MIP images. Our model was internally (HOVON-84 dataset) and 
externally validated (PETAL dataset) to assess the performance of the model in a different dataset18. Proper 
external validation is one of the main limitations seen across AI studies27,28. Poor or insufficient validation causes 

Figure 4.   Receiver Operator Curves. (a) ROC and AUC for internal validation performed on HOVON-84 
dataset for the model trained on subset C (following fivefold cross validation). (b) ROC and AUC for external 
validation performed on PETAL dataset using the model trained on subset C. For reference, a model without 
any predictive performance is depicted (AUC = 0.5).

Table 2.   AUC, sensitivity and specificity for external validation data (PETAL dataset) for the model associated 
with subset C. AUC​ area under the curve.

CNN AUC​ Sensitivity Specificity

Lesion MIP 0.72 0.59 0.8

MIP 0.71 0.62 0.72

BR-MIP 0.74 0.54 0.81
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misleading results and limits translation into the clinical setting29. In our external validation, the CNN showed an 
improved predictive performance compared to the IPI model (AUC of 0.74 vs 0.67, Delong test p-value = 0.035). 
In a recent paper by Westin et al.30, it is recommended to assess progression within or after 1-year of the first line 
treatment. We decided to use 2-year TTP because at the time of this study, it remained clinically relevant31–34 
but most importantly, to be able to compare our model performance with results seen in previous studies4,19.

Features extracted from PET scans are currently being investigated to predict outcome of DLBCL patients 
with promising results4,19,23,33,35. Mikhaeel et al.23 recently published the International Metabolic Prognostic 

Figure 5.   Association between TTP1 probabilities and PET features: (a, b) HOVON84 TTP1 probabilities for 
MTV and Dmaxbulk respectively. (c, d) PETAL TTP1 probabilities for MTV and Dmaxbulk respectively.

Figure 6.   Histogram for the PETAL TTP1 probabilities. Probabilities for MIPs shown in dark blue and 
probabilities after removing the tumours (i.e. tumour-free MIPs) shown in green.
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Index which included Ann Arbor stage, age and MTV for the prediction of 3-year progression free survival 
(PFS). Moreover, Eertink et al.4 developed a model that combined PET-extracted features (including MTV and 
Dmaxbulk) with clinical parameters, yielding a CV-AUC of 0.77 for the prediction of 2-year TTP in an internal 
validation using scans from the HOVON-84 trial.

In addition, there is an increasing interest in the use of CNNs as segmentation tools. Several studies have 
shown the potential of CNNs for lesion segmentation in lymphoma patients with outstanding results when com-
paring surrogate PET features to PET features extracted from manually segmented lesions9,36–38. These models 
are easy to understand, especially in a clinical setting. The segmentation of the lesions can be easily inspected 
visually and allows direct inspection of tumour volume, dissemination and any other extracted feature, that are 
used for prediction. The potential of segmentation-based CNNs is unquestionable and for this reason we intent 
to investigate their role in DLBCL treatment outcome prediction in the future and compare these with deep 
learning based end-to-end methods.

In this study, we aimed to assess the feasibility of a deep learning model that does not rely on segmentation 
and generates predictions directly from the PET images. It is important to highlight the fact that this study is 
meant to be a first step in the exploratory analysis of using end-to-end CNNs. However, these models are dif-
ficult to use due to their complexity and lack of interpretability39. In addition to these challenges, it is not yet 
known whether end-to-end CNNs could outperform segmentation-based models and/or radiomic models and 
therefore, the use of segmentation based AI approaches in combination with handcrafted radiomics analysis 
should also be further explored.

Currently, there are only a few studies which have looked at the applications of end-to-end CNNs. Liu et al.40 
developed a multi task 3D U-Net for both tumour segmentation and prediction of PFS in DLBCL with outstand-
ing results when compared to radiomic-based models and single task CNNs. Moreover, the use of MIPs for 
treatment outcome prediction in DLBCL is currently being investigated15,40,41. Rebaud et al.41 trained a multi-task 
ranker neural network using coronal MIP images which performed as well as TMTV for DLBCL PFS predic-
tion. However, these studies did not assess the performance of the model in external datasets as indicated in the 
RELAINCE guidelines29. To our best knowledge, this is the first paper to investigate the feasibility of CNNs for 
‘deep’ treatment outcome prediction in DLBCL patients using 18F-FDG PET/CT MIP images and to investigate 
its performance in an external dataset.

We trained the CNN in 3 different ways: lesion MIP, MIP and BR-MIP CNN. The BR-MIP CNN was kept for 
the CNN plausibility analysis as it outperformed the IPI-based model and predicted 2-year TTP with the high-
est AUC in the external dataset. Moreover, compared to the lesion MIP, BR-MIP CNN does not require prior 
tumour segmentation to make predictions and, compared to the MIP CNN, BR-MIP model uses MIP images 
without brain uptake. The main reason to remove the brain is that it brings consistency across the dataset as, in 
some PET studies, the head was not (fully) included during acquisition.

In order to better understand the output of our model, we investigated whether there was any relation between 
the CNN outcome probabilities with MTV and Dmaxbulk, since both of them have prognostic capabilities for 
DLBCL. Even though a weak association was found for Dmaxbulk with HOVON-84 predictions, our results 
suggests that the CNN is capturing information that might be related to tumour volume and dissemination but 
also that other image characteristics influence the CNN prediction. Deep learning methods tend to pay more 
attention to textural features42. In this context, conventional PET parameters, although easier to understand, 
might be missing relevant information for tumour progression. Another technique we used to examine the 
plausibility of the model is ‘ablating’ the tumours from the MIPs. The decrease in P(TTP1) values suggest that 
the CNN is indeed mainly using tumour information to make the predictions. Furthermore, when looking at a 
few examples of the CNN output (Supplemental Figure 6) we found that patients with fewer tumours and lower 
dissemination are given lower probability values than patients with more tumours and higher dissemination. 
Even though further analysis is needed, these findings suggest that the model associates tumour dissemination 
with a higher risk of disease progression.

Regarding the limitations of this study, DLBCL patients can develop lesions near or within the brain which 
might complicate brain removal. Even after addressing this issue, there were around 1% of patients with trun-
cated lesions which could not be solved. It is therefore important to consider clinician supervision in these cases. 
Another limitation of this study is the cut-off value used to calculate the sensitivity and specificity, based on the 
HOVON-84 dataset, which led to certain differences in the PETAL dataset. Slight adjustment of this value might 
be required to achieve comparable results in terms of sensitivity and specificity in external datasets. Moreover, 
HOVON-84 trial did not include patients with Ann Arbor stage 1 disease and patients who had central nervous 
system involvement were also excluded from the trials. The lack of limited stage and DLBCL patients with very 
poor prognosis could be a potential bias for the model performance and its generalizability. A more extensive 
external validation is required to assess the generalizability of the model.

As mentioned earlier, end-to-end CNNs are complex and interpretation of results is difficult. In this study we 
partially addressed this by looking at associations with known PET parameters and analysing tumour intensities 
contribution. However, these issues make the translation into the clinic challenging. Nevertheless, we believe 
more research in this field is required to unravel the potential of end-to-end CNNs.

Conclusion
In this study we introduced a CNN model capable of predicting 2-year TTP in DLBCL patients using 18F-FDG 
PET/CT MIP images as input. The CNN model predicted 2-year TTP in DLBCL patients better than IPI scores. 
Moreover, it was illustrated that the model prediction is affected by the presence or absence of lesions. Even 
though further investigations are necessary, our current findings suggest that CNNs using MIPs have potential 
as outcome prediction models.
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