
American Journal of Epidemiology
© The Author(s) 2023. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 192, No. 5
https://doi.org/10.1093/aje/kwad021

Advance Access publication:
January 30, 2023

Practice of Epidemiology

Time-Varying Exposures and Miscarriage: A Comparison of Statistical Models
Through Simulation

Alexandra C. Sundermann, James C. Slaughter, Digna R. Velez Edwards, and
Katherine E. Hartmann∗
∗ Correspondence to Katherine E. Hartmann, Vanderbilt Epidemiology Center, Institute of Medicine and Public Health, Vanderbilt
University Medical Center, 2525 West End Avenue, Suite 600, Nashville, TN 37203 (e-mail: katherine.hartmann@vumc.org).

Initially submitted February 16, 2022; accepted for publication January 30, 2023.

Epidemiologists face a unique challenge in measuring risk relationships involving time-varying exposures in
early pregnancy. Each week in early pregnancy is distinct in its contribution to fetal development, and this period
is commonly characterized by shifts in maternal behavior and, consequently, exposures. In this simulation study,
we used alcohol as an example of an exposure that often changes during early pregnancy and miscarriage as an
outcome affected by early exposures. Data on alcohol consumption patterns from more than 5,000 women in the
Right From the Start cohort study (United States, 2000–2012) informed measures of the prevalence of alcohol
exposure, the distribution of gestational age at cessation of alcohol use, and the likelihood of miscarriage by week
of gestation. We then compared the bias and precision of effect estimates and statistical power from 5 different
modeling approaches in distinct simulated relationships. We demonstrate how the accuracy and precision of
effect estimates depended on alignment between model assumptions and the underlying simulated relationship.
Approaches that incorporated data about patterns of exposure were more powerful and less biased than simpler
models when risk depended on timing or duration of exposure. To uncover risk relationships in early pregnancy,
it is critical to carefully define the role of exposure timing in the underlying causal hypothesis.

alcohol consumption; bias; data analysis; maternal exposure; pregnancy; spontaneous abortion; statistical
models

Selecting a statistical model that accurately specifies the
role of exposure timing is critical for quantifying risk rela-
tionships involving time-varying exposures. However, the
temporal pattern of exposure is often overlooked or simpli-
fied in analyses, potentially obscuring true associations. The
importance of accounting for temporal pattern of exposure is
amplified when studying pregnancy, since exposures occur
in the context of a specific developmental timeline (1).

Although 1 in 5 pregnancies ends in loss (2), known mod-
ifiable risk factors for miscarriage are particularly scarce.
Limitations in the operationalization and methods used for
modeling risk relationships for time-varying behaviors in
early pregnancy probably contribute to the challenge of iden-
tifying risk factors for pregnancy loss. Many women alter
their health behaviors at the time of a positive pregnancy
test, which occurs across a range of gestational ages (3–5).
Gestational age at pregnancy recognition is nonrandom and
is linked to maternal characteristics that also inform miscar-
riage risk (6). Further, a pregnancy’s susceptibility to expo-
sures evolves throughout early gestation. Still, many studies

of miscarriage operationalize time-varying exposures as the
woman’s status after pregnancy recognition or in a way that
neglects gestational age at exposure or duration of exposure.
Use of more sophisticated methods to account for the time-
varying aspect of modifiable behaviors may uncover deter-
minants of miscarriage that were previously undetected.

In this study, we compared 5 approaches for modeling
the association between a time-varying exposure and mis-
carriage in data sets simulated to reflect different hypothet-
ical mechanisms by which exposure could confer risk. We
used alcohol consumption as an example of a behavior that
often changes during the first trimester. We tested model
performance in data sets simulated such that miscarriage
risk related to any exposure, cumulative exposure, exposure
during the preceding week, or exposure in a specific week
of gestation. Since the most appropriate modeling approach
depends on assumptions about how exposure timing dictates
risk, our primary aim was to assess how assumptions implicit
in different models affect the ability to detect and measure
an effect in distinct temporal relationships.
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METHODS

Empirical data

Right From the Start is a community-based, prospective
cohort study of women from North Carolina, Tennessee, and
Texas who were pregnant between 2000 and 2012 (7). To be
eligible, women had to be at least 18 years of age, English- or
Spanish-speaking, and not using reproductive technologies
to conceive. In our simulation study, we used observations
from 5,424 pregnancies to inform assignment of outcome
timing, prevalence of alcohol use in early and late pregnancy,
and gestational age at change in alcohol consumption.

With institutional review board approval, Right From
the Start used several methods to optimize recruitment of
women in early gestation who were representative of the
general obstetrics population (for participant characteristics,
see Web Table 1, available at https://doi.org/10.1093/aje/
kwad021). The study was advertised through direct mailing,
e-mail messages, bus advertisements, flyers in the commu-
nity, and pregnancy test coupons in pharmacies. Private and
public prenatal care providers distributed information about
the study to patients. Women were required to be less than 12
weeks pregnant to enroll, and women planning a pregnancy
could enter the study before fully enrolling at the time of
a positive pregnancy test. Informed consent was obtained
at enrollment. In this sample, median gestational age at
enrollment was 47 days (interquartile range, 38–58 days),
and 25.8% of participants (1,401/5,424) entered the study
prior to conceiving.

At a first-trimester interview, participants were asked
about current alcohol consumption and whether a change in
alcohol use had occurred during the past 4 months (see Web
Appendix 1 for questionnaire). If a participant reported a
change in alcohol use, she was asked about the timing of the
change and her alcohol consumption prior to the change. If
a participant had already experienced a miscarriage prior to
interview, she received an interview with modified language
that acknowledge the pregnancy had ended and asked about
behavior prior to the loss. Alcohol use near conception and
in early gestation was common (>50%) in both women with
intended pregnancies and women with unintended pregnan-
cies, and 91% of participants who used alcohol modified
their behavior during the first trimester (median gestational
age at change, 30 days; interquartile range, 21–36 days) (3).
Similarly, alcohol consumption was common in both women
who enrolled prior to conception and those who enrolled
after conceiving (47% and 50%, respectively). For women
who reported a change in alcohol exposure during preg-
nancy, over half reported the timing of the change as being
within 3 days of the first positive pregnancy test. Information
on pregnancy outcome was obtained through maternal self-
report and validated by medical or vital records.

Simulation parameters

We conducted a series of simulation studies to investigate
the performance of 5 regression approaches for quantifying
the effect of a time-varying exposure following one of the

5 risk relationships described below. Each scenario was
replicated 1,000 times in data sets of 1,500 individuals.

In simulation studies, we assumed that 55% of subjects
were exposed at baseline (t = 0). Among those exposed at
baseline, 6% continued exposure through 140 days (t = 140).
The distribution of timing of alcohol cessation was based
on observations from Right From the Start. We used bino-
mial distributions to assign exposure status. Exposure status
only changed from exposed to unexposed, since we did not
observe any instances of participants who initiated alcohol
use during pregnancy.

Simulation parameters were designed so the expected
proportion of pregnancies to end in miscarriage in the popu-
lation was 12% for all scenarios to reflect the outcome preva-
lence observed in Right From the Start. The distribution
of outcome timing for pregnancies ending in miscarriage
reflected the distribution of gestational age at loss observed
in Right From the Start. Subjects without pregnancies ending
in miscarriage were censored at 140 days’ gestation. Preg-
nancy outcome was assigned using conditional probabilities
to reflect each of the 5 relationships described below.

Relationships modeled

We used alcohol consumption as an example of a time-
varying exposure in pregnancy that may relate to pregnancy
loss. We designed 5 hypothetical relationships between
exposure and miscarriage risk in our simulated data sets
based on plausible mechanisms by which alcohol may
confer risk (Table 1). These relationships describe 5 “truths”
generated in exposure-outcome associations in different
sets of simulated data. While keeping 1) the proportion of
participants exposed to alcohol at pregnancy onset, 2) the
distribution of timing of change in alcohol use, 3) the timing
of miscarriage, and 4) the proportion of pregnancies to end
in miscarriage consistent in the simulated data sets, we used
different probability distributions to assign exposure status
conditioned on outcome to generate data that would reflect
the intended relationships (see Web Table 2 for simulation
parameters).

Modeling approaches

We selected the 5 approaches below as examples of sta-
tistical models an analyst might use for estimating the asso-
ciation between an exposure and an outcome when the true
nature of the underlying relationship is unknown. Selection
of models was informed by a panel of experts comprised
of 2 epidemiologists, 2 biostatisticians, and 2 translational
scientists independent from the study. The models were
chosen with consideration of different ways in which timing
of exposure may relate to pregnancy outcome (approaches
2–5), versus what is most common in the literature (approach
1). Each approach was used to estimate effects in sets of data
sets simulated for the 5 relationships described in Table 1,
with the goal of understanding how the alignment between
the truth and model assumptions affects the bias and error of
estimates.
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Table 1. The 5 Hypothetical Relationships Between Alcohol Consumption During Pregnancy and Risk of Miscarriage Simulated in Data Setsa

Simulated
Relationship

Assumption Comments

Relationship 1 Alcohol does not increase risk of miscarriage. Biologically plausible if alcohol exposure does not threaten
normal pregnancy development. Allows for assessment of
model performance under the null.

Relationship 2 Any alcohol exposure increases risk of
miscarriage independent of timing or duration
of use.

This mechanism does not seem biologically likely, but it is
the implicit assumption most frequently ref lected in the
literature when exposure is modeled as a dichotomous
variable.

Relationship 3 Exposure in a critical window increases risk
(week 5 selected as critical window in
simulated data).

Biologically plausible, since developmental windows exist
when a pregnancy is particularly vulnerable to insult (1,
30). We know that alcohol exposure can increase
oxidative stress and that oxidative stress from exposure
incurred at 5–8 weeks’ gestation (when normal pregnancy
develops in an anaerobic state) may be more detrimental
than alcohol exposure after maternal-fetal circulation has
been fully established (31).

Relationship 4 Cumulative duration of exposure to alcohol
increases risk of miscarriage in a
dose-response fashion.

Biologically plausible, since alcoholic beverages contain
congeners that may accumulate in developing placental
tissue and be toxic in pregnancy development (32).

Relationship 5 Alcohol increases risk of miscarriage during the
week following exposure.

Biologically plausible, since alcohol can increase oxidative
stress, alter placental profusion, and reduce retinoic acid
signaling in a transient manner (33).

a The simulations used data on alcohol consumption patterns from the Right From the Start cohort study, United States, 2000–2012.

Approach 1: simple Cox proportional hazards model. In
approach 1, exposure enters the model as a dichotomous
variable (exposed/not exposed) without incorporating infor-
mation about the timing of exposure, where X1 is constant
and β1 is the log hazard attributable to any exposure during
pregnancy.

λ(t) = λ0(t) exp (β1X1)

Approach 2: Cox proportional hazards model with a lag
term. The approach 2 model incorporates information
about timing of exposure cessation, where Xt is exposure
status at time t and β1 is the log hazard of exposure status at
t − x. In our simulation, we set x to 7 days to indicate that
exposure anytime in the past week could influence hazard at
time t.

λ(t) = λ0(t) exp (β1Xt (t − 7))

Approach 3: sequential logistic model. Approach 3 quan-
tifies the risk associated with exposure during each week of
gestation in separate models, where X1,n is exposure status in
week n and βn,1 is the log odds of miscarriage given alcohol
exposure in week n. Individuals who had not had an event
by the first day of week n were included in the equation for
week n.

logit(p1) = β0 + β1,1X1,1

logit(p2) = β0 + β1,2X1,2

. . .

logit(pn) = β0 + β1,nX1,n

Approach 4: Poisson regression with time interaction. In
the approach 4 model, time t in number of days’ gestation
is modeled using a fractional polynomial determined by the
simulated data and t′ and t′′ are the first and second fractional
polynomial terms, respectively. Xt denotes exposure status at
time t. Terms for the interaction between exposure and time
allow the effect of alcohol exposure to be time-dependent in
this model.

log(u) = β0+β1Xt+β2t′+β3t′′+β4Xt×t′+β5Xt×t′′+log(t)

Approach 5: cumulative Cox regression. In the approach 5
model, Xt(t) denotes the cumulative number of days in which
a participant was exposed to alcohol at time t and β1 rep-
resents the incremental risk associated with each additional
day of exposure.

λ(t) = λ0(t) exp(β1Xt(t))

In the survival model approaches (1, 2, 4, and 5), women
accrue time in the model until pregnancy loss at a particular
gestational age or 140 days (20 weeks), whichever comes
first.

Performance measures

We evaluated the performance of the 5 modeling
approaches under each simulated relationship (see Web
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Figure 1. Distribution of effect estimates from 5 modeling
approaches in 1,000 simulation trials when exposure is not related to
miscarriage risk (relationship 1). Black circles represent the 50th per-
centile, and the intervals (vertical bars) span the 5th–95th percentile
range of simulated effect estimates (hazard ratios from Cox models,
odds ratios from logistic regression models, and incidence rate ratios
from Poisson models). The solid line indicates the true effect in the
data set. The simulations used data on alcohol consumption patterns
from the Right From the Start cohort study, United States, 2000–2012.
S, simple; SL, sequential.

Appendix 2 for simulation software code). For each
iteration, we collected data on the point estimate, standard
error, and significance of effect estimates resulting from
each approach (β1 for approaches 1 and 2, β1,n for approach
3, and a linear combination of β1, β4, and β5 for approach
4). For modeling approaches that allowed effect estimates to
vary with time (approaches 2 and 4), estimates were stored
for the first day of weeks 4–8. We report the mean value
and bias of simulated log effect estimates and the root mean
square error of the effect estimate, calculated as the square
root of the average of squared standard errors. We report
coverage as the proportion of simulations in which the
95% confidence intervals for the effect estimate included
the true effect and statistical power as the proportion of
confidence intervals not including the null value. Analyses
were performed in Stata, version 14.2 (StataCorp LLC,
College Station, Texas).

RESULTS

All models performed well under the null simulation set-
ting in terms of bias, nominal confidence interval coverage
rate, and type I error (Figure 1) (see Web Table 3 for model
performance under the null).

For relationship 2, where any exposure uniformly in-
creased risk of miscarriage, the simple Cox regression
model performed best in terms of bias, coverage, and power
(Table 2) (see Web Table 4 for confidence interval coverage).
The sequential logistic model and the Poisson regression

with time as a fractional polynomial consistently under-
estimated the strength of association (Table 3). Estimates
from the sequential model became attenuated towards the
null as the number of exposed individuals to experience the
outcome decreased with increasing gestational age, whereas
for the Poisson model, estimates calculated in earlier
weeks of gestation were more biased (Figure 2A). The
Cox model with a lag term underestimated risk associated
with exposure, had low nominal coverage (88%), and was
underpowered in comparison with the simple Cox model
(17% vs. 83%).

In relationship 3, where exposure in gestational week 5
increased risk, the sequential logistic approach was the only
model to correctly identify week 5 as the critical exposure
window (Figure 2B). At week 5 in the sequential logistic
approach, bias was minimal (−0.010) and nominal confi-
dence interval coverage was satisfactory (95%), but power
was low (57%). While week 5 was the only window designed
to associate with risk, we observed effects in adjacent weeks
due to correlation in exposure status between weeks (i.e.,
the tendency for a woman exposed in week n to also be
exposed in weeks n − 1 and n + 1). The Poisson model
misspecified weeks 6 and 7 as critical weeks of exposure and
had less precise estimates throughout in comparison with the
sequential model. The simple Cox model and the Cox model
with the lag term could not capture interaction between
exposure and gestational age, and both underestimated the
magnitude of the association.

For relationship 4, where cumulative duration of exposure
was associated with risk, the cumulative Cox modeled per-
formed best. The sequential and Poisson models inappro-
priately measured a decrease in risk for exposure in later
weeks of gestation (Figure 2C; Table 3). In simulations of
relationship 5 (exposure increases risk during the following
week), the Cox model with a lag term provided the most
accurate estimate and other approaches underestimated the
true association (Figure 2D; Table 2).

Overall, the simple Cox model performed well when
the simulated relationship between exposure and outcome
was not time-dependent (relationships 1 and 2). In other
scenarios, it tended to underestimate the true association,
and it could not detect time-varying relationships if present
(relationships 3–5). The Cox model with a lag term had poor
nominal confidence interval coverage and power throughout,
but it provided the best estimate in relationship 5. Like-
wise, this approach could not detect or characterize com-
plex interactions between exposure and gestational age. The
sequential logistic approach accurately identified a critical
window of exposure (relationship 3), but the precision of its
estimates suffered across simulation scenarios in later weeks
of gestation (>7 weeks), where there were few individuals
in the population who both were exposed and went on to
experience the outcome. The Poisson regression approach
detected exposure × time interactions but did not correctly
approximate the shape of the relationship across weeks 4–
8 in most scenarios. Parameter estimates were less precise
than the sequential logistic model throughout and were
underpowered in comparison with other approaches. The
cumulative model forced a dose-response effect by week
of gestation in all scenarios, but it was the only model
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Table 2. Bias of Effect Estimates for Gestational Weeks 4–8 From 5 Modeling Approaches and Model Power Across 4 Simulated Relationships
Between Exposure and Outcomea

Bias

Scenario
True Effect Simple Lag Sequential Poisson Cumulative

Biasb

Relationship 2: any exposure
increases risk

Week 4 0.405 0.027 −0.205 −0.120 −0.384 −0.247

Week 5 0.405 0.027 −0.205 −0.161 −0.237 −0.168

Week 6 0.405 0.027 −0.205 −0.198 −0.167 −0.089

Week 7 0.405 0.027 −0.205 −0.228 −0.150 −0.010

Week 8 0.405 0.027 −0.205 −0.290 −0.177 0.069

Relationship 3: exposure in week 5
increases risk

Week 4 0 0.165 0.231 0.292 0.095 0.164

Week 5 0.405 −0.240 −0.174 −0.010 −0.190 −0.159

Week 6 0 0.165 0.231 0.293 0.262 0.329

Week 7 0 0.165 0.231 0.175 0.254 0.411

Week 8 0 0.165 0.231 0.047 0.198 0.493

Relationship 4: cumulative exposure
is associated with risk

Week 4 0.190 0.036 0.025 0.129 0.251 −0.013

Week 5 0.286 −0.060 −0.071 0.041 −0.153 −0.020

Week 6 0.381 −0.155 −0.166 −0.066 −0.156 −0.027

Week 7 0.476 −0.250 −0.261 −0.242 −0.231 −0.033

Week 8 0.572 −0.346 −0.357 −0.489 −0.365 −0.040

Relationship 5: exposure increases
risk during the following week

Week 4 0.405 −0.282 −0.034 −0.222 −0.153 −0.294

Week 5 0.405 −0.282 −0.034 −0.212 −0.046 −0.239

Week 6 0.405 −0.282 −0.034 −0.234 −0.035 −0.183

Week 7 0.405 −0.282 −0.034 −0.326 −0.073 −0.128

Week 8 0.405 −0.282 −0.034 −0.468 −0.184 −0.072

Powerc

Relationship 2: any exposure
increases risk

Week 4 0.825 0.172 0.409 0.030 0.544

Week 5 0.825 0.172 0.258 0.089 0.544

Week 6 0.825 0.172 0.174 0.151 0.544

Week 7 0.825 0.172 0.106 0.158 0.544

Week 8 0.825 0.172 0.080 0.136 0.544

Relationship 3: exposure in week 5
increases risk

Week 4 0.182 0.236 0.437 0.057 0.558

Week 5 0.182 0.236 0.572 0.131 0.558

Week 6 0.182 0.236 0.281 0.181 0.558

Week 7 0.182 0.236 0.118 0.172 0.558

Week 8 0.182 0.236 0.051 0.119 0.558

Table continues
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Table 2. Continued

Bias

Scenario
True Effect Simple Lag Sequential Poisson Cumulative

Relationship 4: cumulative exposure
is associated with risk

Week 4 0.312 0.195 0.488 0.038 0.615

Week 5 0.312 0.195 0.422 0.091 0.615

Week 6 0.312 0.195 0.305 0.151 0.615

Week 7 0.312 0.195 0.165 0.160 0.615

Week 8 0.312 0.195 0.091 0.133 0.615

Relationship 5: exposure increases
risk during the following week

Week 4 0.125 0.461 0.209 0.098 0.314

Week 5 0.125 0.461 0.174 0.252 0.314

Week 6 0.125 0.461 0.128 0.312 0.314

Week 7 0.125 0.461 0.065 0.312 0.314

Week 8 0.125 0.461 0.047 0.135 0.314

a The simulations used data on alcohol consumption patterns from the Right From the Start cohort study, United States, 2000–2012.
b Mean ln(effect estimate) − ln(effect estimate).
c Proportion of 95% confidence intervals including the null value.

to correctly approximate the scenario in which duration of
exposure was related to risk (relationship 4).

DISCUSSION

In this simulation based on observations from the Right
From the Start pregnancy cohort study, the performance of
modeling approaches for measuring the effect of a time-
varying exposure depended on the relationship defined in
the underlying simulated data set. Conventional methods
for estimating risk associated with behaviors in pregnancy
often involve a gross simplification of the temporal pat-
tern of exposure. Many studies use self-reported behav-
ior after pregnancy recognition to assign exposure status,
even though many women alter their habits after pregnancy
detection (3–5). As a result, effects of behaviors occurring
early in pregnancy frequently go unmeasured. Leveraging
longitudinal data for time-varying exposures captures more
information than using simpler methods, but model selection
depends on assumptions about how exposure, outcome, and
timing interrelate. In our study, the degree to which estimates
from a given approach approximated the true effect varied
considerably across simulated relationships, underlining the
importance of defining beliefs about the mechanism of effect
when developing an analytical plan.

We selected alcohol use as an example of a behavior that
changes in the first trimester to illustrate how simplifica-
tion of exposure operationalization may affect the evidence
about known risk. During pregnancy, exposures occur in the
context of gestational age, and behavioral exposures tend to

change near the time of pregnancy recognition. Using the
example of alcohol exposure, more than 50% of women used
alcohol near conception, regardless of pregnancy intention,
in the Right From the Start pregnancy cohort, and 6%
reported continued alcohol use through the first trimester.
In a review of 19 studies that measured the relationship
between alcohol exposure and miscarriage, 45% assessed
only alcohol use after pregnancy recognition (8–15). This
approach misses information about early-pregnancy alcohol
use and misrepresents exposure status for 90% of women
who consume alcohol during pregnancy. The decision to use
only data about behaviors measured after pregnancy detec-
tion assumes that exposures incurred very early in gestation
do not influence miscarriage risk. Risk is unlikely to operate
in this way biologically, since critical milestones in develop-
ment occur during the first weeks of gestation, when women
who use alcohol tend to be exposed, and duration of alcohol
exposure varies between women. In our review, 11 studies
assessed change in alcohol use during the first trimester (16–
26). In most of the studies, the investigators included alcohol
exposure before and after pregnancy in separate models or
operationalized alcohol use as an across-pregnancy average
amount, even though exposure is ubiquitously heavier and
more prevalent in early gestation. Each of these approaches
neglects temporal patterns of exposure.

If an investigator resolves to collect data about exposure
timing, the question remains how to incorporate that infor-
mation into analysis, especially when there may be several
valid hypotheses concerning how timing of exposure may
affect risk. We designed this simulation study to assess how
assumptions about the relationship between exposure timing
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Table 3. Mean Effect and Root Mean Square Error of Effect Estimates for Gestational Weeks 4–8 From 5 Modeling Approaches Across 4
Simulated Relationships Between Exposure and Outcomea

Mean Effectb (RMSEc)

Scenario
True

Effect
Simple Lag Sequential Poisson Cumulative

Relationship 2: any exposure
increases risk

Week 4 0.405 0.432 (0.154) 0.201 (0.222) 0.285 (0.166) 0.022 (0.598) 0.158 (0.080)

Week 5 0.405 0.432 (0.154) 0.201 (0.222) 0.244 (0.189) 0.168 (0.353) 0.237 (0.120)

Week 6 0.405 0.432 (0.154) 0.201 (0.222) 0.207 (0.243) 0.239 (0.300) 0.316 (0.160)

Week 7 0.405 0.432 (0.154) 0.201 (0.222) 0.177 (0.340) 0.255 (0.308) 0.396 (0.200)

Week 8 0.405 0.432 (0.154) 0.201 (0.222) 0.115 (0.486) 0.228 (0.325) 0.475 (0.240)

Relationship 3: exposure in week 5
increases risk

Week 4 0 0.165 (0.150) 0.231 (0.220) 0.292 (0.166) 0.095 (0.592) 0.164 (0.080)

Week 5 0.405 0.165 (0.150) 0.231 (0.220) 0.396 (0.185) 0.216 (0.350) 0.246 (0.120)

Week 6 0 0.165 (0.150) 0.231 (0.220) 0.293 (0.237) 0.262 (0.300) 0.329 (0.160)

Week 7 0 0.165 (0.150) 0.231 (0.220) 0.175 (0.340) 0.254 (0.311) 0.411 (0.200)

Week 8 0 0.165 (0.150) 0.231 (0.220) 0.047 (0.500) 0.198 (0.335) 0.493 (0.240)

Relationship 4: cumulative exposure
is associated with risk

Week 4 0.190 0.226 (0.154) 0.215 (0.225) 0.320 (0.168) −0.060 (0.650) 0.177 (0.081)

Week 5 0.286 0.226 (0.154) 0.215 (0.225) 0.327 (0.190) 0.133 (0.374) 0.266 (0.121)

Week 6 0.381 0.226 (0.154) 0.215 (0.225) 0.315 (0.239) 0.225 (0.310) 0.354 (0.162)

Week 7 0.476 0.226 (0.154) 0.215 (0.225) 0.234 (0.337) 0.245 (0.318) 0.443 (0.202)

Week 8 0.572 0.226 (0.154) 0.215 (0.225) 0.082 (0.501) 0.206 (0.340) 0.532 (0.243)

Relationship 5: exposure increases
risk during the following week

Week 4 0.405 0.123 (0.152) 0.371 (0.210) 0.183 (0.170) 0.252 (0.519) 0.111 (0.082)

Week 5 0.405 0.123 (0.152) 0.371 (0.210) 0.193 (0.196) 0.360 (0.320) 0.167 (0.123)

Week 6 0.405 0.123 (0.152) 0.371 (0.210) 0.172 (0.252) 0.380 (0.290) 0.222 (0.165)

Week 7 0.405 0.123 (0.152) 0.371 (0.210) 0.080 (0.365) 0.332 (0.303) 0.278 (0.206)

Week 8 0.405 0.123 (0.152) 0.371 (0.210) −0.062 (0.551) 0.221 (0.339) 0.333 (0.247)

Abbreviation: RMSE, root mean square error.
a The simulations used data on alcohol consumption patterns from the Right From the Start cohort study, United States, 2000–2012.
b Natural log of the mean estimated effect.
c The RMSE was calculated as the square root of the average of squared standard errors.

and outcome inherent to different modeling approaches
influence estimates of association. The prevalence of
exposure and the gestational age distributions for alcohol
cessation and miscarriage were the same in all simulated
data sets. Despite these constants, altering how risk of the
outcome was related to timing of exposure in the simulated
data sets drastically altered the performance of the modeling
approaches. For example, when exposure status was set to
increase miscarriage risk in the following week, the Cox
model with a lag term performed best (modeling approach
2). However, this approach cannot accurately specify any
scenarios in which risk varies across gestational ages (i.e.,
when exposure in a given gestational week or duration of
exposure determines risk). Similarly, when exposure in week

5 of gestation was set to drive risk, the sequential logistic
modeling approach (approach 3) accurately identified the
critical window of exposure and the effect magnitude. Yet
when risk was not tied to exposure in a specific week
of gestation, this approach systematically underestimated
risk. With longer durations of pregnancy, women had the
opportunity to have longer durations of alcohol exposure,
and approach 5 was the only model that incorporated
information about total duration of exposure. This model
performed well when cumulative exposure was set to
determine risk, but it forced an artificially linear relationship
between risk and duration of exposure when other risk
relationships were specified, which introduced bias. Thus,
model performance heavily depended on the relationship
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Figure 2. Distribution of effect estimates from 5 modeling approaches in 1,000 simulation trials when A) any exposure incurred during
pregnancy increases risk (relationship 2); B) exposure during gestational week 5 increases risk (relationship 3); C) duration of exposure has a
dose-response effect on risk (relationship 4); or D) exposure increases risk during the following week (relationship 5). Black circles represent
the 50th percentile, and the intervals (vertical bars) span the 5th–95th percentile range of simulated effect estimates (hazard ratios from Cox
models, odds ratios from logistic regression models, and incidence rate ratios from Poisson models). The solid line indicates the true effect in
the data set. The simulations used data on alcohol consumption patterns from the Right From the Start cohort study, United States, 2000–2012.
S, simple; SL, sequential.

in the simulated data set. These findings emphasize that
arriving at accurate estimates requires correctly specified
assumptions about the underlying causal relationship. We
used the lessons learned from this simulation to inform the
analysis of the relationship between alcohol and miscarriage
in the primary data (27).

Considerations

Observations from more than 5,000 pregnancies informed
assignment of exposure prevalence and cessation timing

in the simulation. In our study, exposure was common at
the onset of pregnancy (55%). The proportion exposed and
timing of exposure cessation was constant for all simulated
data sets. We did not explore how varying levels of baseline
exposure or different distributions in the timing of exposure
cessation affect model performance. These simulations did
not seek to represent behaviors that stop and start over the
course of early pregnancy or fluctuations in exposure dose.
Instead, our simulated relationships demonstrated the danger
of simplifying temporal data for exposure characterized as
nonreversible cessation with the understanding that greater

Am J Epidemiol. 2023;192(5):790–799



798 Sundermann et al.

granularity in data about exposure characteristics must be
met with increasing thoughtfulness concerning underlying
mechanisms of risk and intentionality in modeling.

To observe how different relationships between timing of
exposure and outcome affect measures of association in iso-
lation, we designed the simulation to be free of other sources
of bias that often affect epidemiologic studies. For instance,
the exposure-outcome associations were not confounded by
other variables, which is rarely true of organic relation-
ships. We also assumed that pregnancies were observed
from onset to outcome, which is logistically difficult in
reproductive studies. Challenges in determining timing of
outcome in pregnancies that end in miscarriage can addition-
ally bias studies of miscarriage and time-varying exposures
(28). Additionally, we did not attempt to simulate or quan-
tify other potential sources of bias or error that studies of
miscarriage face, including selection bias that results from
necessitating enrollment sufficiently early in pregnancy to
capture miscarriage events, recall bias or reporting bias
resulting from the stigma of exposure, or how the timing
of pregnancy detection influences the ability to determine
enrollment eligibility and pattern of exposure for modifiable
behaviors. While our objective in this paper was to highlight
the importance of forming hypotheses about the role of
exposure timing, other sources of bias or imprecision also
warrant careful attention during study design and analysis.

Conclusion

All models are wrong, but some are useful (29). This
simulation study highlights how a model’s usefulness is
fettered to its alignment with nuances of the relationship
it measures. Epidemiologists must carefully consider the
biological mechanism by which an exposure is thought
to increase risk to determine which characteristics of the
exposure to measure and model. In studies of pregnancy, a
greater emphasis should be placed on timing of exposure,
since behavioral changes occur in the context of a distinct
developmental timeline. Failure to do so could contribute
to the accumulation of falsely negative studies, leading to
inappropriate confidence in an exposure’s safety. Careful
consideration of how to best model exposure timing in stud-
ies of pregnancy health may unmask risk factors and provide
insight into which characteristics of exposure dictate risk.
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