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Viruses have developed sophisticated biochemical and genetic mechanisms to manipu-
late and exploit their hosts. Enzymes derived from viruses have been essential research
tools since the first days of molecular biology. However, most viral enzymes that have been
commercialized are derived from a small number of cultivated viruses, which is remark-
able considering the extraordinary diversity and abundance of viruses revealed by metage-
nomic analysis. Given the explosion of new enzymatic reagents derived from thermophilic
prokaryotes over the past 40 years, those obtained from thermophilic viruses should be
equally potent tools. This review discusses the still-limited state of the art regarding the
functional biology and biotechnology of thermophilic viruses with a focus on DNA poly-
merases, ligases, endolysins, and coat proteins. Functional analysis of DNA polymerases
and primase-polymerases from phages infecting Thermus, Aquificaceae, and Nitratiruptor
has revealed new clades of enzymes with strong proofreading and reverse transcriptase ca-
pabilities. Thermophilic RNA ligase 1 homologs have been characterized from Rhodother-
mus and Thermus phages, with both commercialized for circularization of single-stranded
templates. Endolysins from phages infecting Thermus, Meiothermus, and Geobacillus
have shown high stability and unusually broad lytic activity against Gram-negative and
Gram-positive bacteria, making them targets for commercialization as antimicrobials. Coat
proteins from thermophilic viruses infecting Sulfolobales and Thermus strains have been
characterized, with diverse potential applications as molecular shuttles. To gauge the scale
of untapped resources for these proteins, we also document over 20,000 genes encoded
by uncultivated viral genomes from high-temperature environments that encode DNA poly-
merase, ligase, endolysin, or coat protein domains.

Introduction
Life in high-temperature environments poses challenges that are met by adaptations that increase the sta-
bility of all macromolecules, including proteins. The same properties that make thermophilic proteins
vital to their thermophilic hosts—intrinsic stability and activity at high temperatures—also offer impor-
tant advantages over their mesophilic counterparts for industrial and molecular biology applications. As
a classic example, Taq polymerase, isolated from Thermus aquaticus, was employed in the 1980s to sub-
stitute for Escherichia coli DNA polymerase for the polymerase chain reaction (PCR) [1]; the stabil-
ity of Taq polymerase under conditions required to thermally denature DNA improved the practicality
and costs of PCR, and was critical for its rapid expansion as a cornerstone of modern molecular biology,
disease diagnostics, forensics, and genetic genealogy, among other technologies [2]. High temperatures
also decrease nucleic acid secondary structures, off-target base-pairing, and nonspecific protein–protein
and ligand–protein interactions, thereby improving the efficiency and fidelity of a wide variety of bio-
chemical interactions. Thermophily also increases compatibility with a variety of industrial and molec-
ular biology applications, including better performance in viscous solutions, which become more fluid
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at higher temperature, and increasing volatility of biofuels [3,4]. In addition, thermophilic enzymes are typically more
stable than mesophilic enzymes [5], which can increase shelf-life, enhance stability under a variety of extreme condi-
tions, and simplify purification schemes; for example, heat purification of thermostable enzymes is a simple method
for isolating recombinant thermophilic proteins from crude lysates of mesophilic expression systems [6–8].

Even though biotechnology has long relied on enzymes from thermophilic prokaryotes, those from thermophilic
viruses that infect them remain remarkably underexplored. All viral genomes encode key enzymes that are neces-
sary for the biology of the virus, including those involved in diversion of host resources for viral genome replication,
transcription and translation, evasion of host immunity, packaging, and egress from the host cell [9,10]. Genes en-
coding these functions occur at much higher frequencies in viral DNA than in host DNA and high recombination
rates within viruses promote biochemical innovations. In all, these biochemical innovations provide excellent targets
for biotechnological commercialization.

Over the last two decades, rapid progress has been made on the cultivation and molecular biology of thermophilic
and hyperthermophilic host–virus pairs, especially among novel archaeal viruses infecting the thermoacidophilic
order Sulfolobales and to a lesser extent thermophilic Thermoproteales, both belonging to the phylum Thermopro-
teota (synonym Crenarchaeota) [11,12]. These archaeal viruses belong to the International Committee on Taxon-
omy of Viruses (ICTV) families of Lipothrixviridae, Rudiviridae, Tristomaviridae, Turriviridae, Ampullaviridae,
Bicaudaviridae, Spiraviridae, Fuselloviridae, Guttaviridae, Clavaviridae, and Globuloviridae [11,13]. Parallel re-
search on thermophilic bacteriophages has largely focused on those infecting the genera Thermus, Meiothermus,
Geobacillus, and Rhodothermus [14]. Most of these bacteriophages belong to the class Caudoviricetes (recently
reclassified based on genomic information and not morphology [15]), while others represent novel families not yet
placed in higher taxonomic ranks or are largely unclassified (e.g., unclassified myo- and siphoviruses φYS40, G20c,
and RM378). These viruses replicate at high temperatures and are often stable at temperatures exceeding the opti-
mal growth temperatures of their host thermophiles or hyperthermophiles [16–18]. However, viral genomes are also
universally enriched in poorly annotated genes [19], with tens of thousands of poorly annotated small-gene fami-
lies being discovered recently [20]. Together, these genes represent a vast, underexplored resource with potential to
contribute innumerable advances in biotechnology and biomedicine.

This paper highlights a relatively small number of functionally characterized proteins from thermophilic bacterio-
phage and archaeal viruses and their potential roles in biotechnology, focusing on proteins with potential applications
in DNA synthesis, nucleotide modifications and repair, cell lysis, and nano-trafficking (Figure 1 and Table 1). We
also provide an up-to-date accounting of putative proteins of biotechnological interest in uncultivated viral genomes
(UViGs) from thermal environments and discuss key opportunities to explore these proteins for biotechnology pur-
poses (Table 2, Supplementary Material).

DNA polymerases
Thermophilic DNA polymerases have been a focal point of development and commercialization for biotechnology
companies due to their versatility, with uses ranging from molecular diagnostics to next-generation DNA sequencing.
In 1988, Taq polymerase, a family-A DNA polymerase (PolA) from T. aquaticus, was optimized for PCR due to its
thermophily, with the important caveat that it has a high error rate at one mutation per 20,000 base pairs [21,22].
Bacteriophage φ29 DNA polymerase is a mesophilic enzyme with lower error rates [23] that allows for isothermal
amplification with proofreading, high processivity, and strand-displacement capabilities, but it only functions at low
temperatures. Attempts to identify thermophilic viral DNA polymerases similar to Taq polymerase, but that can
proofread, or to identify a suitable thermophilic alternative to φ29 polymerase would improve the capabilities of exist-
ing applications. Thus far, some thermophilic viral DNA polymerases have been identified that contain high-fidelity
proofreading domains, strand-displacement, or reverse-transcriptase activity [22,24–26].

Several thermophilic viral alternatives to Taq polymerase have been expressed, purified, and characterized (Table
1), including two originating from bacteriophage infecting the genus Thermus. Many cultivated Thermus phage en-
code annotated family-A DNA polymerase (polA) genes, including vB Tt72 [27], φYS40 [28], φTMA [29], G20c
[30], P7426 [31], P2345 [31], φFA [32], TSP4 [33], and Tth15-6 [34]. Of these, the unclassified myoviruses Thermus
phage vB Tt72, phage φYS40, and phage φTMA are closely related and likely represent a novel genus in the Cau-
doviricetes [27]. They have similar polA genes (>90% amino acid identity) with low sequence similarity to other
polymerases [27]. Biochemical characterization of the vB Tt72 DNA polymerase revealed proofreading activity even
at low dNTP concentrations (0.4 mM), properties that Taq polymerase lacks completely [22]. However, the puri-
fied vB Tt72 polymerase lost function rapidly above 60◦C, and was not thermostable enough for PCR [27], limiting
potential biotechnology applications.
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Table 1 Functionally characterized proteins from thermophilic viruses and their potential biotechnology applications

Proteins

Characterized
thermophilic viral
protein Source virus (Synonyms)

Functional or structural characterization
and biotechnology applications to date

Accession
number References

DNA Polymerases vB Tt72 PolA Unclassified myovirus vB Tt72 (Thermus phage
vB Tt72)

Functional: Verified 3′-5′ exonuclease activity,
nucleotidyltransferase domain, and performed
optimally at 55◦C and pH 8.5.

ON714139.1 [27]

PolI G20c Unclassified Oshimavirus G20c (Thermus phage
G20c)

Functional: Structurally and functionally
characterized confirming 3′-5′ exonuclease activity
and DNA polymerase activity, with optimal
polymerase activity at 70◦C at pH 9.1.

KX987127.1 [30]

3173 Pol Metagenomic fragment from ‘Pyrovirus’ from
Octopus Spring, Yellowstone

Functional: Verified 3′-5′ exonuclease activity and
DNA-dependent DNA polymerase activity and RT
activity with optimum of 77◦C and half-life of ∼11
min. at 94◦C. Biotech: One-enzyme RT-PCR.

ADL99605.1 [26]

OCT 1608-14 Pol PCR amplified from metagenomic DNA from
Octopus Spring, Yellowstone; full-length variant of
3173 Pol from ‘Pyrovirus’

Functional: DNA polymerase activity confirmed
under conditions similar to those of 3173 Pol.
(Contains N-terminal DUF927 domain in addition to
3′-5′ exonuclease/DNA polymerase A domain of
3173 Pol.)

KC440900 [38]

LavaLAMP/ PyroPhage
3173 PolA

Engineered fusion of ‘Pyrovirus’ 3173 Pol and Sso7d
polymerase

Functional: Verified 3′-5′ exonuclease activity and
DNA-dependent DNA polymerase activity and RT
activity with optimum of 85◦C. Biotech: RT-PCR,
RT-LAMP, cDNA cloning for RNA Seq.
Commercialized by Lucigen Co. as
LavaLAMP/PyroPhage 3173 PolA.

AFN99414.1
[25,26,37,40]

Magma DNA
polymerase

Chimera of shuffled ‘Pyrovirus’ Pols with Taq
polymerase 5′-3′ exonuclease

Functional: Verified higher fidelity over other 3173
Pol variants/relatives (1 error per 106 nucleotides),
increased primed-template binding affinity. Biotech:
Optimized for single-enzyme RT-PCR.

US 2021/0171580
A1a

[40]

NrS-1
primase-polymerase

Unclassified siphovirus NrS-1 (Nitratiruptor phage
NrS-1

Functional: Verified polymerase, primase, and
helicase activity at 50◦C. Lacks finger and thumb
subdomains. Biotech: Primer-free DNA synthesis for
whole genome amplification

BAN05337.1 [42–44]

Ligases RM378 RNA ligase Unclassified myovirus RM378 (Rhodothermus phage
RM378)

Functional: Experimentally determined high
specificity (10x higher than T4 RNA ligase), and RNA/
ssDNA ligation optimally at 64◦C and pH 6-7.
Biotech: Patented and commercialized as a
competitor to RLM-RACE for cDNA ligation.

NC 004735.1 [61]

TS2126 RNA ligase Unclassified virus Ph2119 (Thermus phage Ph2119) Functional: Experimentally determined high
specificity (30x higher than T4 RNA ligase), and
RNA/ssDNA ligation optimally at 65◦C and pH 7.5.
Biotech: Commercialized as CircLigase™ for cDNA
ligation and circularization of linear nucleic acids by
Epicentre.

C0HM52.1 [62,63]

Endolysins Ts2631 endolysin Unclassified virus vB Tsc2631 (Thermus phage
vB Tsc2631)

Functional: In vitro antibacterial activity against
Gram-positive and Gram-negative bacteria
performing optimally at 40–105◦C and pH 7.0–11.0.

KJ561354 [69,71]

Ph2119 endolysin Unclassified virus Ph2119 (Thermus Phage Ph2119) Functional: In vitro antibacterial activity against
Gram-negative bacteria performing optimally from
50◦C to 105◦C and pH 7.5–8.0.

KF408298.1 [70]

TSPphg endolysin Unclassified Oshimavirus TSP4 (Thermus phage
TSP4)

Functional: In vivo clinical testing in mice infected
with multidrug-resistant Staphylococcus aureus
reduced infection performing optimally at 40–70◦C
and pH 7.0–10.0.

QAY18185 [73,75]

MMPphg endolysin Unclassified myovirus MMP17 (Meiothermus phage
MMP17)

Functional: In vitro antibacterial activity against
Gram-positive and Gram-negative bacteria. This
enzyme performed optimally from 35◦C to 65◦C.

QAY18044 [74,75]
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Table 1 Functionally characterized proteins from thermophilic viruses and their potential biotechnology applications (Continued)

Proteins

Characterized
thermophilic viral
protein Source virus (Synonyms)

Functional or structural characterization
and biotechnology applications to date

Accession
number References

MLTphg Chimera of TSPphg and MMPphg Functional: In vitro antibacterial activity against
Gram-positive and Gram-negative bacteria greater
than TSPphg and MMPphg alone optimally from 35
to 40◦C.

– [75]

GVE2 endolysin Unclassified siphovirus GVE2 (Geobacillus phage
GVE2)

Functional: Verified lysis against Geobacillus sp.
E263 through interaction with a phage holin and host
ABC transporter. This enzyme was active at 60◦C.

YP 001285830.1 [77]

GVE2CAT-fusions Geobacillus sp. E263 phage GVE2 catalytic domain
fused with several Clostridium perfringens phage
cell-wall binding domains

Functional: In vitro analysis revealed antibacterial
activity against Clostridium perfringens, performing
above 50% activity from 4 to 60◦C. Biotech:
Patented for commercialization

– [78]

TP-84 endolysin Saundersvirus Tp84 (Geobacillus Phage TP-84) Functional: In vitro analysis revealed biofilm
reduction against Gram-positive and Gram-negative
bacteria with full activity at 30–75◦C.

YP 009600073.1 [76]

Coat Proteins SIRV2 capsid protein Icerudivirus SIRV2 (Sulfolobus islandicus rod-shaped
virus 2 SIRV2)

Functional: Experimentally determined stability
range of -80◦C to 80◦C at pH 6. Cryo-EM structure.
Biotech related: SIRV2 stability was monitored in
different solvents, and attachment sites and ligands
identified.

NP 666560.1 [95,96]

SMV1 coat protein Unclassified Bicaudaviridae SMV1 (Sulfolobus
monocaudavirus 1 SMV1)

Functional: In vivo stability without inflammatory
response; passed through simulated gastric fluid, GI
tracts of mice, and human intestinal organoids;
vector stability and immunogenicity assessed.

YP 009008070.1 [94]

aSequence available in this US patent.
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Figure 1. Graphical summary of proteins discussed.

Biological functions and key biotechnological applications of thermophilic viral coat proteins, ligases, DNA polymerases, and en-

dolysins are highlighted.

Table 2 Summary of protein families (Pfams) counts associated with the genes of interest found in UViGs from thermal
environments in the IMG/VR v4 database [99] (January 25, 2023)a

Protein Category Pfams queried Marine thermal systems Terrestrial thermal systems Total

Hydrothermal
vents Marine volcanic

Thermal
Springs-Warm/Hot/

(42–90◦C)
Other terrestrial

geothermalb
Sum per protein

category

DNA Polymerases 00078, 00136, 00476,
03175, 08996, 10391,
14791, 14792, 20286

2,889 567 1,557 33 5,046

Ligases 01068, 01653, 03119,
03120, 04675, 04679,
09414, 09511, 11311,
13298, 14743, 18043

2,849 185 1,058 19 4,111

Endolysins 00959, 01183, 01476,
01510, 11125, 11860,

18341

2,024 381 2,102 6 4,513

Coat/Capsid
Proteins

01819, 02305, 03864,
05065, 05356, 05357,
06152, 06673, 07068,
09018, 09063, 09300,
10665, 11651, 12691,
16710, 16855, 16903,
18628, 19199, 19307,

19821, 20036

5,264 608 4,272 49 10,193

Sum per
environment

- 13,026 1,741 8,989 107 23,863

Total UViGs per
environment

- 110,140 19,154 55,911 2,547 187,752

aSee Supplementary Material for detailed information.
bSum of the following IMG/VR categories: Thermal Springs-Runoff channels, Sediment-Thermal Springs, and Volcanic Fumaroles.
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Thermus phages G20c, P7426, P2345, φFA, and TSP4 were isolated from terrestrial springs on several continents.
All belong to the genus Oshimavirus [35] and they have similar polA genes. The PolA from G20c, PolI G20c, has been
both structurally and functionally characterized [30]. It was shown to be structurally similar to Taq polymerase, con-
sisting of 3′-5′ exonuclease, helicase, and PolA domains, including a novel motif named SβαR near the exonuclease
domain believed to play a role in substrate binding [30]. Both DNA polymerase and 3′-5′ exonuclease activities were
experimentally verified, with maximal DNA polymerase activity at 70◦C, which is too low for thermocycling-based
biotechnology applications.

In addition to these cultivated viruses, a prophage-encoded DNA polymerase within the chromosome of Thermus
antranikianii was characterized and shown to have strong strand-displacement activity, similar to φ29, but many of
the amplification products were highly branched, non-specific DNA molecules. Thus, this polymerase is not suitable
as a thermophilic alternative to φ29 [24], but this prophage polymerase shows that thermophilic strand-displacement
is possible. A thermophilic polymerase with properties similar to φ29—high fidelity, high processivity, and strong
strand-displacement activity—would enable high-fidelity, long-range PCR and would be of considerable biotechnol-
ogy interest.

Aside from work on cultivated viruses, bioinformatic [36,37] and functional screens [25,26] for DNA polymerases
in viral metagenomic DNA from diverse terrestrial hot springs revealed a group of 3′-5′ proofreading exonuclease and
DNA polymerase (3′ exo/pol)-encoding genes within metagenomic fragments and UViGs assigned to the putative
genus ‘Pyrovirus’, which is predicted to infect genera within the Aquificaceae. Comparative phylogenetics showed
these unusual polAs spread by horizontal gene transfer among thermophilic viruses, their Aquificota hosts, other
diverse bacteria (although only temporarily retained), and the proto-apicoplast that became a symbiotic partner of an
ancestor to the eukaryotic phylum Apicomplexa [38]; yet, only the viral enzymes encode N-terminal helicase domains
(DUF927). The interdomain lateral gene transfers of these large and unique polAs suggest they may be associated
with dispersal of diversity-generating mechanisms between geothermal and moderate-temperature biomes [38]. An
engineered fusion between a ‘Pyrovirus’ PolA enzyme with the Sulfolobus solfataricus Sso7d DNA binding protein
[39], called PyroPhage 3173 PolA, was shown to have three novel characteristics, namely (i) reverse transcriptase
(RT) activity, (ii) DNA polymerase strand-displacement activity, and (iii) thermostability, which enabled RT-PCR
and reverse transcription loop-mediated isothermal amplification (RT-LAMP) [25,26]. PyroPhage 3173 PolA had
an error rate approximately 10 times lower than Taq polymerase, and the enzyme was commercialized by Lucigen
Corporation (acquired by LCG, Middleton, Wisconsin). Amino acid swapping with polA genes from related UViGs,
and domain swapping with the Taq polymerase 5′- 3′ exonuclease resulted in a recombinant enzyme, called Magma
DNA polymerase, that was more thermophilic, more accurate (as low as 1 error in 106 nucleotides), and performed
better in reverse-transcriptase PCR applications [40].

Viral DNA-directed primase-polymerase-like proteins are predicted to have additional roles in DNA and/or RNA
priming, as well as damage-tolerant DNA polymerase activity [41], and at least one such unusual thermophilic
enzyme from unclassified deep-sea vent phage NrS-1, infecting Nitratiruptor sp. SB155-2 [42], was shown to
be functional [43,44]. This enzyme has features found in DNA polymerases (DNA-dependent polymerization),
primases (primer-free DNA strand synthesis initiation), helicases (strand displacement), and RNA polymerases
(RNA-dependent polymerization), and could be useful in several potential applications, such as primer-free, isother-
mal whole-genome amplification.

Ligases
DNA and RNA ligases catalyze the formation of phosphodiester bonds between 5′-phosphate and 3′-hydroxyl groups,
with activity on DNA or RNA, respectively [45]. These enzymes serve critical functions in vivo, including DNA
replication and recombination, somatic generation of immune diversity, nucleic acid editing, and DNA/RNA repair
(Table 1). Biotechnology applications of ligases include decades-old technologies such as construction of recombinant
plasmids or viruses, but also emerging technologies such as library preparation for DNA and microRNA sequencing
[46], single nucleotide polymorphism diagnostics using the ligase chain reaction [47], and synthetic gene construction
via Gibson assembly, a cornerstone technology of modern synthetic biology [48].

Most biotechnology applications use ligases from bacteriophage T4 [46,47], but T4 DNA and RNA ligases are
incompatible with denaturation conditions necessary for ligation chain reaction (90◦C) [49–51], are unstable at tem-
peratures used for Gibson assembly (typically 50◦C) [48], have limited efficiency due to competition with secondary
structures [52], and have low fidelity due to off-target base pairing [52]. More than 25 ligases from archaea have been
functionally characterized, with possible biotechnology applications including Gibson assembly [53–55], ligase chain
reaction [54,56], 5′-adenylation [57,58], and RNA sequencing [59]. These enzymes have recently been reviewed [60].
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Comparatively less work has been done to characterize ligases from thermophilic viruses, and all published work
to date has focused on moderately thermophilic ATP-dependent RNA ligase 1 enzymes. In 2003, a thermophilic ho-
molog of T4 RNA ligase 1 from Rhodothermus phage RM378, an unclassified myovirus, was shown to have optimal
activity at 64◦C [19,61]. This enzyme could substitute for T4 RNA ligase 1 in RNA ligase-mediated rapid amplification
of cDNA ends (RLM-RACE) at 60◦C and was patented and commercialized for that purpose. In 2005, another ther-
mostable RNA ligase 1 from the unclassified virus Thermus phage Ph2119, TS2126 RNA ligase, was also characterized
[19,62]. The TS2126 RNA ligase had ∼30 times higher specific activity compared with T4 RNA ligase in phosphatase
protection assays with a temperature optimum of 70-75◦C and it was also more effective with ssDNA ligation. This
enzyme complexes with adenylated donors rapidly, with a slower ligation activity, which strongly favors intramolecu-
lar ligations. This property has been exploited for 5′ preadenylylation of DNA oligonucleotide adapters during cDNA
library preparation [63] and for circularization of single-stranded DNA or RNA templates for rolling-circle replica-
tion or rolling-circle transcription experiments. Kits for the latter produce virtually no linear or circular concatemers
and have been trademarked as CircLigase™ ssDNA Ligase and CircLigase™ II ssDNA Ligase by Epicentre (acquired
by Illumina, Madison, WI, U.S.A.).

Endolysins
All viruses require mechanisms to escape infected host cells following replication and assembly, and enzyme sys-
tems for this purpose are as diverse as the cell envelopes of their host prokaryotes [64–66]. Endolysins of mesophilic
bacteriophages are hard to purify, have limited stability and activity under industrial conditions, and are typically
highly specific, with many showing activity only against one host species or just a group of strains [67,68]. These
shortcomings limit their use as antimicrobials, yet some evidence suggests these limitations may be overcome by
their thermophilic counterparts. Currently, several native endolysins from thermophilic viruses and thermophilic
recombinant endolysins have been investigated for broad-range applications (Table 1).

Two endolysins from unclassified cultivated phages infecting T. scotoductus strain MAT2119, phage vB Tsc2631
and phage Ph2119, were shown to be homologs of T3 and T7. These endolysins lysed Thermus strains, Deinococ-
cus radiodurans, and also Gram-negative mesophiles such as E. coli, Salmonella enterica, Serratia marcescens,
and Pseudomonas fluorescens [69,70]. The Ph2119 endolysin retained 87% activity at 95◦C, and the endolysin from
vB Tsc2631 retained 65% activity at 95◦C. The endolysin from vB Tsc2631 has seven charged arginine amino acids
near the N-terminus, making the endolysin act like polycationic antibacterial peptides that form pores in cell mem-
branes, allowing for the catalytic center of the endolysin to interact with the peptidoglycan underneath [71]. Arginine
is also more thermostable than other positively charged amino acids because its functional group mimics guanidinium
[71,72]. The active site of the vB Tsc2631 is also believed to bind Zn2+ ions for catalytic functions and structural sta-
bility. These properties are natural advantages necessary for thermophily that overcome many of the obstacles that
limit the utility of mesophilic endolysins as antimicrobials.

The endolysin of Oshimavirus TSP4 (also known as Thermus phage TSP4), TSPphg, was expressed in E. coli,
purified, and shown to reduce Staphylococcus aureus infections in mice, offering promise for clinical treatments for
bacterial infections [73]. Further in vitro testing showed antimicrobial activity against Gram-negative S. enterica,
Klebsiella pneumoniae, E. coli, and Gram-positive Bacillus subtilis. The broad antimicrobial activity of TSPphg may
be due to strong interactions with peptidoglycan, owing to the six positively charged amino acids near the N-terminus,
similar to the endolysin of vB Tsc2631 [70,73].

Another broad range endolysin, MMPphg, was found in Meiothermus phage MMP17, an unclassified myovirus.
Purified MMPphg has optimal activity at 65-70◦C and lyses both Gram-positive and Gram-negative bacteria, in-
cluding E. coli, S. aureus, S. enterica, and Shigella dysenteriae, and eight different antibiotic-resistant strains of K.
pneumoniae [74]. The C-terminus of the lysin also contains six positively charged amino acids. The MMP17 en-
dolysin was later artificially fused with TSPphg and the recombinant enzyme, MLTphg, showed higher antimicrobial
activity in vitro than either individual endolysin [75].

The other two functionally characterized endolysins are from viruses infecting Gram-positive thermophiles. GVE2,
an unclassified siphovirus that infects Geobacillus sp. E263, encodes an endolysin believed to interact with a host
eukaryotic-type ABC transporter to lyse host cells at temperatures from 55 to 90◦C [76,77]. Because this endolysin
is the first known to interact with ABC transporter proteins, it was further investigated as a potential antimicrobial
[78]. The catalytic domain of the GVE2 endolysin was fused to peptidoglycan-binding domains from endolysins of
several different Clostridium perfringens viruses. The result was chimeric endolysins that could operate up to 70◦C,
making these enzymes a potential antibiotic treatment for animals that can be added to their heat-sterilized feed [78].
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Recently, an endolysin from Saundersvirus Tp84 (also known as Geobacillus virus TP-84) was investigated as a
potential disinfectant for surfaces at high temperatures [79]. This endolysin had activity throughout the temperature
range of 30-70◦C and inhibited biofilm formation by Pseudomonas aeruginosa, Streptococcus pyogenes, and S.
aureus. Extensive human safety testing is recommended for all endolysins to ensure they are safe for consumption
if used as additives, and further testing on the long-term stability of these endolysins would be required to evaluate
their potential use [78,79].

Phage depolymerases, including both hydrolases and lyases, have been investigated for their ability to degrade
polysaccharides or lipids depending on the host’s envelope [80–82]. Recent research has suggested that a cocktail of
endolysins and envelope depolymerases would produce a greater antimicrobial effect on biofilm-forming bacteria
such as P. aeruginosa [81,83,84]; however, investigation of thermophilic envelope depolymerases remains sparse.
Although several genes from thermophilic phages are annotated as encoding some form of envelope depolymerase
[84], evidence for expression of these enzymes are limited to the formation of halos around clear plaques in eight
thermophilic Geobacillus phages, including TP-84 [79,84]. Due to the relative lack of functional studies performed
on the efficacy of thermophilic depolymerases and endolysin cocktails, this presents a notable target for research and
development of possible biotechnological applications.

Coat proteins
Viruses consist of nucleic acids encapsulated by protein coats (capsids) that comprise numerous copies of one or more
coat protein subunits. As part of the virion, capsids protect nucleic acids [85,86], serve as vehicles for transport that
can target specific cells [85], and mediate introduction of nucleic acids into host cells during infection [85,86]. As
these particles typically have natural tropism toward certain cell types, and are often resistant to immune defense
systems, coat proteins are excellent candidates as nano-traffickers in biomedicine. These coat proteins self-assemble
[60,85,87] and inclusion of certain protein domains within them can result in highly specific targeted delivery of
compounds [85,88,89].

A variety of molecules can be encapsulated by capsids, resulting in virus or virus-like nanoparticles [19,59,85,90].
These nanoparticles can be used in biomedicine for delivery of contrast agents for medical imaging [85,88,89,91], an-
ticancer or antimicrobial drugs [85,88,89,91], antigen-presenting platforms for vaccines [85,87,91], or engineered
shuttles for genetic material in gene therapy [85,91,92]. Additionally, these capsids can also serve as nanoreac-
tors [85,89,90] and can be used in non-medical applications like transport of inorganic compounds and produc-
tion of nanomaterials [85,93]. However, limitations of capsids from mesophilic viruses infecting animals, plants, or
mesophilic microorganisms include their limited chemical and physical stability [85,94], challenges purifying nucleic
acid-free capsids from infected host cells or expression hosts [90], and residual immunogenicity [85,89,94], which
may result in clearance of nanoparticles from the system before achieving the desired effect [85,94]. Several of these
shortcomings can be alleviated by capsids derived from thermophilic viruses (Table 1).

The first thermophilic viral capsids tested for chemical and physical stability in different solvents, and for availabil-
ity of ligand attachment sites, were those from Icerudivirus SIRV2 (also known as Sulfolobus islandicus rod-shaped
virus 2) [95]. To assess the stability of SIRV2 particles, the structural integrity and infectivity of virions was assessed
following incubations in DMSO and ethanol. SIRV2 particles remained intact and infective for 6 days in 20% ethanol,
20% DMSO, or 50% DMSO, respectively, and remained intact in up to 50% ethanol [95]. With its high stability in
DMSO, a solvent commonly used for bioconjugation applications, the availability of ligand attachment sites was eval-
uated through biotinylation of the SIRV2 particles using different compounds to identify reactive carboxylates, carbo-
hydrates, and amines [95]. With amine reactivity found only in the minor coat protein subunits, located at the ends of
the rod-shaped virions, and reactive carboxylates and carbohydrates found in both minor and major coat protein sub-
units, a broad variety of functional groups can be conjugated to these viral nanoparticles, including spatially specific
selective bioconjugation to only the minor coat protein subunits [95,96].

More recently, an unclassified virus in the Bicaudaviridae, Sulfolobus monocaudavirus 1 (SMV1), was tested ex-
tensively for potential biotechnology applications, especially as a potential nano-trafficker for biomedical use. SMV1
particles were treated with ethanol, DMSO, simulated gastric fluid, and simulated intestinal fluid solutions to as-
sess stability through S. islandicus plaque assays, and particles remained infective for up to 6 days [94]. Subsequently,
SMV1 particles were passed through the gastrointestinal tracts of mice or incubated with human intestinal organoids,
where limited immune responses were elicited, and no SMV1 particles were detected in off-target organs or tissues
[94]. Overall, SMV1 particles fared better than Inovirus M13KE, an E. coli phage used for comparison, in both the
mice and organoids [94], showing great promise as both molecular delivery systems and antigen-presentation plat-
forms.
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Expansion of bioprospecting through viral metagenomes
Most research to date has focused on only viruses infecting cultivated thermophilic archaea and bacteria [14,19],
thus limiting the overall breadth of our understanding of the thermophilic virome. Given the limited diversity of cul-
tivated thermophilic prokaryotes [97,98] and their viruses [14], and the extremely limited number of biochemically
characterized proteins from thermophilic viruses, we propose that UViGs represent a vast resource for the biotech-
nology sector. To begin to evaluate the potential resource, we searched for pfams that are diagnostic of the four pro-
tein groups discussed here—DNA polymerases, ligases, endolysins, and coat proteins—in the Integrated Microbial
Genomes/Virus (IMG/VR) v4 database, which contains over 5.5 million high-confidence viral genome contigs from a
wide range of biomes [99], focusing on marine and terrestrial geothermal systems (Table 2; Supplementary Material).
This search revealed >20,000 potential matches to these four protein groups from >185,000 UViGs, with the largest
amount coming from marine hydrothermal systems, followed by high-temperature terrestrial geothermal systems,
and the largest protein category being coat proteins, followed by polymerases, endolysins, and ligases. For example,
we identified over 5,000 putative polymerases; the vast diversity of polymerase architectures driven by adaptation to
thermal environments [88] are ripe for biotechnology exploration.

Despite the vast resources available in UViGs, there are currently some limitations. First, given the genetic and
biochemical diversity encoded by UViGs, a vast diversity of biotechnologically useful functions resides in poorly
annotated genes that are difficult to bioprospect based on sequence similarity. This hidden resource could be sys-
tematically explored using artificial intelligence platforms, including those examining protein folds, which are more
highly conserved than primary sequence information [100]. Another limitation is the systematic focus on dsDNA
viruses due to predominant library preparation methods used for viral metagenomics, which unfortunately exclude
six of the seven groups of the Baltimore classification system [101,102]. This heavy focus on dsDNA viruses ignores
many novel architectures of undiscovered viruses and certainly biases our understanding of the thermophilic vi-
rome, although known recombination between natural virus populations with different types of genomes may relieve
this limitation to a degree [103,104]. Groups such as the RNA Virus Discovery Consortium have deposited many
more RNA viral metagenomes into IMG/VR [99] through RNA extraction and reverse transcription prior to or dur-
ing library preparation, with advancements to date in marine [105,106], sediment [107], and terrestrial ecosystems
[108,109], including thermal springs and others [107,110]. Bioinformatic pipelines like VirSorter are also increasing
accuracy and providing support for RNA viruses [111]. A separate problem is the identification and classification of
metagenomic contigs as UViGs in the first place, which can lead to both false negatives and false positives, although
community standards have been developed to improve communication of UViG quality, with UViGs categorized
as high quality (>90% completeness), medium quality (50–90% completeness), low quality (<50% completeness),
and unsure quality (>120% or no completeness estimate) [99,112]. Despite these challenges, we contend that UViGs
provide an immense and poorly explored resource for bioprospecting the global thermophile virome.

In recognition of this resource, projects focused on exploring the sequence coverage of the virosphere are seeing
increasing support. This is evident in community-driven sequencing efforts supported by the Joint Genome Institute
(e.g., OSTI 1488193, Award 503441), implementation of analysis tools for viruses in collaborative cyberinfrastructure,
like CyVerse [113], and the RNA Virus Discovery Consortium [110]. Additionally, in 2016 to 2020, the European
Union funded the Virus-X project—Viral Metagenomics for Innovation Value—at €8 million. These projects have
expanded the sequence coverage of the global virosphere, expressed and characterized novel proteins [114–116],
analyzing crystal structures of expressed genes to aid in functional identification [117], and improved methods to
identify and interpret UViGs [111,113], including algorithms to identify host-virus pairs [118] and to improve anno-
tation of uncharacterized viral genes through protein clustering [119,120]. These advancements show not only that
thermophilic viral enzymes are an expanding topic of importance for biotechnology, but also that infrastructure and
data mining tools are improving to better support the ever-expanding UViG dataset.

Summary
• Viral proteins, particularly polymerases, ligases, endolysins and coat proteins, provide a bountiful but

underutilized toolbox for the biotechnology industry to explore.

• Applications involving thermophilic viral proteins provide several benefits that overcome some of the
shortcomings of their mesophilic counterparts.
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• Bioprospecting of genomes from uncultivated viruses provides a vast and underexplored resource
that overcomes the primary impediment of cultivability.
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