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Transgender and gender diverse (TGD) are umbrella terms that describe people whose gender iden-
tities differ from their sex assigned at birth or who are not encompassed by the gender-binary paradigm.
It is estimated that up to 2% of high school students identify as TGD, a figure that has increased over
the past decade.1 TGD individuals may experience gender dysphoria, which refers to the distress
experienced by the incongruence between one’s gender identity and physical characteristics.2

Testosterone-based gender-affirming hormone therapy (GAHT) may be prescribed for eligible individ-
uals to ameliorate gender dysphoria by producing physiological features that are more congruent with
one’s gender identity.3 GAHT results in improved quality of life and a significant reduction in the levels of
gender dysphoria.4,5

The Endocrine Society and World Professional Association for Transgender Health recommend
puberty blockade, typically with a gonadotropin-releasing hormone analog (GnRHa), for eligible patients
who identify as TGD experiencing gender dysphoria starting at Tanner stage 2 pubertal development.6,7

GnRHa treatment alone reversibly pauses the development of secondary sex characteristics and can
provide additional time for gender identity exploration.8,9

Prior studies have shown that testosterone therapy is associated with erythrocytosis and dyslipide-
mia.10,11 Some studies suggest that testosterone may increase the risk of myocardial infarction in male
patients who identify as TGD (ie, individuals with female sex assigned at birth but a male gender identity)
when compared with cisgender men and women, although the overall results are conflicting and
inconclusive.12-14

In individuals who identify as TGD, an increase in hematocrit levels (ie, red blood cell [RBC] production)
and blood viscosity that can accompany testosterone therapy may underlie the cardiovascular and
cerebral risk potentially associated with testosterone.12-14 Little is known about the metabolic effects of
GnRHa alone or with subsequent testosterone-based GAHT on RBCs in this population, which is the
focus of this study.

Fifteen adolescent participants who identified as TGD, assigned female at birth aged between 13 and
16 years were enrolled in a longitudinal, observational study, evaluating the relationship between
testosterone and the changes in metabolic profile (supplemental Materials and Methods extended).
Study visits occurred before and 1 and 12 months after exogenous testosterone therapy
(NCT03557268). Seven participants received GnRHa treatment. Youth were recruited from June 2018
to August 2019 from the Trust, Understand, Respect, Emerge Center for Gender Diversity at Children’s
Hospital Colorado. The study was conducted according to the Declaration of Helsinki. All participants
were clinically prescribed subcutaneous testosterone cypionate (dose escalation over 12 months).
Pubertal staging was performed by a pediatric endocrinologist using the standards of Tanner and
Marshall.15 Metabolome analyses were performed as previously described.16
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Figure 1. Metabolome analysis reveals time-dependent metabolic effect of testosterone over a 12-month period. (A) RBC samples were taken from adolescent

patients (N = 15) at baseline and 1 and 12 months after starting testosterone. (B) A line plot of the data normalized to 0 months revealed various descriptive variables that
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Figure 1 (continued) changed over time. (C) A principal component analysis revealed distinct clustering patterns between the baseline, 1-month, and 12-month timepoints. (D) A

variable importance in projection (VIP) plot suggested that acylcarnitines as well as metabolites from glycolysis and the trichloroacetic acid (TCA) were most influential in the PLS-

DA clustering pattern. (E) Pathway analysis revealed the pathways most affected by treatment duration. (F) A Spearman rank order correlation of the normalized data determined

the top significant correlates to testosterone duration (P ≤ .05). (G) A line plot of diphosphoglycerate (DPG) shows that it increases over treatment duration (mean± standard error

of the mean). Testosterone alters the global metabolome. (H) Hierarchal clustering analysis of the top 50 most significant metabolites by analysis of variance revealed time-

dependent changes in acylcarnitines, glycolysis, and purine metabolism. (I) Separate clustering by C-means uncovered 3 groups of metabolites with distinct time-dependent trends

that support the analysis of variance findings. (J) An elemental inductively coupled plasma-mass-spectrometry analysis was performed on RBC samples (N = 15) to determine

cation levels. (K) Line plots revealed ion-specific trends over testosterone duration (mean ± standard error of the mean). LDL, low-density lipoprotein; PLS-DA, partial least squares

discriminant analysis.
In this longitudinal study, samples were collected at baseline and 1
and 12 months after testosterone therapy from 15 adolescents
assigned female at birth (average age 15.0 ± 1.0 years at baseline;
Figure 1A). Expectedly, we observed increases in free testosterone
with testosterone treatment, as well as a minor, albeit significant
increase in hematocrit levels over time and a nonsignificant
decrease in total cholesterol levels (Figure 1B). Pathway analysis of
the 25 RBC metabolites most significantly affected by testosterone
(as determined by principal component analysis; Figure 1C-D;
supplemental Table 1) showed a clear effect on energy, carboxylic
and amino acid metabolism (Figure 1E). Among the metabolites
22 AUGUST 2023 • VOLUME 7, NUMBER 16
whose levels most significantly correlated with duration of treat-
ment (Spearman correlation; Figure 1F), we noted 2,3-DPG
(Figure 1G) and several acylcarnitines.

Further multivariate analyses (hierarchal clustering analysis;
Figure 1H and C-means clustering; Figure 1I) highlighted the
following main trends upon testosterone treatment: glycolytic
metabolites, DPG (Rapoport Luebering), and several poly-
unsaturated fatty acids increased sharply between 1 and 12 months
(cluster 1); L-carnitines and long-chain acylcarnitines increased
between baseline and 1 month, then decreased slightly between 1
RESEARCH LETTER 4271
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Figure 1 (continued)
and 12 months (cluster 2); shorter-chain acylcarnitines, some amino
acids, and carboxylic acids decreased with treatment duration
(cluster 3). Focusing on glycolysis (supplemental Figure 1), glucose
and 2,3-phosphoglycerate increased, and lactate and pyruvate
decreased after GAHT. These contrasting trends for metabolites in
the same pathway suggest that (1) the observed increases in DPG,
adenosine triphosphate, and adenosine 5′-diphosphate levels are
not merely attributable to increased RBC mass (testosterone-
4272 RESEARCH LETTER
induced increases in hematocrit) and (2) testosterone may induce
rewiring in late glycolysis with modulation of the activity of enzymes
downstream to phosphoglycerate, such as redox sensitive17 pyru-
vate kinase.18 Increases in high-energy phosphate compounds are
consistent with testosterone treatment, positively affecting the
RBCs’ capacity to off-load oxygen, given the role of these metabo-
lites in stabilizing the tense deoxygenated state of hemoglobin.19

Moreover, sphingosine 1-phosphate, pyridoxal, creatinine, urate,
22 AUGUST 2023 • VOLUME 7, NUMBER 16
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Figure 2. A correlation network of trace element data to metabolome and clinical features was performed to reveal clustering patterns within the data. (A) Each

feature (metabolite, clinical variable, or trace element) is represented as a node, and edges represent correlations | r | > 0.5. Inductively coupled plasma-mass-spectrometry

analysis suggests the effect of testosterone on ion-homeostasis. Metabolome analyses were performed on patients undergoing testosterone treatment with (N = 7) and without

((N = 8) GnRHa treatment. (B) A principal component analysis (C) was performed to investigate the effects of both treatment duration and GnRHa status on the data normalized

to baseline, then normalized by sum with autoscaling. (D) A Spearman rank order correlation revealed that the top 25 variables correlated most strongly with GnRHa status (data

normalized to baseline, then normalized by a median with autoscaling). Testosterone affects RBC metabolome throughout the treatment duration, regardless of GnRHa status.
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Figure 2 (continued) A Spearman rank order correlation determined the descriptive and metabolic features significantly correlated to measured testosterone (P ≤ .05). (E) An

analysis of free fatty acids revealed the effects of testosterone and GnRHa status over time. (F) Line plots showed the effect of testosterone and GnRHa status on acylcarnitines

throughout the treatment duration (G).
and methionine sulfoxide (redox markers) increased during the
course of treatment (supplemental Figure 1). Decreases in all car-
boxylic acids after testosterone treatment were accompanied by
increases in 2-oxoglutarate, a negative regulator of hypoxia-inducible
factor 1 alpha (HIF1α) by the mechanism of prolyl hydroxylase–
dependent posttranslational modification of HIF1α.20,21 This obser-
vation is suggestive of potential compensatory mechanisms coun-
teracting testosterone-induced erythropoiesis through antagonism
of HIF1α signaling.

Trace element analysis (Figure 1K) showed an impact of testos-
terone on RBC levels of magnesium, sodium, and calcium, showing
4274 RESEARCH LETTER
incremental to transient increases at 1 and 12 months through the
treatment. Declines in zinc and iron are consistent with an exacer-
bation of erythropoiesis in the absence of dietary increases in iron
uptake (Figure 1L). Network elaboration of the data from correlation
analyses (Figure 2A) showed that ion levels were associated with
functional exercise measurements (VO2 peak and peak respiratory
exchange ratio). By contrast, acylcarnitines (free carnitine;
acyl C10:1;12;12:1;14:0;14:1;16:0;16:1;18:0,18:1;18:2, palmitate,
late glycolysis [DPG, pyruvate, and phosphoenolpyruvate]) all
strongly correlated with body mass index, fat mass, waist and hip
circumference, total/lean mass and diastolic blood pressure, and
chest Tanner stage (Figure 2A).
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Of the 15 patients undergoing testosterone therapy in this study, a
subgroup was also treated with GnRHa (n = 7), whereas the other
half was only on testosterone (no-GnRHA; n = 8; Figure 2B). No
clear separation based on metabolome data between groups on
GnRHa treatment status was done (Figure 2C; supplemental
Figure 2A-B). GnRHa treatment was positively associated
(Spearman r > 0.6) with hormone levels (luteinizing hormone,
follicle-stimulating hormone, and estradiol; Figure 2D) as expected
based on the mechanism of action. Notably, GnRHa status was
positively associated with metabolic markers of oxidant stress (eg,
oxidized glutathione: glutathione disulfide) and negatively associ-
ated with VO2 peak, cholic acid, and total cholesterol (Figure 2D).

Intersubject heterogeneity in response to testosterone and GnRHa
treatment resulted in poor correlations (r < 0.5) between circu-
lating testosterone concentrations and RBC metabolite levels
(Figure 2E; supplemental Results; supplemental Figures 3 and 4).
The increase in acylcarnitines seen in this study (Figure 2F-G) may
imply an effect of testosterone on membrane stability and
increased membrane remodeling through the carnitine-dependent
Lands cycle.22,23 Testosterone therapy has been previously
correlated with susceptibility to hemolysis in males with hypo-
gonadism, suggesting that the androgens affect membrane dam-
age and repair and may generate a higher demand for
acylcarnitines.24,25 An alternative or complementary explanation
comes from the appreciation that testosterone treatment may have
a differential effect on males compared with people assigned
female sex at birth. Carrying 2 copies of chromosome X in the latter
group could result in an increased dosage of enzymes coded by
genes on this chromosome, despite the inactivation of chromo-
some X. Examples of such genes are the rate-limiting enzymes of
the pentose phosphate pathway: glucose 6-phosphate dehydro-
genase, hypoxanthine guanosine phosphoribosyl transferase, cre-
atine transporters or adenosine triphosphate–dependent
phosphatidylserine flippase, all enzymes relevant to redox biology of
RBC and in vivo clearance in the spleen.
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