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Abstract

The systemic delivery of exogenous proteins to cells within the brain and central nervous system 

(CNS) is challenging due to the selective impermeability of the blood-brain barrier (BBB). Herein, 

we hypothesized that protein delivery to the brain could be improved via functionalization with 

DNA aptamers designed to bind transferrin (TfR) receptors present on the endothelial cells that 

line the BBB. Using β-Galactosidase (β-Gal) as a model protein, we synthesized protein spherical 

nucleic acids (ProSNAs) comprised of β-Gal decorated with TfR aptamers (Transferrin-ProSNAs). 

The TfR aptamer motif significantly increases the accumulation of β-Gal in brain tissue in vivo 
following intravenous injection over both the native protein and ProSNAs containing nontargeting 

DNA sequences. Furthermore, the widespread distribution of β-Gal throughout the brain is only 

observed for Transferrin-ProSNAs. Together, this work shows that the SNA architecture can be 

used to selectively deliver protein cargo to the brain and CNS if the appropriate aptamer sequence 

is employed as the DNA shell. Moreover, this highlights the importance of DNA sequence design 

and provides a potential new avenue for designing highly targeted protein delivery systems by 

combining the power of DNA aptamers together with the SNA platform.
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INTRODUCTION

The targeted delivery of proteins to the brain and central nervous system (CNS) is inherently 

challenging1–4 because of the many natural mechanisms and barriers that living systems 

have evolved to maintain homeostasis.5 Firstly, unmodified proteins are rapidly degraded by 

serum proteases6, which inherently limits their effective delivery to target sites. Moreover, 

the blood-brain barrier (BBB) is a highly selective barrier that prevents circulating materials 

from reaching the CNS and is regulated by endothelial cells whose tight junctions form the 

impermeable walls of blood vessels7, 8. Finally, even if the issues with proteolysis and the 

BBB are overcome, the cell membrane itself prevents the passive movement of exogenous 

materials into cells within the brain. As such, strategies to improve the intracellular delivery 

of proteins to the brain and CNS are warranted.

The BBB is a highly regulated barrier, where endothelial cells control the influx of 

nutrients and molecules into the brain via both passive and active pathways. Lipid-soluble 

substances (CO2 and O2) freely cross the BBB9, while larger solutes gain access to the 

brain through active transport via receptors abundant in the endothelium10, 11. Accordingly, 

transport receptors, such as those for insulin12, 13, glucose14, or transferrin15–22 (TfR), 

provide potential avenues for the transport of proteins across the BBB through chemical 

modifications with the respective ligands. Indeed, lysosomal enzymes modified with 

antibodies specific to both the insulin12, 13 and Tfr receptor16, 21, 22 have shown significantly 

increased BBB penetration in vivo. Likewise, aptamers—short single-stranded DNA or RNA 

oligonucleotides that can assume secondary structures with high affinity and specificity to a 

target—have been evolved to transport oligonucleotides across the BBB via TfR receptors20.

Spherical nucleic acids (SNAs) comprise a class of nanomaterials where oligonucleotides 

are densely functionalized around a nanoparticle core in a highly oriented manner.23, 24 

This spherical arrangement imparts biological properties to the composite oligonucleotides 

that are distinct from their linear counterparts, including rapid cellular uptake through 

scavenger receptor-mediated endocytosis and enhanced stability to degrading enzymes.25–29 

Importantly, proteins that are normally cell impermeable and highly susceptible to protease 
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degradation are rendered permeable and protease-resistant when functionalized with 

oligonucleotides as protein spherical nucleic acids (ProSNAs).29–31 Previous work has found 

that the DNA shell not only protects the protein, but also alters its biodistribution following 

systemic administration.29

Herein, we hypothesized that the intracellular delivery of proteins to cells within the CNS 

could be maximized using the ProSNA platform via covalent functionalization with DNA 

aptamers specific to the TfR receptor. DNA shell design is a critical parameter influencing 

the cellular uptake and biodistribution of SNAs29, 32–37, and we reasoned that a ProSNA’s 

distribution could be specifically directed by introducing a targeting sequence. Therefore, 

we synthesized ProSNAs bearing TfR aptamers using β-Galactosidase (β-Gal) as a model 

protein (Transferrin-ProSNAs, Figure 1) and assessed their uptake in an in vitro BBB model 

and their accumulation in the brain following intravenous injection into healthy mice.

RESULTS & DISCUSSION

Transferrin-ProSNAs Are Successfully Synthesized through the Functionalization of β-

Galactosidase with Transferrin Aptamer DNA. The transferrin (TfR) aptamer sequence was 

selected based on prior research using SELEX to evolve and truncate aptamers, resulting in 

a 14-mer sequence with a strong binding affinity to the extracellular domain of the mouse 

transferrin receptor.38–40 A scrambled DNA sequence, which differs from TfR by four 

bases in the loop region and has no receptor binding affinity, was synthesized as a control 

for aptamer-mediated uptake (Table S1.1). Protein SNAs bearing either TfR aptamers 

(Transferrin-ProSNAs) or the scrambled DNA sequence (Scr-ProSNAs) were synthesized 

using published protocols29, 30. β-Gal was chosen as a model system to assess brain delivery 

efficacy because it is a large (464 kDa) protein, easily amenable to DNA conjugation, and 

does not naturally traverse cell membranes. To track the distribution of β-Gal in vivo, an 

AlexaFluor647 (AF647) fluorophore tag was conjugated to surface-accessible cysteines on 

the protein. Following successful fluorophore labeling, the lysine residues were modified 

with azide-functionalized-PEG4, which was subsequently reacted with DBCO-dT-terminated 

aptamer DNA strands through a strained-promoted alkyne azide cycloaddition (Figure S1, 

Table S1.2)41. A thymidine DNA spacer (T4) was appended to the 3’ end of each sequence 

to distance the aptamer from the protein surface and promote sequence folding. UV-vis 

spectroscopy showed that the extent of oligonucleo-tide loading were nearly identical 

(39 Transferrin DNA per protein and 37 Scr DNA per protein) regardless of sequence 

(Figure S2, Table S1.3). Covalent DNA conjugation to the protein core was confirmed 

using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which 

showed mobility shifts commensurate with the increased mass following DNA addition 

(Figure S3). Moreover, dynamic light scattering (DLS) showed an increase in hydrodynamic 

diameter (Figure S4) following DNA functionalization, confirming the successful synthesis 

of ProSNAs (β-Gal AF647: 18 ± 2 nm, Transferrin-ProSNA: 24 ± 3 nm). Finally, circular 

dichroism (CD) spectroscopy confirmed that the secondary structure of β-Gal was not 

altered following fluorophore and DNA conjugation (Figure S5).
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Transferrin-ProSNAs Penetrate Cell Monolayer Faster in an In Vitro BBB Model.

With Transferrin-ProSNAs in hand, we sought to determine the rate at which the aptamer 

is able to promote receptor-mediate transcytosis.11 For these experiments, bEnd.3 mouse 

brain endothelial cells, known to highly express the TfR receptor15, 42, were cultured to 

form a monolayer and simulate the tight endothelial junctions that comprise the BBB. To 

confirm that the bEnd.3 cell barrier was not compromised by the treatment, transendothelial 

resistance (TEER) measurements of the monolayer was assessed immediately before 

beginning the experiment, as well as 24 h post-treatment. TEER values for the bEnd.3 

cells did not significantly change over time in the presence of the protein (Figure S6) 

indicating a restrictive barrier and match the reported finding for a stable cell layer43. Once 

the monolayer was established, Transferrin-ProSNAs, Scr-ProSNAs, or β-Gal AF647 were 

applied to the apical side (Figure 2A). The fluorescence of the media on the basolateral side 

was measured over time using a plate reader fluorimeter as a proxy for protein transcytosis, 

as a means to determine the rates of transport. The fluorescence intensity of the media in 

wells treated with both ProSNA constructs increased steadily as a function of time and at a 

much faster rate than the AF647 modified protein or TMR dextran 70 kDa (Figure 2B). It 

is to be expected that the Scr-ProSNA would exhibit some degree of transcytosis capability, 

as it has been previously shown in a clinical trial that SNAs synthesized with gold cores 

cross the BBB and accumulate in glioblastoma brain tumors following systemic injection, 

presumably facilitated by scavenger-mediated movement.44, 45

From these analyses, the apparent permeability coefficient (Papp) was calculated to precisely 

analyze the kinetics of monolayer transcytosis. This index is widely used as part of the 

screening process of the flux of a molecule across a barrier, to measure the integrity of 

the in vitro BBB model46, 47. A significant increase in fluorescence on the basolateral 

side was observed at 90 min in cells incubated with Transferrin-ProSNAs (Figure 2C). In 

addition, Transferrin-ProSNAs showed a higher Papp value (7.571·10−6 cm/s) relative to both 

β-galactosidase (6.628·10−6 cm/s) and Scr-ProSNAs (Papp = 6.941·10−6 cm/s), presumably 

due to their increased affinity for the transferrin receptor. A table for all the calculated values 

is included in the SI (Table S2.1).

Transferrin-ProSNAs Significantly Increase the in vivo Accumulation of Proteins in the 
Brain.

By employing TfR aptamers as the DNA shell, we hypothesized that Transferrin-ProSNAs 

can target the BBB. Therefore, to study the brain targeting efficiency of Transferrin-

ProSNAs, CD-1 mice (n = 6) were injected intravenously (IV) with either Transferrin-

ProSNAs, Scr-ProSNAs, or native β-Gal at a dosage of 6.5 mg/kg with respect to protein 

concentration. At 1-h post-injection, the biodistribution of each construct was assessed using 

an in vivo imaging system (IVIS) to measure the fluorescence signal in each organ (Figure 

3) following sacrifice and perfusion. Importantly, Transferrin-ProSNAs show a significant 

increase in brain accumulation (p = 0.0001, Figure 3A, C) as compared to the Scr-ProSNAs, 

which only differs in sequence by four bases. Moreover, the targeting by Transferrin-

ProSNAs is specific to the brain, as there was no significant increase in accumulation in 

other filtration organs when comparing mice treated with Transferrin-ProSNAs to those 

Kusmierz et al. Page 4

Bioconjug Chem. Author manuscript; available in PMC 2023 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



administered Scr-ProSNAs (Figure 3B, D). Together, this indicates that the DNA aptamers 

remain folded and recognize their target receptor in a living system.

Transferrin-ProSNAs Visualized Throughout the Brain via Confocal Microscopy.

Encouraged by the increased brain accumulation of Transferrin-ProSNAs on a whole-

organ level, we evaluated the tissue and cellular distribution of all materials using 

immunofluorescent histochemistry (IFC) of brain tissue slices. CD-1 mice (n = 3) were 

injected intravenously with either Transferrin-ProSNAs, Scr-ProSNAs, or β-Gal AF647 

at a dosage of 6.5 mg/kg with respect to protein concentration. At 1-h post-injection, 

animals were sacrificed and perfused, then brain tissues were sectioned and incubated with 

a DAPI nucleus stain. Strikingly, the AF647 signal originating from the protein conjugated 

fluorophore was present throughout the entirety of the brain and not sequestered in a single 

region. Intense, punctate red fluorescence signals present in the same z-plane as DAPI 

signals, indicating that Transferrin-ProSNAs are taken up by cells (Figure 4, Figure S7). 

Conversely, there was no detectable signal in brain tissue slices of animals administered 

the Scr-ProSNA (Figure S8). This is in agreement with the whole-organ-level data, where 

minimal brain accumulation was observed via IVIS for these two systems. Together, this 

shows that not only to Transferrin-ProSNAs increase the accumulation of protein in the 

brain via enhanced BBB penetration, but also enable the efficient cellular entry in cells 

present in the brain.

CONCLUSIONS

Herein, we show that the delivery of proteins to the brain is enhanced through their 

transformation into ProSNAs comprised of DNA aptamers that bind the TfR receptor. This 

is significant, because although it has been previously shown that adding a DNA shell 

changes the biodistribution of proteins29, this is a demonstration of using the oligonucleotide 

sequence as a tissue targeting moiety. This is especially exciting when one considers the 

vast number of targets and disease sites that aptamers can be easily designed against48–50. 

Moreover, DNA aptamers have been previously successfully employed in ProSNAs as 

nucleic acid recognition elements to probe pH or glucose levels in living cells.51 As such, it 

may be possible to design systems that simultaneously target disease sites (using a targeting 

aptamer) and probe intracellular conditions upon localization (using a recognition aptamer). 

Taken together, this work illustrates that DNA shell design can have a profound impact on 

the resulting distribution of SNAs and can be used to target hard-to-reach organs through 

intelligent sequence design.

MATERIALS AND METHODS

Synthesis β-Galactosidase Protein Spherical Nucleic Acids.

Oligonucleotides (TfR is 5’-GCG TGG TAC CAC GCT TTT T DBCO-dT-3’ and 

Scr is 5’-GCG TGT GCT CAC GCT TTT T DBCO-dT-3’) were synthesized using 

standard phosphoramidite chemistry protocols using universal CPG solid supports and 

phosphoramidites, as well as coupling reagents purchased from Glen Research. Synthesized 

strands were purified by HPLC and analyzed using MALDI-MS. ProSNA synthesis was 
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performed based on literature precedence29, 30. β-Gal from an E. coli overproducer was 

first dissolved in PBS. Next, ten equivalents of AF647-C2-maleimide were added, and the 

reaction was shaken for 2 hours at 25 °C. Unconjugated AF647 was removed by repeated 

rounds of centrifugation using a 100 kDa MWCO filter, and the number of fluorophore 

modifications per protein was calculated using UV-Vis spectroscopy. Then 350 equivalents 

of NHS-PEG4-azide crosslinker were added to β-Gal-AF647, and the reaction was shaken 

overnight at 25°C. Unconjugated linker was removed by ten rounds of centrifugation using a 

100 kDa filter, and the number of azide modifications was assessed by MALDI-MS. Finally, 

350 equivalents of DBCO-dT terminated DNA strands were mixed with β-Gal-AF647-azide 

and allowed to incubate for 72 h at 25 °C with shaking. Unreacted DNA strands were 

removed by successive rounds of centrifugation in a 100 kDa filter until the filtrate did 

not have a detectable absorbance at 260 nm. The number of DNA strands per protein 

was calculated based on UV-Vis spectroscopy. Characterization of successful covalent 

conjugation was assessed by SDS PAGE gel.

Transendothelial electrical resistance (TEER) measurements.

The transendothelial resistance of bEnd.3 cell monolayers was measured using a Millicell 

ERS-2 voltammeter equipped with a MERSSTX01 electrode after cells reached confluence 

in a transwell plate. Once TEER values reached that of standard monolayers with tight 

junctions, cells were treated and resistances measured again at 24 h post-treatment. The final 

TEER result is expressed (Ω×cm2) = (TEER total (Ω)-TEER blank (Ω))×cm2.

In Vitro Blood-Brain Barrier Model.

6.5 mm Transwell®-COL collagen-coated 0.4 μm Pore PTFE membrane inserts were placed 

in a 24-well plate and pre-incubated with full cell culture media overnight at 37°C. The 

next day, bEnd.3 endothelial cells were seeded on the apical side of the transwell insert and 

cultured at 37°C in 5% CO2. After nine days, media was removed, fresh media was added 

to each well, and treatments added to the appropriate insert. The treatment consisted of 60 

nM with respect to protein concentration (300 μL) of β-Gal-AF647, Transferrin-ProSNA, 

or Scr-ProSNA diluted in full cell culture media and added to the apical side. Cell culture 

medium (1000 μL) was added to the basolateral side of the insert. Cells were incubated 

at 37°C in 5% CO2 and 75 μL of media was removed from the lower chambers at set 

timepoints and fluorescence measured via plate reader fluorimeter (λEx= 640 nm, λEm= 681 

nm) and transferred back to the basolateral side. Cumulative transport across the membrane 

was plotted as increase in fluorescence as a function of time. The slopes of the linear regions 

were used to calculate the permeability coefficients as previously described52. The following 

equation was used:

Papp = dQ/dt / C0 × A

Where dQ/dt is the transport rate, defined as the slope obtained from the regression of the 

transported amount, C0 is the initial concentration on the donor side and A is the surface 

area of the inserts (0.33 cm2).
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Ex Vivo Near-Infrared Fluorescence (NIRF) Imaging.

Female CD1 mice (28–30 g) were administered a single injection via tail vein at a dose 

of 6.5 mg β-Gal / kg body weight. After 1 h, mice (n = 6) were humanely euthanized by 

cardiac perfusion with PBS while anesthetized. Tissues were harvested and fixed. Organs 

were imaged using an IVIS system using 650 nm/700 nm excitation/emission filters, and 

data was quantified by measuring radiant efficiency with the Living Image software.

Brain Histology and Imaging.

Female CD1 mice (28–30 g) were administered a single injection via tail vein at a dose of 

6.5 mg β-Gal / kg body weight. 1 h post-injection, mice (n = 3) were humanely euthanized 

by cardiac perfusion while anesthetized. Each mouse was first perfused with 20 mL of PBS, 

then 20 mL of 4% paraformaldehyde (PFA), and the brains were dissected and stored in 4% 

PFA with shaking at 4 °C for 2 h. Organs were equilibrated at 4°C in 15% sucrose then 30% 

sucrose until the organs sunk to the bottom of their respective container. Each organ was 

then embedded and cryo-sectioned in the sagittal plane at the midline at a 10 μm thickness. 

Slides were stained with DAPI to visualize nuclei. A Leica TCS SP8 Confocal Microscope 

was used to image different regions of each slide at a 40X magnification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

CNS Central nervous system

BBB Blood-brain barrier

TfR transferrin
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β-Gal β-Galactosidase

SNA Spherical nucleic acid

ProSNA Protein spherical nucleic acid

Scr scrambled

AF647 AlexaFluor647

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

CD Circular dichroism

IV Intravenous

IVIS In vivo imaging system

IFC Immunofluorescent histochemistry

HPLC High-performance liquid chromatography

MALDI-MS Matrix-assisted laser desorption ionization-time of flight mass 

spectroscopy

PBS Phosphate-buffer saline

MWCO Molecular weight cut off

PFA paraformaldehyde
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Figure 1. Receptor-Mediated Transcytosis of ProSNAs Across the Blood-Brain Barrier.
Cartoon representation of β-Gal ProSNAs being shuttled across an endothelial cell to 

the brain via the transferrin receptor. The surface of β-Gal is decorated with a shell of 

transferrin-specific aptamers covalently conjugated to surface lysine residues, resulting in 

a protein spherical nucleic acid (ProSNA). The representation was adapted from PDB ID 

1PX3.
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Figure 2. In vitro BBB Analysis Demonstrates Specificity of Transferrin Aptamer for Receptor.
(A) Representation of ProSNAs crossing an in vitro BBB model. Cells were treated with 

fluorescently labeled proteins on the apical side of a transwell insert. (B) Normalized 

fluorescence readings of the basolateral side were taken periodically and plotted to measure 

the protein’s transcytosis efficiency. Each point represents the mean of n =4 measurements, 

the error bars show SD, and the line is a nonlinear regression fit graphed using GraphPad 

Prism. (C) Explicit fluorescence significance comparison after 90 minutes incubation 

of either Dextran 70 kDa, β-Gal-AF647, TfR ProSNA or Scr ProSNA. The statistical 

significance was analyzed using ordinary one-way ANOVA, followed by tukey multiple 

comparison. **** p-value < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05.

Kusmierz et al. Page 13

Bioconjug Chem. Author manuscript; available in PMC 2023 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Biodistribution of β-Galactosidase Following Systemic Injection in Mice.
After a 1-h treatment with 6.5 mg of β-Gal/kg mouse via a tail-vein injection; mice (n = 6) 

were sacrificed, perfused, and their organs dissected and fixed. Using IVIS, the fluorescence 

from the protein’s AF647 tag was measured in the (A) brain and (B) other filtration organs. 

A region of interest was drawn around each organ, and the fluorescence radiant efficiency 

were quantified (C-D). Each dot represents an individual mouse, the bars represent the 

mean, and the error bars show SD. A paired t-test was performed in GraphPad Prism. *** p 
≤ 0.0001, ns = not significant
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Figure 4. Brain Distribution of Transferrin-ProSNAs.
Representative confocal images of brain histology slides from mice 1-h after intravenous 

injection of 6.5 mg of β-Gal/kg mouse. Punctate red fluorescence signal (ProSNA) is present 

throughout the brain, in regions such as: (A) thalamus, (B) hypothalamus, (C) pons, and (D) 

cerebellum. Nuclei are stained with DAPI (cyan) to approximate the location within the cell. 

Scale bar = 50 μm. Further imaging in other brain regions is represented in Figure S7.
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