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Abstract
Conventional microbiological water monitoring uses culture-dependent techniques to screen indi-
cator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-
generation sequencing technologies becoming less expensive, water quality monitoring programs
can now leverage the massively parallel nature of second-generation sequencing technologies for
batch sample processing to simultaneously obtain compositional and functional information of cul-
turable and as yet uncultured microbial organisms. This review provides an introduction to the
technical capabilities and considerations necessary for the use of second-generation sequencing
technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate
the composition and functional potential of microbiomes found in water and wastewater systems.
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Introduction

Routine water and wastewater testing is critical for many public health and indus-
trial monitoring programs. While traditional tests for microbiological contamina-
tion, such as fecal coliform counts, provide indirect abundance measurements of
culturable microbes, the advent of inexpensive new DNA sequencing technologies
offers the potential to dramatically increase the scope of monitoring through direct
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and comprehensive identification. For environmental surveillance, DNA sequencing
can be used to detect microbes (bacteria and archaea) that are not currently routi-
nely tested for, including difficult-to-culture organisms such as Clostridium spp.1

and Methanobrevibacter spp.2 This information can be used for microbial source
tracking to identify point sources of contamination3 and evaluate the effectiveness
of remedial and control measures. Many industrial waste treatment processes
including those applied to wastewater depend on complex microbial fermentation.4

High-throughput DNA sequencing can be used to monitor the efficacy of such pro-
cesses, provide ancillary information to optimize wastewater treatment technology
(particularly those that have a proprietary component) and provide biological infor-
mation regarding process failure.5

The challenges in employing DNA sequencing technology for characterizing
microbial communities are manifold and include the development of robust sam-
pling methodologies and the application of informative statistical analyses.
Furthermore, between sampling and statistics lies the daunting task of selecting the
correct sequencing technologies to accomplish water and wastewater monitoring
goals. The plethora of options available for sequence data processing can be over-
whelming for those unfamiliar with bioinformatics. In this review, we discuss
accepted practices in implementing DNA sequencing technologies and describe the
bioinformatic tools available for sequence data processing. We also outline the
benefits of DNA sequencing technologies over culture-based microbiological meth-
ods in water and wastewater quality monitoring and provide recommendations for
designing monitoring programs.

Culture-based microbiological methods in water and
wastewater analysis

In North America, public health authorities use plate culturing methods to assess
water microbial quality.6,7 In these methods, standardized volumes of water are ini-
tially passed through 0.45 mm filters. Filters are then placed on selective agar media
that facilitate exclusive growth of the bacteria of interest. The degree of microbial
contamination is quantified in colony-forming units (CFUs) per unit volume by
counting the number of colonies on a plate.8 Routine testing comprises quantification
of Escherichia coli and total coliforms. Unfortunately, waterborne illnesses are caused
by a multitude of bacterial genera including the following: Shigella, Leptospira,
Legionella, Vibrio, Salmonella, Campylobacter, and Arcobacter.9 Genera-specific plate
culturing methods exist for many pathogens. However, these methods require specia-
lized facilities and expertise.7,8 Culture-based tests can only detect the presence a few
microbial groups at a time with limited taxonomic resolution. Standard water quality
monitoring methods that simultaneously test for all microbial pathogens would
greatly benefit water quality monitoring in the interest of public health.

Methods to simultaneously characterize all microbes in a system could similarly
benefit wastewater treatment system design and monitoring. In wastewater treat-
ment, organic waste is metabolized into gases such as methane and hydrogen in a
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process called anaerobic digestion (AD; Figure 1).4 AD is sustained by a diverse, core
population of microbes which syntrophically metabolize complex molecules. In syn-
trophic metabolism, metabolites of certain taxa become the substrate for others
(Figure 1).10,11 Therefore, the species present in wastewater treatment systems are
directly responsible for desired treatment outcomes.12,13 Characterization of microbial
community composition and metabolic capacity can facilitate the improvement of
wastewater treatment systems through bioaugmentation or system modifications that
promote the growth of effective waste-degrading microbes.14,15 Culture-based assays
have been used to test the metabolic activity of microbes in the effluent of onsite was-
tewater treatment system (OWTS).16 However, like plate-culture water quality assays,
these fail to fully characterize wastewater treatment systems as many relevant
microbes are difficult to culture. This has given rise to a quest for culture-independent
methods through second-generation sequencing (SGS).

SGS

SGS technologies are characterized by the sequencing of millions of short (\1000
bp) DNA fragments which are attributed to their sample of origin by appended
index sequences.17 Sequence information from each DNA fragment, or reads, are
assigned taxonomy through alignment with sequences in microbial genome data-
bases.18 Therefore, SGS offers massively parallel methods for simultaneous and
comprehensive identification of microbes in complex communities across several

Figure 1. Microbial phyla responsible for anaerobic wastewater treatment processes—
hydrolysis, acidogenesis, acetogenesis, and methanogenesis.
Decomposition of organic substances occurs in a stepwise fashion in which the metabolites of one group of

microbes become the substrates of the next.
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samples using DNA sequencing.19 By removing the need for culturing, SGS allows
for the identification of unculturable taxa that may play key roles in pathogenicity
or wastewater treatment.4,20 Furthermore, the relative abundance of microbes in a
sample can be quantified using the number of reads assigned to each taxonomic
group.21,22 In addition to taxonomic assignment, reads can be aligned to gene data-
bases to elucidate the functional gene pathways or utilized in de novo methods to
construct genomes of novel microbial species.23,24

Illumina sequencing platforms have been widely adopted as the sequence plat-
forms of choice25 for SGS due to lower per-base costs and error rates and greater
data output in comparison with other platforms.26 Illumina utilizes sequencing by
synthesis (SBS) technology in which DNA fragments are bound to a solid-phase
flow cell, amplified and sequenced using fluorescently labeled nucleotides.27 The
maximum read length of any Illumina SGS platform is currently 300 bp.28

Molecules can be sequenced from one end (single-end reads) or from both ends
toward the middle (paired-end reads).28 Paired-end reads can potentially be merged
to create a longer contiguous sequence if there is overlap between the reads.28

Many studies have also employed pyrosequencing,29–31 a discontinued sequencing
technology pioneered by 454 Life Sciences. Although this technology is no longer
being advanced, studies employing pyrosequencing remain a valuable source of
information as pyrosequencing results have been shown to be comparable to those
obtained with SBS.32

The next frontier in DNA sequencing is long-read sequencing, also known as
third-generation sequencing (TGS). TGS platforms can sequence hundreds of kilo-
bases of a single DNA molecule.33 Long reads have many applications including
high-resolution taxonomic assignment, characterization of genome regions with
repetitive sequences, and identification of epigenetic markers.34 Unfortunately,
TGS currently has relatively greater sequencing costs,35 higher error rates, and
lower sample throughput compared to SGS.36 These shortcomings make TGS a
poor alternative to SGS for metagenomic sequencing37 of complex microbial com-
munities at this time.

Most published SGS microbiome studies utilize variants of Illumina’s MiSeq
and HiSeq platforms. The maximum output of the most recent MiSeq and HiSeq
models are 2.53 107 and 53109 reads, respectively.28 Illumina also recently released
the NovaSeq platform which has a maximum output of 23 1010 reads.28 Illumina
platform purchasing and service costs increase with data generation capacity.28 For
example, excluding library preparation and quality control costs, a paired-end, 150
bp read-length (23 150bp) sequencing run on one flow cell lane can cost approxi-
mately US$1500 (2019 prices) on a MiSeq platform.38 In contrast, for the benefit of
more reads, the same run costs approximately US$3000 on the HiSeq38,39 and
US$9000 on the NovaSeq.39,40 Platform choice is informed by study design and
number of required reads per sample, also referred to as sequencing depth. To
maintain sequencing depth, the total number of reads required increases with the
number of samples to be analyzed. Sequencing depth requirements are dependent
on the project goals and SGS technique. Currently, the two primary SGS
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techniques for the determination of microbial community composition and func-
tion are 16S ribosomal DNA (16S rDNA) sequencing and whole-metagenome
sequencing (WMS), respectively.

Although government and industry have recently begun to explore the use of
SGS for biomonitoring of aquatic environments,6,41 high-throughput sequencing
has yet to be widely adopted for monitoring of water and wastewater treatment
systems. The primary barriers to wide-scale adoption of SGS are cost and exper-
tise.42 Culture-based methods, though limited in scope, require considerably less
resources, training, and time. However, decreasing sequencing costs,43 curation of
bioinformatic protocols,44,45 and development of user-friendly sequence analysis
tools46,47 continue to improve the feasibility of SGS for routine monitoring. The
following sections provide recommendations and guidelines for the application of
16S rDNA and WMS analysis in water and wastewater analysis.

16S rDNA sequencing applications in wastewater treatment
and water quality monitoring

16S rDNA amplicon sequencing is the de facto molecular method for microbial
identification in complex environmental samples.48 In a recent study, 16S rDNA
sequencing was used to characterize and contrast microbial communities of anae-
robic digesters in biogas plants (BPs) and sewage treatment plants (STPs).49

Microbial diversity was greater in STPs than in BPs, while BP core community
members were more metabolically linked than those of STPs. Differences in micro-
bial interactions and community members between the two plant types were attrib-
uted to the greater variability in STP influent composition.49 The simultaneous
digestion of sewage and agricultural waste has been suggested as a process to
increase biogas production and cost efficiency.49 However, the results of this study
indicate that the communities that degrade each substrate type are distinct and that
co-digestion may not be optimal.

El-Chakhtoura et al.50 employed SGS to assess the stability of microbial com-
munity structure from water treatment plant to a distribution endpoint. Plant and
endpoint communities were significantly different which indicated that microbial
populations underwent substantial changes within the water distribution net-
work.50 Specifically, the abundance of rare taxa (e.g. Nitrospirae, Acidobacteria,
and Gemmatimonadetes) was greater at the endpoint in than at the water treat-
ment plant.50 Although the observed microbial community changes did not consti-
tute a public health risk,50 these 16S rDNA sequencing results support the need for
water quality assessments throughout distribution networks.

16S rDNA sequencing principles

16S rDNA encodes for the ubiquitous and highly conserved 16S RNA subunit of
bacterial and archaeal ribosomes.51 Bacterial and archaeal phylogeny is based on
levels of similarity between full-length (~1540 bp) 16S rDNA sequences.52 Within
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16S rDNA, there are nine (V1–V9) hypervariable regions (HVRs, Figure 2). Gene
fragments with relatively diverse nucleotide compositions are used to distinguish
microbial taxa.53 HVRs are flanked by conserved sequences that allow them to be
targeted and amplified through polymerase chain reaction (PCR) using universal
primers that capture a broad range of taxa.54 PCR amplification isolates 16S
rDNA from complex mixtures of DNA by increasing their concentration. In addi-
tion, PCR can be used to attach adapter sequences that facilitate binding to sequen-
cing machines and index sequences that identify the sample of origin for each
amplicon. By convention, 16S rDNA primers are named according to their corre-
sponding nucleotide positions (NP) in E. coli 16S rDNA54 and their replication
direction with respect to the 5# to 3# direction of the sense strand denoted by ‘‘f’’
and ‘‘r’’ for forward and reverse, respectively. For example, 341f/785r is a primer
pair that spans the V3–V4 regions55 (Figure 2).

Taxonomic profiles consisting of the bacterial and archaeal taxa within a sample
and their relative abundances are constructed from the analysis of HVRs. Microbial
groups are identified based on HVR composition, and the number of reads attrib-
uted to each group is used to calculate the relative abundance of those organisms in
a sample. HVR-based taxonomic assignment is reliable down to the genus level.56

However, taxonomic assignment accuracy substantially decreases at the species
level.56 Species assignment is only recommended for HVR sequences that match
exactly with reference database sequences.57 The presence of species of interest can
also be confirmed with species-specific PCR as a follow-up to 16S rDNA sequen-
cing. Conserved gene markers such as conserved signature protein and indel
sequences provide effective PCR targets for species-level microbial detection.58

SGS platforms are currently unable to sequence the entire length of 16S rDNA
in a single read. As a result, researchers must amplify and analyze segments of the
16S rRNA gene48 that may include up to three HVRs. Furthermore, microbial
community profiles can significantly differ depending on the HVR(s) sequenced59

because the taxa present may be difficult to resolve due to a lack of nucleotide dif-
ferences in the chosen HVRs. Therefore, the choice of HVR(s) can have significant
impacts on sequencing results and may lead to erroneous conclusions regarding
the systems being studied.

Figure 2. Distribution of V1–V9 hypervariable regions (HVRs) along a linear representation of
the Escherichia coli 16S rDNA sense strand.
HVRs are shown in red, with widths to scale; white regions represent conserved regions and numbered tick

marks indicate nucleotide position.
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HVR and primer choice

Unfortunately, there is a lack of consensus as to which HVRs are the most reliable
for taxonomic profiling.60 Ideally, studies should employ 16S rDNA regions that
capture the greatest degree of diversity and obtain accurate estimates of relative
abundance of individual taxonomic group members. In silico comparisons of taxo-
nomic assignment with 16S rDNA regions and full-length 16S rDNA sequences
found that the V1–V3 (NP 27–519) and V1–V4 (NP 63–685) regions produced the
most similar bacterial species assignments and richness estimates.52 Tremblay
et al.61 found that, in vitro, a primer pair (515f/806r) targeting the V4 HVR yielded
results that were in better agreement with WMS results than V6–V8 (926f/1392r)
and V7–V8 (1114f/1392r) pairs.

In addition to the HVR regions targeted, primers can differ based on sequence
composition. 16S rDNA sequencing results obtained with different primers target-
ing the same HVR can significantly differ due to primer bias; greater primer bind-
ing affinity for sequences that have fewer base mismatches. Allowing for one
primer mismatch greatly increases primer taxonomic coverage in silico.62 However,
experimental primer testing has shown that even a single primer mismatch can sig-
nificantly bias results.63 Substituting primer mismatches with degenerate bases sig-
nificantly reduces primer bias.63

Despite the lack of consensus regarding HVR and primer choice for microbial
taxonomic profiling, researchers can make informed decisions based on in silico
and empirical testing of primer pairs. Consistency should be prioritized in ongoing
microbiome studies to increase the likelihood that observed community differences
are a result of system environment and biological activity opposed to changes in
the HVRs targeted.60,61 Table 1 shows the examples of HVRs used in literature
studies of water and wastewater systems.

16S rDNA sequence data processing methods

16S rDNA amplicon sequence data are outputted in text format with quality scores
which indicate the probability of error for each base call.71 Reads are grouped into
files according to their sample of origin based on index sequences in a process called

Table 1. 16S rDNA hypervariable regions sequenced in microbiome projects.

Hypervariable regions Sample types Primer pairs

V1–V2 Activated sludge64 27f-338r, 8f/357r
V1–V3 Freshwater65 8f/556r
V3–V4 Freshwater55,66 341f/805r, 341f/785r
V4 Freshwater67 515f/806r, 515f/808r
V4–V5 Anaerobic digester10,68 515f/909r, 563F/926R
V5–V6 Freshwater3,69, Anaerobic digester33 807f/1050r
V6–V8 Anaerobic digester70 926f/1392r
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demultiplexing. Before taxonomic assignment, sample sequence reads are trimmed
to remove adapter sequences and low-quality bases to prevent spurious taxonomic
assignment. Adapter-trimming programs include Cutadapt72 and Trimmomatic.73

Examples of quality-filtering programs are Sickle74 and BBDuk.75 Paired-end reads
can be merged if they meet a threshold for sequence overlap using programs such
as PANDAseq76 and BBMerge.75 In addition, reads should be processed to identify
and remove chimeric sequences that can be mistakenly attributed to unique taxa.77

Available 16S rDNA chimera removal programs include ChimeraSlayer and
UCHIME.78 Sequences are then taxonomically classified using tools such as RDP
Classifier, UCLUST, VSEARCH, and BLAST56 which align sample sequences
with those found in 16S rDNA reference databases. The primary reference data-
bases used in 16S rDNA microbiome studies are Greengenes, RDP, SILVA, and
NCBI.79

A common method for grouping sequences for taxonomic classification is to
cluster them into operational taxonomic units (OTUs) at a level of 97% similar-
ity.80 Read counts for each sequence in a group are summed and attributed to an
OTU. Taxonomy is assigned to these OTUs by aligning sequences representative of
each OTU with those found in reference databases.71 Whelan and Surette81 com-
pared multiple clustering programs and found that some algorithms produced sub-
stantially erroneous results when characterizing human-sourced mock microbial
communities. Most notably, for certain mock communities, DNACLUST overesti-
mated diversity by nearly 4000% and UPARSE underestimated diversity by greater
than 300%.81 Although no single program outperformed all others for every mock
community, AbundantOTU+ coupled with RDP Classifier and the Greengenes
2011 database provided the best overall performance.81

Errors associated with clustering algorithms can be circumvented with DADA2,
an alternative amplicon processing program that uses Illumina error-modeling to
resolve sequence reads.44 Rather than OTUs, DADA2 produces assigned sequence
variants (ASVs). Whereas OTUs may change with the sequences included in an
analysis,82 ASVs are characterized on a sequence-to-sequence basis using sequen-
cing error profiles and are thus more stable.83 Therefore, between-study compari-
sons of ASVs are more robust than those of OTUs because they are less dependent
on study-specific data processing parameters. In a benchmarking study, DADA2
outperformed established OTU sequence clustering programs when characterizing
mock, mouse fecal and human vaginal communities. DADA2 was able to identify
sequence variants and had lower output residual error rates, fewer false positives,
and more correct taxonomic assignments than UPARSE, MED, UCLUST, and
Mothur.44 ASV stability and greater taxonomic assignment accuracy make
DADA2 a strong candidate for the sequence processing program of choice for
future 16S rDNA microbiome studies.

Determining the optimal set of bioinformatics programs for all SGS applications
is beyond the scope of this review. Prospective microbiome researchers are encour-
aged to compare the benefits and shortcomings of the programs available. A useful
starting point for software selection is the suite of default programs utilized by the
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16S rDNA data analysis platform, QIIME2 (quantitative insights into microbial
ecology ‘‘2’’).46 QIIME2 provides a framework in which to trim, quality-filter,
resolve, and annotate 16S rDNA sequences and is the successor to the extensively
utilized bioinformatics platform, QIIME.84 In addition, protocols established by
microbiome sequencing consortia, such as the Human Microbiome Project85 and
the Earth Microbiome Project,86 can be valuable resources for designing a 16S
rDNA sequence processing pipeline.

16S rDNA sequencing depth

Sequencing depth can differ by several orders of magnitude between samples
because of poor mixing or improper DNA input standardization prior to sequen-
cing. The number of taxa, particularly rare species, detected increases with sequen-
cing depth.86 This complicates community analyses because variation in read
counts can lead to significantly different estimates of diversity between samples87

that may be the result of differences in sequencing depth rather than biology.88

For 16S rDNA studies, a common practice to account for sequencing depth dif-
ferences is to rarefy sample counts88 by randomly removing sequence reads without
replacement until all samples reach a chosen sequencing depth.89 Sequencing depths
should be chosen to balance the number of samples kept with the level of diversity
captured. Examples of sequencing depth utilized in water and wastewater studies is
shown in Table 2. In some cases, it is advisable to discard samples with lower read
counts because these samples may contain higher proportions of contaminating
sequences from DNA extraction kits, PCR reagents, and the lab environment.90

However, lower read counts may be unavoidable in drinking water samples with
low biomass. Measures to mitigate the contribution of contamination to sample
reads include processing blank samples to identify contaminating sequences for in
silico removal and concentration of sample biomass prior to DNA extraction.90

An alternative method to rarefying read counts for the normalization of sequen-
cing depth is to apply a variance stabilizing transformation (VST) to count data.87

Generally, rarefied sample communities have been reported to cluster more accu-
rately according to sample origin, while VST has been reported to have more statis-
tical power when differentiating sample groups.88,87 Proponents of VST argue that
rarefying data discards statistically relevant data, whereas practitioners of rarefying
argue that VST fails to address library size effects and leads to higher false discov-
ery rates.88,87

WMS applications in wastewater and water monitoring

An alternative to SGS analysis with 16S rDNA amplicon sequencing for taxonomic
profiling is WMS. In contrast with single-gene sequencing techniques such as 16S
rDNA, WMS is the analysis of all DNA sequences from a population of micro-
organisms in a given environment. WMS sequences are obtained from randomly
fragmented genomes within a sample and are therefore not limited to taxonomic

Chan et al. 359



T
a
b

le
2
.

Se
co

n
d
-g

en
er

at
io

n
se

q
u
en

ci
n
g

st
u
d
y

d
es

ig
n
s

fo
r

w
at

er
an

d
w

as
te

w
at

er
m

o
n
it
o
ri

n
g

p
ro

je
ct

s.

P
ro

je
ct

d
es

ig
n

an
d

co
m

m
u
n
it
y

p
ro

fil
in

g
Se

q
u
en

ci
n
g

p
la

tf
o
rm

an
d

te
ch

n
iq

u
e

N
o
.
o
f

sa
m

p
le

s
Ty

p
e

an
d

n
o
.

o
f
re

p
lic

at
es

P
ai

re
d
-e

n
d

re
ad

le
n
gt

h
(b

p
)

D
ep

th
(r

ea
d
s

p
er

sa
m

p
le

)

Lo
n
gi

tu
d
in

al
co

m
m

u
n
it
y

an
al

ys
is

o
f
b
o
g

la
ke

s
sa

m
p
le

d
w

ee
kl

y
o
ve

r
1
–
5

ye
ar

s.
9
1

H
iS

eq
,
1
6
S

rD
N

A
1
3
8
7

B
io

lo
gi

ca
l,

5
4
7

Te
ch

n
ic

al
,
2

2
3

1
5
0

5
3

1
0
4

M
ic

ro
b
ia

l
so

u
rc

e
tr

ac
ki

n
g

o
f
fe

ca
l
b
ac

te
ri

a
in

p
u
ts

in
to

th
e

La
ke

Su
p
er

io
r

w
at

er
sh

ed
.3

H
iS

eq
/M

iS
eq

,
1
6
S

rD
N

A
3
1
9

Te
ch

n
ic

al
,
3

2
3

1
5
0

1
.9

3
1
0

5

Lo
n
gi

tu
d
in

al
co

m
m

u
n
it
y

an
al

ys
is

o
f
an

ae
ro

b
ic

d
ig

es
te

rs
o
ve

r
1
4

d
ay

s
m

ix
ed

w
it
h

d
iff

er
in

g
sa

lt
co

n
ce

n
tr

at
io

n
s.

6
9

M
iS

eq
,
1
6
S

rD
N

A
1
5

B
io

lo
gi

ca
l,

3
2

3
2
5
0

4
.5

3
1
0

4

C
o
re

m
ic

ro
b
io

m
e

co
m

m
u
n
it
y

an
al

ys
is

o
f
ac

ti
va

te
d

sl
u
d
ge

sy
st

em
s

fo
r

lo
n
gi

tu
d
in

al
ch

ar
ac

te
ri

za
ti
o
n
.9

2
H

iS
eq

,
1
6
S

rD
N

A
3
9

B
io

lo
gi

ca
l,

1
3

2
3

1
5
0

4
.0

3
1
0

4

M
et

ag
en

o
m

ic
ch

ar
ac

te
ri

za
ti
o
n

o
f
n
it
ro

ge
n
-c

o
n
ta

m
in

at
ed

gr
o
un

d
w

at
er

.9
3

H
iS

eq
,
W

M
S

5
0

2
3

1
0
0

5
3

1
0

7

W
M

S
o
f
sh

o
re

-w
at

er
an

d
sa

n
d
-w

at
er

sa
m

p
le

s.
9
4

H
iS

eq
,
W

M
S

3
2

B
io

lo
gi

ca
l,

1
6

2
3

1
0
0

9
.4

3
1
0

6

Ta
x
o
n
o
m

ic
an

d
fu

n
ct

io
n
al

an
al

ys
is

o
f
an

ae
ro

b
ic

d
ig

es
te

rs
p
ro

ce
ss

in
g

sl
u
d
ge

an
d

m
an

u
re

.9
5

H
iS

eq
,
W

M
S

1
4

B
io

lo
gi

ca
l,

6
2

3
1
0
0

2
.8

3
1
0

7

Te
m

p
o
ra

l
st

u
d
y

o
f
ce

llu
lo

se
-d

eg
ra

d
in

g
la

b
-s

ca
le

an
ae

ro
b
ic

d
ig

es
te

rs
o
ve

r
1

ye
ar

.
A

ss
em

b
le

d
co

m
p
le

te
ge

n
o
m

es
.2

3
H

iS
eq

,
W

M
S

6
B

io
lo

gi
ca

l,
3

2
3

1
5
0

1
3

1
0

8

W
M

S:
w

h
o
le

-m
et

ag
en

o
m

e
se

q
u
en

ci
n
g.

360 Science Progress 102(4)



marker genes. This technique does not require primers and thus avoids issues with
primer bias. WMS profiles have been shown to more accurately reflect expected
community compositions.96 Furthermore, diversity estimates obtained with WMS
are often comparable or even greater than those obtained with 16S rDNA sequen-
cing due to greater taxonomic resolution based on multiple gene markers.97–99

The greater breadth of sequencing information obtained by WMS also allows
for more applications than 16S rDNA. For example, whereas 16S rDNA analysis
cannot be used to identify species not present in sequence databases, DNA
sequences obtained by WMS can be used to assemble previously uncharacterized
genomes.100 In addition to taxonomic profiling, WMS can identify metabolic gene
pathways in a community that may be of functional significance for a given sys-
tem.4,101 Taxonomic and functional profiles of metagenomes can be compared,
and chemical metadata enables insight into multiple elements of the microbiome.
These include the variability of functional potentials across samples, the effect
environmental parameters have on metagenome composition and functional
potential, and the presence of microbial communities and genes (i.e. biomarkers)
characteristic to the study environment.4,102 Profiling metabolic functions in envi-
ronmental microbiomes is important as microbial communities drive biogeochem-
ical processes.103 However, these additional applications require greater sequencing
depths than those typically analyzed by required for 16S rDNA amplicon sequen-
cing and thus incur greater costs than 16S rDNA amplicon sequencing.67,104

WMS has been used to study community growth patterns of cyanobacterial
harmful algal blooms (cHABs).105 Global proliferation of cyanobacteria in water
environments has been linked to eutrophication by phosphorous and nitrogen spe-
cies from residential and agricultural sources.106 The use of WMS to profile meta-
bolic genes in microbial communities reveals how cyanobacterial bloom
communities utilize these nutrients and adapt to changing environmental condi-
tions.105,107 By sequencing cyanobacterial blooms over time, predictive growth
models describing changes in community composition and function can be made
to forecast water quality impairment due to increased nutrient loading.108

In anaerobic digesters, fluctuations in physiochemical parameters such as pH,
temperature, total solids, and organic and inorganic chemical substances can inhi-
bit the activity of some microbes, leading to a shift in community proportions and
the accumulation of metabolites at inhibitory levels.109–111 WMS analysis of anae-
robic sludge digester by Li et al.112 demonstrated a decrease in abundance of the
hydrogenotrophic methanogen Methanosaeta, which produces methane from the
reduction of carbon dioxide using hydrogen, and stable growth of the acetoclastic
methanogen Methanosarcina, which produces methane from acetate, at elevated
levels of ammonium.112 This community shift was also reflected at the functional
gene level, where gene abundances encoding for enzymes responsible for the aceto-
clastic pathway increased during ammonium stress.112 As a result of ammonium
stress, methane production decreased due to the inhibition of hydrogenotrophic
methanogens and their genes.112 Therefore, the ability for WMS to obtain species-
level taxonomic abundances as well as gene abundances coding for enzymes and
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cellular mechanisms governing syntrophic interactions in the AD process is useful
for evaluating the biological basis of digester performance.

Since WMS is not subjected to amplification bias, low-abundance organisms
such as pathogens and viruses can be accurately detected, quantified, and sourced
to determine their presence and persistence in environments. 94,113–115 Culture-
based and molecular-based (PCR) assays for pathogen detection require selective
media and specific primers to detect pathogens. However, such methods are limited
in sensitivity and breadth of detection due to primer mismatches, inability to cul-
ture rare and novel pathogens, and simply because such analyses screen pre-selected
targets.116,117 The high-throughput, sequence-independent nature of WMS enables
the characterization of all offers comprehensive insight into the abundance, diver-
sity, and composition of known and unknown pathogens in a given environment.

WMS has been used to source and quantify antibiotic resistance genes (ARGs)
and virulence factors in waterbodies118,119 and wastewater processing systems.113,115

Effluent waste runoff from residential areas, pharmaceutical and agricultural indus-
tries, and wastewater treatment plants (WWTP) is discharged into lakes, resulting
in the accumulation of ARG and pathogens in waterbodies.120,119 By sequencing
the total DNA within a sample, WMS provides abundance estimates of ARG
types, virulence genes coding for bacterial motility, cell adherence and secretion,
and mobile genetic elements (MGE) such as transposons, plasmids, and bacterio-
phages.113,121,122 By analyzing the abundance of these genes, the potential of ARG
and virulence factor propagation by horizontal gene transfer across environments
can be determined.113,121 In addition, novel pathogenic species and strains can be
profiled by WMS for pre-emptive treatment of outbreaks in water and wastewater
environments.123–125

WMS principles

In WMS, the genomic DNA is extracted, randomly sheared into fragments, and
subsequently sequenced. DNA sequencing libraries are prepared by fragmentation,
size-selection, labeling, and enrichment of DNA. Library preparation protocols
used with Illumina sequencers include the TruSeq DNA series of library kits and
the transposon-based Nextera XT Library Kit protocols.28 DNA is first fragmented
by nebulization, sonication, or enzymatic digestion.126,25 After fragmentation, ends
of DNA fragments are repaired and adapters are ligated to facilitate sample DNA
binding to Illumina flow cells.25 The fragments are then size-selected by either gel-
electrophoresis or using solid-phase reversible immobilization (SPRI) beads.127

After size-selection, DNA sequences can be enriched in concentration and purity
by PCR using proprietary Illumina primers.25 Selecting a fragmentation method
depends on the type of library preparation kit used. Fragmentation by nebulization
and sonication is compatible with Illumina’s TruSeq Nano and PCR-free sample
preparation kits with a recommended input DNA mass of approximately 1–2 mg of
DNA.25 Alternatively, the Illumina Nextera XT library preparation kit is more
cost-effective and utilizes tagmentation, a process in which DNA is fragmented and
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simultaneously tagged using transposase enzymes while requiring only 50 ng of
input DNA.25 However, since transposases target sequence motifs, transposome-
based sequence fragmentation and tagging cause biased read coverage against
sequences with higher G and C nucleotide content compared to TruSeq PCR and
PCR-free library preparation methods due to the random and therefore unbiased
nature of DNA fragmentation by sonication or nebulization.25,128 After optional
PCR enrichment, the adapter-ligated sequences are then applied onto flow cells for
sequence cluster generation and fluorescent-based nucleotide detection.

Taxonomic profiling using WMS

Before taxonomic and functional analysis, WMS reads are quality-trimmed and -
filtered for adapters and low-quality base calls based on the phred scoring system.
This process is similar to the filtering and trimming applied to 16S rDNA sequen-
cing datasets with tools such as Trimmomatic73 and BBDuk.75 Taxonomic assign-
ment based on whole-genomes requires different software tools than 16S rDNA
sequencing. NCBI’s BLAST+(Basic Local Alignment Search Tool) and the accel-
erated BLAST tool, DIAMOND,129 align sequenced reads to translated-nucleotide
protein sequences stored in NCBI’s non-redundant (nr) protein database. The
aligned reads can then be binned and counted into taxonomic ranks using pro-
grams such as MEGAN6130 and DUDes.131 Marker-gene-based tools such as
MetaPhlAn2,132 PhyloSift,133 and mOTU134 in conjunction with alignment tools
such as Bowtie2135 and HMMER136 assign sequenced reads to a database contain-
ing clade-specific marker genes from .7500 bacterial and archaeal species to esti-
mate bacterial and archaeal relative abundances. Alternatively, programs such as
Kraken137 and CLARK138 assign entire sequenced reads to genomes, often employ-
ing unique k-mer (sequences of user-defined length k) abundances for taxonomic
classification. Read-based assignment tools generate slightly greater numbers of
false positives in taxonomic assignment at greater read depths than marker-based
assignment tools because reads that are initially falsely identified are further mis-
called as more reads are sequenced.139 The taxonomic false-positive rates produced
using marker-based and read-based taxonomic assignment tools for WMS can be
mitigated by classifying aligned reads using a lowest common ancestor (LCA) algo-
rithm as provided by MEGAN.130

Whole-metagenome sequence assembly

Fragmented DNA sequences produced by WMS can also be aligned and assem-
bled into contiguous sequences to form complete genomes in metagenomic sam-
ples. Assembly-based WMS analysis aligns raw reads at areas of overlap together
de novo into contiguous sequences called contigs to assemble draft genomes of
microbes in metagenomic samples using tools such as metaSPAdes and
Megahit.140,141 After assembly, contigs can either be binned into complete genomes
for novel species discovery100,142 or be directly mapped based on sequence
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homology using alignment algorithms such as BLAST and profile hidden Markov
models (HMMs)136 against nucleotide sequence databases such as NCBI’s non-
redundant (‘‘nr’’) protein database or MetaPhlAn’s clade-specific marker gene
sequences143 to quantify taxonomic and functional gene abundances.
Metagenomic novel genome construction requires at least two sets of metagenomes
from the same system that are differentiated by a treatment such as time of sam-
pling or DNA extraction method.100 The scaffolds are binned based on concerted
changes in the frequency of k-mer sequences between treatments.100 This binning
method is called compositional-based binning, which enables the discovery of
novel genomes and microbial species not by referencing known genes in existing
databases, but instead by de novo assembly and binning.100,23 Longer sequences
are required for greater taxonomic and functional resolution during alignment to
reference genomes.144 However, like the misalignment of short DNA fragments,
erroneous chimeric contigs can be constructed from fragments that have overlap-
ping regions, such as sequence repeats, that do not originate from the same gene or
species.145

The accuracy and quality of contig assemblies and the genomes produced varies
substantially between available programs.146 The quality of these genomes is evalu-
ated by determining the presence of putative single-copy genes essential to the sur-
vival of microbes by tools such as CheckM.142,147 The presence of the genes without
duplication indicates high-quality metagenomic assembled genomes (MAGs).142,146

Megahit and metaSPAdes are among the best performing metagenome assembly
programs based on accuracy in mock community analyses, percentage of reads
mapped to assemblies, computing power requirements, contig length, captured
diversity, and assembly error rates.146,148–150 Both programs capture greater than
75% of the expected diversity in mock microbial communities.150,146,149 Megahit is
recommended for studies where characterizing low-abundance diversity and micro-
bial strain resolution are priorities.149,150 metaSPAdes assembles longer contigs than
Megahit and performs better when reconstructing expected open reading frames
(ORF) of low-abundance species in mock communities with uneven species distri-
butions.148,149 The number of ORFs detected is indicative of the number of genes in
a sample.148 High sequencing depth for each sample is necessary to achieve com-
plete construction and coverage of the diverse genomes present in metagenomes
(Table 2).96,104,151 High sequencing depth achieves a greater diversity of species pro-
files by covering low-abundance genomes and genes and mitigates the effect of
sequencing errors and false-positive discovery rates generated during sequence anal-
ysis.18,104 High sequencing depth is achieved by reducing the number of samples
sequenced in flow cell lanes (Table 2).152

Microbiome functional profiling

WMS also provides insight into the physiological processes and abilities of micro-
bial communities. To obtain functional profiles of metagenomic sequences, genes
are first identified as coding DNA sequences, noncoding RNA genes, or other
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sequence motifs such as clustered regularly interspaced short palindromic repeats
(CRISPRs) in a process called gene prediction.153 Coding DNA sequences can be
identified and distinguished from noncoding RNA genes using tools such as
MetaGeneMark,154 Prodigal,155 and Prokka156 by detecting transcription initiation
sequences or ORF.155 Metagenomic sequences are functionally annotated based on
the protein and protein families categorized into protein sequence clusters of ortholo-
gous groups (COGs) they encode using software such as MG-RAST,157 MEGAN,130

IMG/M,153 HUMAnN for human microbiomes,158 and the package for the R statis-
tical language ShotgunFunctionalizeR.159 These tools map reads that are homolo-
gous to protein sequences previously curated and recorded into databases such as
KEGG,160 UniProt,161 MetaCyc,162 and SEED.163 The number of reads that map to
functional sequences can be used to quantify the abundances of genes coding for cel-
lular and metabolic mechanisms relative to the entire metagenome, providing insight
into the potential biological functions in a metagenomic sample.101

Determinations of microbial activity

A major limitation of 16S rDNA sequencing and WMS is that they cannot assess
microbial activity because they cannot differentiate between DNA from live cells and
DNA from lysed dead cells.69,164 Methods for assessing the overall microbial activity
that can accompany 16S rDNA sequencing and WMS include measurement of ATP
concentrations165 and differential staining assays that target live cells.166 Meta-tran-
scriptomic sequencing (MTS), also referred to as RNA-seq, is an SGS method that
can assess microbial activity through determination of microbial expression levels. In
MTS, the complementary DNA (cDNA) of RNA transcripts is sequenced, quanti-
fied, and annotated according to function and taxonomy.69,167 RNA extraction and
sequence processing methods for MTS have been reviewed elsewhere.168,169

Combining 16S rDNA and WMS approaches

WMS is a versatile tool for identifying the microbes present in water and waste-
water systems, characterizing their metabolic capacity and determining their poten-
tial pathogenicity. The utility of WMS outstrips that of 16S rDNA, and researchers
should consider investing in WMS if they have the resources and require a thor-
ough understanding of microbial community structure and function.96 However,
application of 16S rDNA and WMS does not need to be mutually exclusive. 16S
rDNA surveys can be used to identify unique samples for more in-depth investiga-
tion at greater sequencing depths with WMS.152 Samples of interest are identified
based on microbial community characteristics such as ecological diversity, dissimi-
larity between communities, or abundance of specific taxa. The combination of 16S
rDNA and WMS offers a potential for greater return of investment on sequencing.
The need to identify samples of interest can arise from the inherent heterogeneity of
water and wastewater systems.
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Heterogeneity of freshwater and wastewater systems

Microbial communities differ significantly across spatial and temporal scales in
freshwater watersheds170 and wastewater treatment systems.69 Even within a mixed
wastewater treatment system, biomass communities can differ from granule to
granule.68 Spatial heterogeneity requires researchers to consider which sampling
points are of highest priority and the significance of the microbial community at
each potential sampling point. For example, in drinking water monitoring pro-
grams, sampling plans may need to prioritize points closer to the consumer as
microbial communities have been found to significantly vary in composition
throughout distribution systems.50 Longitudinal studies are required to obtain
results that are an accurate representation of fluctuating microbial populations
within a system.69 Longitudinal studies should be designed to capture periods of
environmental change or system perturbation which may have significant impacts
on microbial community and system function. Furthermore, system heterogeneity
necessitates biological replication to determine variability within system types and
technical replication to assess the efficacy of sample homogenization measures
(Table 2).171 Finally, efforts to address system heterogeneity must be balanced with
the sequencing depth and sequencing costs.

Conclusion

This review introduces SGS and provides guidelines for monitoring water and was-
tewater environments using SGS. Despite the complexity of implementing DNA
sequencing strategies for water and wastewater quality monitoring, 16S rDNA and
WMS offer comprehensive methods for the characterization of microbial commu-
nities. Using SGS, water quality professionals can explore the potential of new
wastewater treatment technologies, inform drinking water quality surveys, and
track the spread of pathogenic genes throughout aquatic environments. In the
future, climate change and growing populations are likely to increase the frequency
of water shortages and waterborne disease outbreaks around the world.172,173 It is
the responsibility of water quality professionals to utilize all the tools at their dis-
posal for improving wastewater treatment and water resource stewardship.
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