Table 3.
A summary of the classification model performance in predicting cow BCS categories
| Classifier class | Model name | Validation accuracy, % | Validation total cost |
Test accuracy, % | Test total cost |
|---|---|---|---|---|---|
| Discriminant | Linear discriminant | 41.86 | 25 | 20 | 8 |
| Ensemble | Boosted trees | 44.19 | 24 | 40 | 6 |
| Bagged trees | 58.14 | 18 | 70 | 3 | |
| Subspace discriminant | 41.86 | 25 | 40 | 6 | |
| Subspace KNN | 41.86 | 25 | 50 | 5 | |
| RUSBoosted trees | 37.21 | 27 | 40 | 6 | |
| Kernel | SVM kernel | 46.51 | 23 | 50 | 5 |
| Logistic regression kernel | 44.19 | 24 | 50 | 5 | |
| k-nearest neighbor (KNN) | Fine KNN | 44.19 | 24 | 20 | 8 |
| Medium KNN | 32.56 | 29 | 40 | 6 | |
| Coarse KNN | 44.19 | 24 | 40 | 6 | |
| Cosine KNN | 34.88 | 28 | 20 | 8 | |
| Cubic KNN | 37.21 | 27 | 30 | 7 | |
| Weighted KNN | 44.19 | 24 | 30 | 7 | |
| Naive Bayes | Kernel Naïve Bayes | 39.53 | 26 | 40 | 6 |
| Neural network | Narrow neural network | 41.86 | 25 | 10 | 9 |
| Medium neural network | 48.84 | 22 | 40 | 6 | |
| Wide neural network | 34.88 | 28 | 20 | 8 | |
| Bilayered neural network | 37.21 | 27 | 50 | 5 | |
| Trilayered neural network | 39.53 | 26 | 50 | 5 | |
| Supported vector machine (SVM) | Cubic SVM | 41.86 | 25 | 40 | 6 |
| Fine Gaussian SVM | 44.19 | 24 | 40 | 6 | |
| Medium Gaussian SVM | 46.51 | 23 | 30 | 7 | |
| Coarse Gaussian SVM | 44.19 | 24 | 40 | 6 | |
| Linear SVM | 51.16 | 21 | 20 | 8 | |
| Quadratic SVM | 44.19 | 24 | 30 | 7 | |
| Tree | Fine tree | 44.19 | 24 | 80 | 2 |
| Medium tree | 44.19 | 24 | 80 | 2 | |
| Coarse tree | 44.19 | 24 | 70 | 3 |
The classifier class, model name, and performance parameters, including the accuracy of the validation and test (%) and the total cost in validation and test are provided. The general information of these classifiers is listed in Table 1. The best model is highlighted in italic.