Skip to main content
. 2023 Jul 24;7(1):txad085. doi: 10.1093/tas/txad085

Table 3.

A summary of the classification model performance in predicting cow BCS categories

Classifier class Model name Validation accuracy, % Validation
total cost
Test accuracy, % Test total cost
Discriminant Linear discriminant 41.86 25 20 8
Ensemble Boosted trees 44.19 24 40 6
Bagged trees 58.14 18 70 3
Subspace discriminant 41.86 25 40 6
Subspace KNN 41.86 25 50 5
RUSBoosted trees 37.21 27 40 6
Kernel SVM kernel 46.51 23 50 5
Logistic regression kernel 44.19 24 50 5
k-nearest neighbor (KNN) Fine KNN 44.19 24 20 8
Medium KNN 32.56 29 40 6
Coarse KNN 44.19 24 40 6
Cosine KNN 34.88 28 20 8
Cubic KNN 37.21 27 30 7
Weighted KNN 44.19 24 30 7
Naive Bayes Kernel Naïve Bayes 39.53 26 40 6
Neural network Narrow neural network 41.86 25 10 9
Medium neural network 48.84 22 40 6
Wide neural network 34.88 28 20 8
Bilayered neural network 37.21 27 50 5
Trilayered neural network 39.53 26 50 5
Supported vector machine (SVM) Cubic SVM 41.86 25 40 6
Fine Gaussian SVM 44.19 24 40 6
Medium Gaussian SVM 46.51 23 30 7
Coarse Gaussian SVM 44.19 24 40 6
Linear SVM 51.16 21 20 8
Quadratic SVM 44.19 24 30 7
Tree Fine tree 44.19 24 80 2
Medium tree 44.19 24 80 2
Coarse tree 44.19 24 70 3

The classifier class, model name, and performance parameters, including the accuracy of the validation and test (%) and the total cost in validation and test are provided. The general information of these classifiers is listed in Table 1. The best model is highlighted in italic.