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PURPOSE. Retinal ischemia is a common cause of a variety of eye diseases, such as retinopa-
thy of prematurity, diabetic retinopathy, and vein occlusion. Protein kinase RNA-activated-
like endoplasmic reticulum (ER) kinase (PERK), one of the main ER stress sensor proteins,
has been involved in many diseases. In this study, we investigated the role of PERK
in ischemia-induced retinopathy using a mouse model of oxygen-induced retinopathy
(OIR).

METHODS. OIR was induced by subjecting neonatal pups to 70% oxygen at postnatal day
7 (P7) followed by returning to room air at P12. GSK2606414, a selective PERK inhibitor,
was orally administrated to pups right after they were returned to room air once daily
until 1 day before sample collection. Western blot, immunostaining, and quantitative PCR
were used to assess PERK phosphorylation, retinal changes, and signaling pathways in
relation to PERK inhibition.

RESULTS. PERK phosphorylation was prominently increased in OIR retinas, which was
inhibited by GSK2606414. Concomitantly, PERK inhibition significantly reduced reti-
nal neovascularization (NV) and retinal ganglion cell (RGC) loss, restored astrocyte
network, and promoted revascularization. Furthermore, PERK inhibition downregu-
lated the recruitment/proliferation of mononuclear phagocytes but did not affect OIR-
upregulated canonical angiogenic pathways.

CONCLUSIONS.Our results demonstrate that PERK is involved in ischemia-induced retinopa-
thy and its inhibition using GSK2606414 could offer an effective therapeutic intervention
aimed at alleviating retinal NV while preventing neuron loss during retinal ischemia.

Keywords: ischemia-induced retinopathy, neovascularization, protein kinase RNA-
activated-like ER kinase (PERK), endoplasmic reticulum (ER) stress, retina

Retinal ischemia is a common cause of a wide range of
retinal pathologies, including retinopathy of prematu-

rity, diabetic retinopathy, and retinal vein occlusion, which
are characterized by pathological neovascularization (NV)
due to vessel degeneration, occlusion, or retarded growth.1–3

Surgical vitrectomy, laser photocoagulation, and intravitreal
injection of anti-VEGF agents are conventional therapies for
retinal NV.4,5 But due to the invasive nature and partial effi-
cacy of current treatment options, the rate of recurrent NV
remains high. Therefore, it is critical to identify novel targets
for retinal NV to improve therapeutic outcomes.

The endoplasmic reticulum (ER) is a membrane-bound
organelle where synthesis, folding, and trafficking of protein
occurs. When ER homeostasis is disrupted by a number
of insults, unfolded or misfolded proteins are accumulated
in the ER and saturate the capacity of the ER to fold
proteins, which causes ER stress and activates intracellu-
lar signal transduction pathways, collectively known as the
unfolded protein response (UPR).6–8 It has been reported
that ER stress is implicated in various pathological condi-
tions, including ischemia, and UPR is involved in physiolog-

ical or pathological angiogenesis by regulating angiogenic
factors,9,10 endothelial function,11 inflammation,12 oxidative
stress,13 and other cellular events.14–16 Protein kinase RNA-
activated-like ER kinase (PERK) is considered as an ER stress
sensor protein and plays a key role in the UPR pathway.17

PERK activation can reduce the load of misfolded proteins
in the ER by phosphorylating the α subunit of eukary-
otic initiation factor 2 (eIF2α) to attenuate the synthesis of
general proteins and thereby decrease their entry into the ER
lumen.18,19 Although this mechanism is important for the re-
establishment of ER homeostasis during ER stress, chronic
PERK activation causes tissue injury and can lead to various
diseases, such as Alzheimer’s disease, Parkinson’s disease,
Marinesco-Sjögren syndrome, amyotrophic lateral sclero-
sis, and light-induced photoreceptor injury.20–22 Although
ischemia-induced retinopathy is a prevalent eye disorder,
little is known about the role of PERK in ischemia-induced
retinopathy.

In this study, using a well-established mouse model
for ischemia-induced retinopathy (oxygen-induced retinopa-
thy [OIR]), we investigated the potential use of putative
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compound for the treatment of ischemia-induced retinal NV.
We demonstrated that PERK phosphorylation was promi-
nently increased in OIR retinas, and GSK2606414, a selec-
tive PERK inhibitor explored for the treatment of vari-
ous diseases, attenuated PERK phosphorylation, and signif-
icantly reduced retinal pathology in OIR.

METHODS

Animals and OIR Model

C57BL/6J mice were obtained from the Jackson Laboratory
(Bar Harbor, ME, USA) and bred in the animal resources
center at the University of Texas Medical Branch. All exper-
imental procedures were conducted in accordance with
the Association of Research in Vision and Ophthalmology
(ARVO) Statement for the Use of Animals in Ophthalmic
Vision and Research and approved by the Institutional
Animal Care and Use Committee of the University of Texas
Medical Branch. In OIR model, pups and their mothers were
subjected to hyperoxia (70% oxygen) at postnatal day 7 (P7)
and then returned to room air (21% oxygen) at P12.23 The
litter size was kept at six pups for each dam. Pups were
weighed at P7 and only the litter with mean body weight
around 4 g was placed into oxygen chamber for further
experiment. Age-matched pups were raised in room air (RA)
serving as control. Both female and male pups were used.

GSK2606414 Treatment

GSK2606414 was provided by GlaxoSmithKline. It was
dissolved at 5 mg/mL in water containing 0.5% hydrox-
ypropyl methyl cellulose (HPMC) and 0.1% Tween-80
(pH 4.0). Pups in each litter were weighted at P12 and
divided into two subgroups according to body weight (3
pups/group/time). One group of pups were orally treated
with vehicle (water containing 0.5% HPMC and 0.1% Tween-
80, pH 4.0), whereas the other group of pups were treated
with GSK2606414 (50 mg/kg) using an oral gavage feeding
tube once daily from P12 to P16 for sample collection at P17
(n = 42/group totally, which were used for morphological,
protein, and mRNA analysis) or from P12 to P18 for sample
collection at P19 (n = 12/group for morphological analysis).

Immunostaining of Retinal Whole Mounts

The eyeballs were collected and fixed, and then the reti-
nas were dissected, washed, blocked, and permeabilized,
as previously described.24 The retinas were incubated
with Alexa Fluor 594-conjugated Isolectin B4 (1:200; Ther-
moFisher Scientific, Waltham, MA, USA) or primary anti-
bodies against GFAP (1:500, Z033401-2; Agilent Technolo-
gies, Santa Clara, CA, USA), CD206 (1:200, 141710; BioLe-
gend, San Diego, CA, USA), Iba1 (1:200, 019-19741; FUJI-
FILM Wako Chemicals, Richmond, VA, USA), and RBPMS
(1:200, ABN1362; MilliporeSigma, Burlington, MA, USA) at
4°C overnight. After rinsing, the retinas were incubated with
appropriate Alexa Fluor 488-conjugated secondary antibod-
ies (1:400; ThermoFisher Scientific) for 4 hours at 4°C. Last,
the retinas were mounted and images were obtained using
a confocal microscope (LSM 800; Carl Zeiss, Inc., Thorn-
wood, NY, USA). To quantify central avascular area and
neovascular tufts of the retina, the surface areas of the total
retina, central avascular zone, and neovascularization were
measured using ImageJ software (Bethesda, MD, USA), as

previously described.25,26 The avascular area and neovascu-
larization were expressed as a percentage of the total retinal
surface area. For cell counting, eight images were taken at
the peripheral region of each retinal flatmounts, and cells
were manually counted and averaged for each sample.

Immunostaining of Retinal Sections

Retinal cryosections (10 μm) were prepared after embed-
ding in optimal cutting temperature compound. Immunos-
taining of the sections was performed as described previ-
ously27 with primary antibody p-PERK (SAB4301310; Milli-
poreSigma) and secondary antibody conjugated to Alexa
Fluor 594. Then sections were counterstained with DAPI
(blue) for the nuclei to identify the retinal nuclear layers.
Fluorescent images were taken by confocal microscopy.

Western Blot Analysis

Retinal protein was extracted with RIPA buffer (50 mM Tris-
HCl pH 7.4, 150 mM NaCl, 0.25% deoxycholic acid, 1% NP-
40, and 1 mM EDTA), supplemented with Complete Protease
and Phosphatase Inhibitors (Roche Applied Science, Indi-
anapolis, IN, USA). Protein concentration was measured
using BCA Protein Detection Kit (Pierce, Rockford, IL, USA).
Then, 10 μg of protein per sample was run on SDS-
polyacrylamide gels and transferred to PVDF membranes.
The primary antibodies included PERK (3192; Cell Signal-
ing, Danvers, MA, USA), p-PERK (3179; Cell Signaling;
and SAB4301310; MilliporeSigma), and α-Tubulin (T9026;
MilliporeSigma). Last, proteins were detected with Bio-Rad
ChemiDoc XRS+ (Bio-Rad Laboratories, Hercules, CA, USA).
The band intensities were quantified and normalized against
PERK. Relative protein expression changes were expressed
as x-fold change in relation to control retinas.

Real-Time Quantitative RT-PCR

Retinal RNA was extracted with RNAqueous-4PCR kit (Ther-
moFisher Scientific) and converted to cDNA using High-
Capacity cDNA Reverse Transcription Kit (ThermoFisher
Scientific). Quantitative PCR was performed using SYBR
Green Master Mix (Applied Biosystems, Waltham, MA, USA)
on a StepOnePlus PCR system (Applied Biosystems). Primer
sequences for mouse transcripts were as follows: VEGF For-
5′-TAC CTC CAC CAT GCC AAG TG-3′; VEGF Rev-5′-TCA TGG
GAC TTC TGC TCT CCT T-3′; Angiopoietin2 For-5′-ACA CCG
AGA AGA TGG CAG TGT-3′; Angiopoietin2 Rev-5′-CTC CCG
AAG CCC TCT TTG TA-3′; EPO For-5′-CCC CCA CGC CTC
ATC TG-3′; EPO Rev-5′-TGC CTC CTT GGC CTC TAA GA-3′;
Dll4 For-5′-GAC CTG CGG CCA GAG ACT T-3′; Dll4 Rev-
5′- GAG CCT TGG ATG ATG ATT TGG-3′; FGF2 For-5′-TGG
TAT GTG GCA CTG AAA CGA-3′; FGF2 Rev-5′-TCC AGG TCC
CGT TTT GGA T-3′; CD11b For-5′- AAA CCA CAG TCC CGC
AGA GA-3′; CD11b Rev-5′-CGT GTT CAC CAG CTG GCT TA-
3′; CD86 For-5′-TGG GCT TGG CAA TCC TTA TC-3′; CD86
Rev-5′-TCC ACG GAA ACA GCA TCT GA-3′; CD206 For-5′-
CCC AAG GGC TCT TCT AAA GCA-3′; CD206 Rev-5′-CGC
CGG CAC CTA TCA CA-3′; CX3CR1 For-5′-TCG GTC TGG
TGG GAA ATC TG-3′; CX3CR1 Rev-5′-GGC TTC CGG CTG
TTG GT-3′; Hprt For-5′-GAA AGA CTT GCT CGA GAT GTC
ATG-3′; and Hprt Rev-5′-CAC ACA GAG GGC CAC AAT GT-
3′. Data were normalized to the internal control Hprt. The
��CT method was used to calculate the fold difference in
different transcripts.
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Statistical Analysis

Statistical analysis was performed using GraphPad Prism
program (GraphPad Software, Inc., La Jolla, CA, USA).
Results were expressed as mean ± standard error of the
mean (SEM). The P values were calculated by Student’s t-test
or one-way ANOVA, and P < 0.05 indicates that the differ-
ence is statistically significant.

RESULTS

PERK is Activated in the Retinas of OIR Mice

A mouse model of OIR was used to investigate the role of
PERK in retinal NV. In this model, P7 pups were subjected
to 70% oxygen (hyperoxia) until P12,23,28–31 which induces
vascular regression and obliteration in the central retina
at P12 (Fig. 1A, upper panel). After returning mice to RA,
relative hypoxia promoted aberrant vessel growth and NV
reached its maximum at P17 (Fig. 1A, lower panel). To deter-
mine whether PERK was activated during OIR, the level of
PERK phosphorylation at Thr980, which serves as a marker
for PERK activation,32,33 was evaluated by Western blot anal-
ysis. We observed that p-PERK expression was not altered at
P12 but increased at P17 in the retinas of OIR mice compared
with that of RA controls (Fig. 1B). Consistently, immunostain-
ing of p-PERK in retinal sections demonstrated that p-PERK
was mainly increased in the ganglion cell layer (GCL), inner
nuclear layer (INL), and neovessels in OIR retinas at P17 (Fig.
1C). Together, these data indicate that PERK was activated
in the retinas of OIR mice.

PERK Inhibitor GSK2606414 Attenuates Retinal
NV and Avascular Area in OIR

GSK2606414 has been identified as a selective PERK
inhibitor and explored in various diseases.34–36 To determine
whether PERK activation had a role in retinal NV, vehicle
or PERK inhibitor GSK2606414 (50 mg/kg) was adminis-
tered by oral gavage once daily to OIR pups from P12 to
P16. We measured the phosphorylation level of PERK in
the retinas at P17 and observed that OIR-induced upregu-
lation of p-PERK was significantly abolished by the treat-
ment of GSK2606414 (Figs. 2A, 2B), suggesting that oral
administration of GSK2606414 can inhibit PERK activation
in the retinas during OIR. In addition, PERK inhibition did
not affect the body weight of OIR mice (Fig. 2C). Next,
we analyzed retinal NV and avascular area in vehicle- or
GSK2606414-treated OIR mice at the peak of NV (P17). Reti-
nal NV and vessel obliteration were observed in the reti-
nas of the OIR + vehicle treatment group. In comparison,
the avascular region and NV was significantly decreased by
14.3% and 29.5%, respectively, accompanied with increased
tip cells (2.64-fold) in the OIR + GSK2606414 treatment
group (Figs. 2D–2G).

PERK Inhibition Reduces NV and Promotes
Revascularization in OIR Retinas at P19

Because the reduction of avascular area at P17 (see Figs.
2D, 2E) indicates enhanced vascular repair after PERK inhi-
bition, we further treated OIR mice for an additional 2 days
(from P12 to P18) and collected samples at P19 to test if
this observation would be further enhanced. At P19, the
OIR + vehicle treatment group continued to exhibit high

levels of retinal NV and avascular area. In contrast, avas-
cular region and NV were reduced by 25.3% and 38.9%,
respectively, in the retinas of the OIR + GSK2606414 treat-
ment group at this time point (Figs. 3A–3C). Astrocytes
guide the development of retinal vasculature and modulate
NV during OIR. To evaluate if astrocyte network is altered
after PERK inhibition in OIR, we stained the retinas with
antibody against GFAP to identify astrocytes. In the reti-
nas of RA control mice, astrocytes showed stellate/dendritic
morphology and were closely correlated with normal retinal
vasculature. In the OIR + vehicle treatment group, stronger
GFAP immunoreactivity was observed in astrocytes which
were disordered around the distorted and expanded neovas-
culature. Moreover, we observed spotted GFAP reactivity
from the activated Müller cell end-feet within the superficial
vascular plexus. In contrast, in the OIR + GSK2606414 treat-
ment group, astrocytes were more orderly around the blood
vessel. Although the activation of astrocytes and Müller cell
end-feet was still observed in the OIR + GSK2606414 mice,
it occurred to a lesser extent (Fig. 3D).

PERK Inhibition Does not Affect the Upregulation
of Canonical Angiogenic Pathways in OIR

There are several important angiogenic factors that regu-
late pathological angiogenesis, such as VEGF, angiopoietin2,
EPO, Dll4, and FGF2. Their gene transcripts, quantified by
quantitative PCR, were upregulated in OIR retinas compared
with RA controls (Fig. 4). However, PERK inhibition with
GSK2606414 did not attenuate their upregulation, suggest-
ing that PERK inhibition-abolished NV is not dependent on
the alterations of canonical angiogenic signaling pathways.

PERK Inhibition Downregulates the
Recruitment/Proliferation of Mononuclear
Phagocytes in the OIR Model

Mononuclear phagocytes including monocytes,
macrophages, and microglia, have been shown to criti-
cally contribute to NV in OIR.37,38 Therefore, we examined
the gene expressions of CD11b (a pan-myeloid marker),
CD86 (a marker for M1 macrophages), CD206 (a marker for
M2 macrophages), and CX3CR1 (a marker predominantly
found on microglia within the central nervous system
including the retina). We found that the expressions of
CD11b, CD86, CD206, and CX3CR1 were dramatically
increased in the OIR + vehicle group compared with
RA controls, but they were significantly decreased after
GSK2606414 treatment (Fig. 5A). Moreover, we stained
retinal flatmounts with antibodies against CD206 and
pan-microglia and macrophage marker Iba1. Consistently,
CD206+ and Iba1+ cells in retinal flatmounts were markedly
increased in OIR retinas, which were significantly decreased
by PERK inhibition with GSK2606414 (Figs. 5B–5E).

PERK Inhibition Attenuates Retinal Ganglion Cell
Loss in the OIR Model

In addition to vasculopathy, neuronal injury includ-
ing RGC loss is another feature in ischemia-induced
retinopathies.39,40 To evaluate the effect of PERK on reti-
nal neuronal cell survival in OIR, we assessed the loss of
RGCs by quantifying the RGC number in the retina after
labeling with anti-RBPMS antibody. Our data showed a
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FIGURE 1. The phosphorylation level of PERK is increased in the retinas of OIR. WT mice were subjected to OIR or maintained in
room air (RA) as control. Eyeballs or retinas were collected at P12 and P17. (A) Representative images of retinal flatmounts with Isolectin
B4 staining for retinal vasculature at P12 and P17. (B) Phosphorylated PERK in the retina at P12 and P17 was evaluated by Western blot.
The α-tubulin was used as the internal loading control. (C) Representative images of phosphorylated PERK in retinal sections at P17 were
shown. DAPI (blue) was used to counterstain nuclei and identify the retinal nuclear layers as indicated by the labels. The white asterisk
denotes the neovessel (n = 4). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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FIGURE 2. PERK inhibition attenuates neovascularization and promotes revascularization in the retinas of OIR.Mice were subjected
to OIR or maintained in RA as control, and they were treated with PERK inhibitor GSK2606414 (50 mg/kg) or vehicle from P12 to P16.
Retinas or eyeballs were collected at P17. (A, B) Phosphorylated and total PERK was evaluated by Western blot. The α-tubulin was used as
the internal loading control for normalization (n = 3-4; **P < 0.01). (C) Body weight of OIR mice treated with vehicle or GSK2606414 (n
= 12). (D–G) Retinal flatmounts from vehicle- or GSK2606414-treated OIR mice at P17 were stained with Isolectin B4 and representative
images were shown (upper panel). High magnification images were shown for neovascular tufts (middle panel) and tip cells (lower panel,
white asterisks). Scale bar = 50 μm. Graphs represent the quantification of avascular and neovascularization area (n = 23–25) and the
number of tip cells (n = 6). **P < 0.01 and ****P < 0.0001 compared with vehicle.

reduction in the number of RGCs in the OIR + vehicle treat-
ment group compared to the RA control group, which was
significantly prevented by GSK2606414 treatment (22.46%
RGC loss in the OIR + vehicle group versus 6.73% loss in
the OIR + GSK2606414 group; Fig. 6). These data indicate
that PERK inhibition with GSK2606414 prevents RGC loss in
OIR.

DISCUSSION

As one of the major sensor proteins for ER stress, PERK
plays a key role in cell adaptive response during ER stress
by reducing the load of misfolded proteins. As a result,
although mice with PERK deletion are viable at birth, they
have congenital skeletal dysplasias, exhibit postnatal growth
retardation, and develop diabetes after P22.41,42 Nonethe-
less, overactive or chronic PERK activation causes tissue
injury and leads to diseases. As a result, inhibition of PERK
activation with GSK2606414 is beneficial in preventing or
treating various pathological conditions. These include the
prevention of neurodegeneration in a model of Parkinson’s
disease,43 the attenuation of light-induced photoreceptor

injury,20 delaying Purkinje cell degeneration and the onset
of motor deficits in a mouse model of Marinesco-Sjögren
syndrome,22 the prevention of neuronal death, and improve-
ment of neurological deficits after subarachnoid hemor-
rhage,44 as well as the protection against neuronal loss in
tauopathy.45

In cultured retinal cells, PERK inhibition has been shown
to attenuate high glucose-induced endothelial cell (EC)
death in EC-retinal pigment epithelial (RPE) cell co-culture,46

block ER stress inducer thapsigargin-induced CXCL10 and
CCL2 expression in a retinal photoreceptor cell line,47 and
inhibit RPE cell proliferation.36 However, very few studies
have been conducted to directly assess the role of PERK
in the ocular pathology in in vivo models of eye diseases
with the exception of studying the role of ATF4 and CHOP,
two of downstream targets of PERK pathway, that have been
found to cause the elevation of intraocular pressure and
glaucomatous neurodegeneration by promoting trabecular
meshwork dysfunction and cell death,48 trigger photorecep-
tor cell death in retinitis pigmentosa,49 induce VEGF upreg-
ulation and retinal inflammation in diabetic retinopathy,50

and be involved in RGC loss induced by NMDA, retinal
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FIGURE 3. Blockade of PERK attenuates vasculopathy and preserves astrocyte network in OIR at P19. OIR mice were treated with
GSK2606414 (50 mg/kg) or vehicle from P12 to P18. Eyeballs were collected at P19 and dissected for retinal flatmounts. (A–C) Retinal
flatmounts were stained with Isolectin B4 for retinal vasculature. Graphs represent the quantification of avascular area and neovascularization
area at P19 (n = 12). **P < 0.01 and ***P < 0.001 compared with vehicle. (D) Astrocytes were stained with anti-GFAP antibody (green) and
retinal vessels were stained with Isolectin B4 (red). Scale bar = 50 μm.

FIGURE 4. Blockade of PERK does not affect canonical angiogenic pathway. OIR mice were treated with GSK2606414 (50 mg/kg) or
vehicle from P12 to P16. Retinas were harvested at P17. The gene expressions of angiogenic factors were quantified by qPCR (n = 3-4).
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 compared with RA controls.

ischemia-reperfusion, and optic nerve crush.51–53 Our data
demonstrate that PERK plays a novel role in pathologi-
cal angiogenesis during ischemia-induced retinopathy. We
found that PERK phosphorylation was markedly increased
in P17 OIR retinas and PERK inhibitor GSK2606414 not
only effectively inhibited PERK phosphorylation but also
significantly reduced pathological angiogenesis. Unlike the
anti-VEGF agent that blocks physiological angiogenesis,54

PERK inhibition indeed promoted vascular repair, as demon-
strated by increased normal vascular area (less avascu-
lar area) in OIR retinas. This feature is clinically desired
because it will reduce retinal ischemia and therefore could
fundamentally alleviate the cause of pathological angiogen-
esis. Moreover, we found PERK inhibition was neuropro-
tective because GSK2606414 treatment significantly atten-
uated RGC loss in OIR retinas. This is another clini-
cally desired feature, as currently available treatments for

ischemia-induced retinopathy, including surgical vitrectomy,
laser photocoagulation, cryotherapy, and anti-VEGF agents,
do not exhibit neuroprotective benefits.

The specific mechanism of how PERK promotes reti-
nal NV in ischemia-induced retinopathy remains to be
further studied. Both ATF4 and CHOP were reported to
induce VEGF production in oxidative or hypoxic condi-
tions.55–57 However, PERK inhibition by oral administra-
tion of GSK2606414 did not influence the upregulation
of VEGF as well as other canonical angiogenic genes,
such as Angiopoietin 2, EPO, Dll4, and FGF2 but signifi-
cantly reduced retinal NV in OIR. This data suggests that
other mechanisms are involved in PERK-regulated retinal
NV. Recent studies indicate that mononuclear phagocytes,
including microglia and infiltrated monocytes/macrophages,
play a key role in the regulation of retinal NV.58 Mononuclear
phagocytes can secrete soluble angiogenic and inflammatory
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FIGURE 5. Blockade of PERK attenuates the recruitment/proliferation of mononuclear phagocytes in OIR. The OIR mice were treated
with GSK2606414 (50 mg/kg) or vehicle from P12 to P16. Retinas or eyeballs were harvested at P17. (A) Marker genes for different
mononuclear phagocytes were quantified by qPCR (n = 3–7). (B–E) Representative images of CD206 and Iba1 staining in retinal flatmounts
from vehicle- or GSK2606414-treated OIR mice at P17 were shown. Scale bar = 50 μm. Graphs represent the quantification of the number
of CD206+ cells and Iba1+ cells (n = 5-6). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 compared with RA control; #P < 0.05,
##P < 0.01, ###P < 0.001, and ####P < 0.0001 compared with vehicle-treated OIR.

FIGURE 6. Blockade of PERK prevents RGC loss in OIR. The OIR mice were treated with GSK2606414 (50 mg/kg) or vehicle from P12 to
P16. (A) Eyeballs were harvested at P17 and RGCs were stained with anti-RBPMS antibody (green) in retinal flatmounts. Scale bar = 50 μm.
(B) Quantification of RGC number (n = 6). ****P < 0.0001 compared with RA control; ###P < 0.001 compared with vehicle-treated OIR.



PERK Inhibition Prevents Oxygen-Induced Retinopathy IOVS | August 2023 | Vol. 64 | No. 11 | Article 17 | 8

factors that promote angiogenesis,59–61 and eliminating
monocytes/macrophages or regulating microglial activation
attenuates NV in OIR.37,38 To further explore the mecha-
nisms of PERK-induced retinal NV, we assessed a series of
mononuclear phagocytes markers, such as CD11b, CD86,
CD206, CX3CR1, and Iba1, and found these markers were
prominently increased in OIR retinas but were significantly
attenuated by GSK2606414 treatment. Moreover, analysis of
mononuclear phagocytes in retinal flatmount revealed that
compared to retinas from vehicle-treated OIR group, those
from GSK2606414-treatment mice exhibited fewer mononu-
clear phagocytes. Innate immunity is a crucial compo-
nent of the immune response as innate immune cells are
very sensitive and respond quickly to various patholog-
ical stimuli, during which ER stress drives many inflam-
matory transcription factors and genes’ responses. PERK-
eIF2α pathway is found to inhibit the synthesis of IKβ and
promote the nuclear translocation of NFκB in response to
ER stress.62 Additionally, PERK can directly bind JAK1 to
influence the activity of STAT3, followed by enhanced IL-
6, CCL2, and CCL20 production.63 Our data suggest that
PERK works as a modulator of mononuclear phagocytes
recruitment/proliferation, and therefore promotes retinal NV
in ischemia-induced retinopathy. Considering that PERK
participates in retinal NV independent of canonical angio-
genic molecules, including VEGF, the combination of PERK
inhibitor with existing anti-VEGF therapy may offer better
outcomes for pathological NV in ischemia-induced retinopa-
thy.

In summary, our data provide compelling evidence that
PERK plays a key role in ischemia-induced retinopathy.
Inhibition of PERK by oral administration of GSK2606414
effectively remitted the dysregulation of astrocyte network,
relieved pathological angiogenesis, and enhanced the
survival of RGCs likely through inhibiting recruit-
ment/proliferation of mononuclear phagocytes. Because
pathological angiogenesis can result from a variety of
diseases, such as retinopathy of prematurity, diabetic
retinopathy, retinal vein occlusion, wet age-related macular
degeneration, and neovascular glaucoma, our data warrant
further exploration of PERK inhibition in different NV
models to assess whether it is an effective therapeutic
strategy for these vision-threatening diseases.
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