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Summary.

Current meta-analytic methods for diagnostic test accuracy are generally applicable to a selection 

of studies reporting only estimates of sensitivity and specificity, or at most, to studies whose 

results are reported using an equal number of ordered categories. In this article, we propose a 

new meta-analytic method to evaluate test accuracy and arrive at a summary receiver operating 

characteristic (ROC) curve for a collection of studies evaluating diagnostic tests, even when test 

results are reported in an unequal number of nonnested ordered categories. We discuss both non-

Bayesian and Bayesian formulations of the approach. In the Bayesian setting, we propose several 

ways to construct summary ROC curves and their credible bands. We illustrate our approach 

with data from a recently published meta-analysis evaluating a single serum progesterone test for 

diagnosing pregnancy failure.

Résumé
Les méthodes courantes de meta-analyse de la précision d’un test diagnostique s’appliquent en 

général à une sélection d’études rapportant seulement des estimations de la sensibilité et de la 

spécificité ou, au mieux, à des études dont les résultats sont présentés avec le même nombre 

de catégories ordonnées. Dans ce papier nous proposons une nouvelle méthode de méta-analyse 

pour évaluer la précision d’un test et aboutir à une courbe ROC globale pour un ensemble 

d’études évaluant des tests diagnostiques, même lorsque les résultats sont présentées avec des 

nombre inégaux de catégories non emboîtées. Nous discutons à la fois les formulations bayésienne 

et non-bayésienne de l’approche. Dans le cadre bayésien, nous proposons plusieurs moyens 

pour construire les courbes ROC globales et leur intervalle de crédibilité. Nous illustrons notre 

approche avec les données d’une meta-analyse récemment publiée évaluant un test de diagnostic 

d’échec d’une grossesse à partir de la progestérone sérique.
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1. Introduction

The need for comprehensive evaluation of diagnostic tests is motivated by clinical, as well 

as health policy-making, considerations (Irwig et al., 1994). From the clinical standpoint, 

proper assessment of test accuracy facilitates the correct use and interpretation of test results. 

From the health policy-making point of view, test accuracy assessment provides a basis 

for a cost-benefit evaluation of the test and its performance vis-à-vis alternative testing 

procedures. Given these considerations, a systematic review and synthesis of all published 

information about a diagnostic test are necessary for the overall assessment of its diagnostic 

value.

Statistical methodology for meta-analysis of diagnostic accuracy studies has largely been 

focused on the most common type of studies—those reporting estimates of test sensitivity 

and specificity. Meta-analytic models have been developed to combine information from 

such studies in both fixed and random-effect frameworks (Moses, Shapiro, and Littenberg, 

1993; Irwig et al., 1994; Hasselblad and Hodges, 1995; Irwig et al., 1995; Shapiro, 1995; 

Rutter and Gatsonis, 1995, 2001; Hellmich, Abrams, and Sutton, 1999; Kester and Buntinx, 

2000). However, for studies where test results are reported in a potentially unequal number 

of categories, no standard method has been devised. In some instances, outcome categories 

are collapsed into two groups, and only one pair of specificity and sensitivity per study is 

used in the analysis. Alternatively, as shown in Mol et al. (1998), weighted combinations 

of all pairs of categories from the same study may be used. In meta-analysis of treatment 

effects, Dominici et al. (1999) suggest a latent variable method to convert continuous and 

dichotomous treatment outcomes to a common continuous scale. Similarly, Whitehead et 

al. (2001) develop fixed and random-effects models to combine ordinal outcomes from 

treatment effect studies.

In this article, we present a new method for meta-analysis of diagnostic test studies that can 

be used to synthesize results from studies where test outcomes are reported in an unequal 

number of nonnested ordered categories. After an overview of ROC analysis and summary 

ROC curves in Section 2, in Section 3, we introduce the fixed-effects meta-analysis model 

and discuss the construction of summary ROC curves and their confidence bands. Section 

4 introduces the hierarchical formulation of the meta-analytic model, with several suggested 

methods for summarizing diagnostic test accuracy and assessing its variability. In Section 

5 we present an application of the methodologies from Sections 3 and 4 to the pregnancy 

failure data of Mol et al. (1998), concluding with a discussion in Section 6.

2. ROC Analysis and Summary ROC Curves

Diagnostic accuracy of a test refers to its ability to correctly diagnose the true disease 

status. To assess the accuracy, test results have to be compared against the truth (or the 

“gold standard”), ascertained usually via more costly and complex procedures, such as 

biopsy or surgery. The fraction of patients found to be correctly diagnosed as positive (true 

positive rate, or sensitivity), and those correctly diagnosed as negative (true negative rate, 

or specificity) are two typical measures of diagnostic accuracy. It is important to note that 

both sensitivity and specificity are tied to the particular underlying diagnostic threshold that 
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defines test outcomes as “positive” (T+) or “negative” (T− ). A perhaps better measure of 

test accuracy is the receiver operating characteristic (ROC) curve (Swets and Pickett, 1982). 

The ROC curve is a plot of all pairs of true positive and false positive rates, found as the 

diagnostic threshold ranges over all possible values.

The ROC curve provides a detailed portrait of test accuracy. In practice, several low-

dimensional functionals are used to summarize and compare ROC curves. One of the most 

common summary measures is area under the curve (AUC). It takes values between 0 and 

1, and can be interpreted as Pr Y 1 > Y 2 , the probability that in a randomly chosen pair of a 

diseased and a nondiseased case, the diseased case is correctly ranked as more likely to have 

the disease. The nonparametric AUC estimator is in fact the Mann-Whitney version of the 

Wilcoxon two-sample rank sum statistic (Bamber, 1975; Hanley, 1998). The values of AUC 

that are closer to 1 indicate more accurate tests, while a test with AUC below 0.5 is worse 

than a coin flip in assigning diagnoses to patients.

Other functionals, such as the partial area and the Q* statistic are also used. The partial 

area (PAUC) is AUC evaluated over a subrange of threshold values whose sensitivity and 

specificity are clinically relevant (McClish, 1989). The Q* statistic (Moses et al., 1993) is 

defined as the point on the ROC curve where sensitivity equals specificity. In cases where 

ROC curves are symmetric or nearly symmetric, the Q* statistic can be used to compare tests 

in terms of diagnostic accuracy. Larger Q* values correspond to ROC curves shouldering up 

more closely to the desirable corner where both specificity and sensitivity are high.

2.1. Estimation of ROC Curves

The empirical ROC curve is a square-grid plot of (sensitivity, 1-specificity) pairs, estimated 

at each reported diagnostic threshold. A smooth ROC curve can be estimated via 

parametric methods (McCullagh, 1980; Tosteson and Begg, 1988; Pepe, 2000) or semi- 

and nonparametric methods (Zou, Hall, and Shapiro, 1997; Pepe, 2000).

Parametric ROC analysis for ordinal categorical test results has a close link to ordinal 

regression. To illustrate, consider a study where a single test is administered and the results 

are reported using J − 1 thresholds, that is, in J ordered categories. Let Y i denote the test 

result of the i-th patient, where Y i ∈ 1, …, J . For example, a 5-category scale is often 

used in the evaluation of diagnostic imaging, ranging from 1 = “definitely normal” to 5 = 

“definitely abnormal.” We assume that each response Y i arises from an underlying latent 

continuous variable Mi via discretization at thresholds θ0 < ⋯θj⋯ < θJ, so that Y i = j when 

θj − 1 < Mi < θj, where θ0 = − ∞ and θJ = ∞. Let Di indicate the true disease status of the 

patient i with Di = 1 if disease is present and Di = 0 if not. Then, the simplest ordinal 

regression model with only one covariate (disease status) is given as follows:

g P Y i ≤ j ∣ Di = θj − βDi

exp αDi
. (1)

The link g is a monotone function such that 0 ≤ g−1 ⋅ ≤ 1, often probit or logit. Given α and 

β, formula (1) yields false positive P T + ∣ D− = P Mi ≤ θ ∣ Di = 0  and true positive rates 
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P T + ∣ D+ = P Mi ≤ θ ∣ Di = 1  for any threshold θ, resulting in a continuous ROC curve. β
is commonly referred to as the location and α as the scale of the ROC curve.

Other covariates besides Di can easily be incorporated into (1). For example,

g P Y i ≤ j ∣ Di, Xi
l , Xi

s = θj − βDi + δXi
l

exp αDi + γXi
s . (2)

Here, Xi
l  and Xi

s  are the patient i’s vectors of location and scale covariates, of dimensions 

ql and qs, respectively, possibly including interactions between covariates or interactions 

between covariates and disease status. Inclusion of covariates results in a model that yields 

a separate ROC curve for each unique combination of covariate levels. Note that when the 

test results are binary, a trivial empirical ROC curve is obtained, with only one observed pair 

of sensitivity and specificity estimates. In such situations, the full ROC model (1) cannot be 

estimated without specifying one of the unknown parameters, α or β; often, α is fixed at 0 

and a symmetric ROC curve is obtained.

2.2. Summary ROC Curves

One of the main goals of a meta-analysis of diagnostic accuracy studies is to provide a 

summary measure of diagnostic accuracy based on a collection of studies and their reported 

empirical or estimated smooth ROC curves. When all involved studies use a dichotomous 

reporting scheme (reporting sensitivity and specificity estimates only), the simplest summary 

measure would be the average sensitivity and specificity. However, this would be valid only 

if it were known that all studies used the same diagnostic threshold.

Moses et al. (1993) have proposed a method that accounts for threshold differences, by 

essentially fitting a summary ROC (SROC) curve to the scatterplot of all sensitivity and 

specificity pairs from studies with two categories. Their SROC curve is constructed by 

calculating two quantities: ℬk = logit TPRk − logit FPRk  and Sk = logit TPRk + logit FPRk , 

where logit p = ln p/ 1 − p  and TPRk and FPRk represent the reported sensitivity and 1-

specificity for study k. The estimates λ0 and λ1 from the model ℬk = λ0 + λ1Sk + ek are then 

used to estimate the “summary” relation between FPR (false positive rate) and TPR (true 

positive rate), yielding a smooth SROC curve. This SROC model can be extended to include 

study-level covariates. A binary regression approach to the problem of combining data from 

studies reporting pairs of sensitivity and specificity has also been proposed by Rutter and 

Gatsonis (1995, 2001).

To meta-analyze studies with results in more than two categories, one approach is to 

dichotomize results by grouping them into two categories and then employing the above 

method. However, it is more efficient to take all thresholds into account. Some work has 

been published on methodology that could be used in meta-analysis of ROC studies with 

equal number of aligned categories (Gatsonis, 1995; Ishwaran and Gatsonis, 2000). None of 

these approaches, however, is able to accommodate meta-analyses with test results reported 

in an unequal number of (nonaligned) categories.
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In this article, we consider both a fixed-effects and a random-effects formulation of meta-

analysis of studies with an unequal number of nonnested categories. The random-effects 

formulation employs a hierarchical ordinal regression model, which allows for heterogeneity 

of studies beyond what could be contributed to different thresholds, and accounts for within-

study correlation. This approach relaxes the assumption that all studies have the same 

underlying ROC curve; rather, it assumes that each study estimates a study-specific ROC 

curve that can be viewed as a random sample from a population of all ROC curves of such 

studies.

3. Fixed-Effects Meta-analysis Model

The fixed-effects framework for meta-analysis usually focuses on estimating a single 

summary measure of interest based on the information provided in the individual studies 

(Cooper and Hedges, 1994). The salient feature of the fixed-effects model is that it contains 

no between-study component of variation. Our fixed-effects model for meta-analysis of 

test accuracy studies is based on the assumption that all studies have the same scale and 

location parameters, and hence the common ROC curve. However, the model assumes that 

each study has its own set of thresholds, θ, independent from the thresholds used in other 

studies. Thus, the observed differences are thought to result only from different diagnostic 

thresholds.

Let Θ = θ, α, β, γ, δ  be the vector containing thresholds from every study, location and scale 

parameters, and regression coefficients. Denote by Y ik the observed test outcome for the 

ith patient from the kth study. Assume for now that we only have disease status Dik as a 

covariate. Then, the likelihood based on the data from K studies is given as follows:

L Θ ∣ Y =  
k = 1

K

j = 1

Jk

i ∈ Gjk

g−1 θj, k − βDi, k

exp αDi, k

−g−1 θj − 1, k − βDi, k

exp αDi, k

I yik = j
(3)

where Gjk is the group of patients from study k whose test outcomes fall into jth category, 

g−1 θj, k − βDi, k /exp αDi, k  is assumed to be 1 when j = Jk and 0 when j = 0; I ⋅  is the 

indicator function. Estimation of parameters can be done via numerical maximization of the 

likelihood (3). The program was written in Matlab 5.3 and can be obtained on request. The 

SROC curve is then obtained by plotting the pairs TPR, FPR  at each threshold :

TPR θ   = P T+ ∣ D+, θ = P Y ≤ θ ∣ D = 1

  = g−1 θ − βDi, k

exp αDi, k

FPR θ   = P T+ ∣ D−, θ = P Y ≤ θ ∣ D = 0 = g−1 θ ,
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where α and β correspond to the maximum likelihood estimates of the scale and location, 

respectively. If additional covariates are present in the model in such a way that they 

affect test accuracy (either through interacting with disease status or directly affecting the 

scale), an SROC curve is defined separately for each unique combination of levels of these 

covariates.

The SROC curve summarizes the overall performance of a diagnostic test, and on the basis 

of it, one can compare one test to another. To do this, we need to assess the variability of 

the estimated SROC curve. The variance of every point on the estimated SROC curve can be 

obtained either by the delta method or by bootstrap. The latter adjusts the intervals for the 

correlation of outcomes within the studies. The variance estimates can then be used to derive 

the upper and lower pointwise confidence bands around the estimated SROC curve.

4. Bayesian Hierarchical Meta-analysis Model

The hierarchical model can account for different sources of variation in the data, through 

study-specific location and scale parameters. This model explicitly uses latent variables M
that give rise to the data Y via a discretization process depending on thresholds :

Level I (within-study variability)

Mik ∣ Dik, βk, αk, Zik = Di, kβk + Zikexp αkDik
Zik N 0,1 ,  or equivalently, 
Mik ∣ Dik, αk, βk N 0,1 ,  if Dik = 0N βk, exp 2αk ,  if Dik = 1

Level II (between-study variability)

αk  N Γ′Vk, σα
2

βk  N Λ′Wk, σβ
2

θ0, k  N 0, 103

θj, k  =
i = 0

j − 1
θi, k + Exp 0.01 ,  for j > 0 .

Level III (Hyperpriors)

Γ l1, Λl2  N 0, 106 ,  where 0 ≤ l1 ≤ v1 and 0 ≤ l2 ≤ v2

σα
2, σβ

2  ℐG 0.01,0.01 .

Vk and Wk are study-level covariate vectors of dimensions v1 and v2, respectively. The 

parametrization of thresholds θj, k in terms of their increments (each increment is a draw from 

an exponential with mean 100) preserves the order restriction among the thresholds and 

increases the efficiency of the Markov chain Monte Carlo (MCMC) algorithm we used to fit 

the model. We will examine the sensitivity of the posterior estimates to prior assumptions by 

varying the inverse gamma parameters in the priors for precision parameters σα and σβ.
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Note the similarity between the ordinal regression likelihood shown in (1) and level 1 of the 

above hierarchical model. Given αk and βk:

P Y ik ≤ j ∣ Dik   = P Mik < θjk ∣ Dik  
= Φ θjk − βkDik /exp αkDik .

Here, βk is the location parameter and αk the scale parameter for the ROC curve of study 

k. Study-level covariates explain some of the systematic between-study variability due to 

differences in study characteristics. The joint posterior distribution (given Y and covariates 

D, V, W) is proportional to:

k = 1

K
exp −θ0, k

2

2*103 j = 1

Jk

exp −0.01 θj, k − θj − 1, k

  ×
i ∈ Gjk

exp −Mik
2 /2 I Dik = 0

  × 1
exp αk

exp − Mik − βk
2

2exp 2αk

I Dik = 1

× I θyik − 1, k ≤ Mik ≤ θyik, k σα
2σβ

2 − 1.51

  × exp − αk − Γ′Vk
2 + 0.02

2σα
2 − βk − Λ′Wk

2 + 0.02
2σβ

2

  × exp −Γ′Γ − Λ′Λ
2 ⋅ 106

(4)

The MCMC algorithm used to summarize this posterior can be easily implemented in BUGS 

software (http://www. mrc-bsu.cam.ac.uk/bugs). A Metropolis step can be used to sample 

from the full conditional distribution of each αk.

4.1. Summary ROC Curves

The MCMC algorithm output (after thinning) is a sequence of N nearly independent draws 

from the approximate joint posterior distribution. Let superscript t  denote the iteration 

index, and suppose, for now, that there are no study-specific covariates. The one-to-one 

correspondence between the collection of location-scale pairs and ROC curves implies 

that each of the sampled pairs βk
t , αk

t  defines one ROC curve for study k. Hence, for 

every individual study, we have N simulated ROC curves. We now propose three ways to 

summarize the simulated curves and obtain summaries of test accuracy.

1. Mean summary ROC curve. The first method for defining an SROC curve based 

on the collection of simulated ROC curves is to construct a posterior mean SROC 

curve as follows: at every iteration t, we form a curve whose scale and location 

parameters equal the means of all study-specific scale and location parameters at 

that iteration: α t = ∑k = 1
K αk

t /K and β t = ∑k = 1
K βk

t /K. With this approach, we get 

a sample of N iterates of the SROC curve. The final mean SROC curve is defined 

as the curve with scale αS and location βS parameters, where αS = ∑t = 1
N α t /N, 

and βS = ∑t = 1
N β t /N. This mean SROC curve converges pointwise to the ROC 
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curve with scale and location equal to the population means of all individual-

study scale and location parameters. Thus, there is no guarantee that this SROC 

curve will correspond to the ROC curve from any particular study. Furthermore, 

because ROC curves are nonlinear functions of their parameters, the mean SROC 

curve does not even have to lie in the middle of the simulated curves.

2. Pointwise mean summary ROC curve. Another summary construct is a pointwise 

mean SROC curve, derived by finding pointwise averages of the simulated 

sample of ROC curves. These are averages of the simulated true positive rates 

for each fixed value of the false positive rate. In other words, we estimate 

the SROC curve by taking pointwise averages of all curves from N iterations: 

TPRavg  FPR = ∑k = 1
K ∑t = 1

N TPRt, k FPR /NK. Although the resulting SROC curve 

will not necessarily be smooth (technically, it is not an ROC curve at all), each 

point on the pointwise mean SROC curve has an interpretation as the average 

TPRs for a fixed FPR. The pointwise median TPR for a fixed value of FPR could 

also be used, leading to a pointwise median SROC curve. Note that the role of 

TPR and FPR could be reversed in these definitions, but the resulting curves will 

be somewhat different.

3. Loess summary ROC curve. Another nonparametric way of summarizing the 

simulated ROC curves is to use loess. For study k, each of N curves can be 

treated as a collection of points—pairs of true positive and false positive rates

—and a loess curve can be fitted to all these pairs. To obtain the final SROC 

curve, all fitted loess points from every study would be refitted by another 

loess procedure. It is important to note, however, that loess summaries may be 

nondecreasing in some situations, and thus are not true ROC curves.

4.2. Credible Intervals for the Summary ROC Curve

Several methods for constructing confidence bands for ROC curves have been proposed in 

the literature (Hilgers, 1991; Ma and Hall, 1993; Campbell, 1994; Li, Tiwari, and Wells, 

1996; Zou et al., 1997). The simplest ones are pointwise bands, constructed at each (TPR, 

FPR) point of the ROC curve. The delta method is commonly used to produce parametric 

pointwise confidence intervals for sensitivity (holding specificity fixed). Nonparametric 

pointwise confidence intervals have been discussed by Hilgers (1991), who proposed a 

joint “confidence rectangle” around each observed (TPR, FPR) point, and by Zou et al. 

(1997), who use asymptotic normality of the logit transformation of the TPR to find the 

pointwise standard deviation of TPR at each fixed FPR. Simultaneous confidence bands 

for the ROC curve of a continuous test were discussed in Campbell (1994), wherein 

simultaneous confidence rectangles were derived based on the the maximum distance 

statistic between two empirical ROC curves, using Kolmogorov-Smirnov theory. These 

rectangles are not confidence bands for the entire ROC curve, but rather only for all reported 

thresholds simultaneously. In terms of the confidence bands for the entire ROC curve for 

continuous diagnostic tests, Campbell (1994) suggests a method based on bootstrapping of 

the underlying diseased and nondiseased patient groups. We are not aware of any published 

work on confidence bands for the entire ROC curve derived from ordered categorical test 

data.
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The remainder of this section is devoted to the description of two methods for estimating 

credible bands for SROC curves based on the sample of simulated ROC curves. The first 

method constructs an envelope for the entire SROC curve by finding the credible bands 

among the simulated curves themselves. The second method constructs simple pointwise 

bounds for the SROC curves using the NK simulated ROC curves.

1. Envelope for SROC curves. This method finds the envelope that entirely 

encapsulates 95% (or any given credible level) of all simulated ROC curves. 

The envelope can be found by considering each of the simulated curves in the 

sample as a potential candidate for the upper and lower band. More specifically, 

we count how many other curves lie entirely above and below each candidate 

curve, and select those candidates that cut off the number of curves closest to 

the prespecified credible level. However, because simulated curves cross quite 

often, especially in the regions close to the lower left and upper right corners, it 

may be hard to find an individual curve entirely “above” (or “below”) 95 percent 

of all other curves in the sample. To alleviate this situation, one can restrict the 

definition of “above” (“below”) to a middle FPR region away from the lower left 

and upper right corners. This region would correspond to the clinically relevant 

values of specificity, excluding those values which are not observed in practice 

(McClish, 1989; Ma and Hall, 1993).

2. Pointwise bands for ROC curves. Pointwise credible bands for the SROC curve 

are constructed based on the percentiles of sensitivity values from all simulated 

ROC curve that correspond to the same fixed specificity. The 95% pointwise 

credible bands for the SROC curve, for example, are constructed by finding 2.5 

th and 97.5 th percentile of all NK simulated sensitivity values for every given 

FPR.

Instead of working with the curves themselves, it might be of interest to examine the 

posteriors of some one-dimensional functionals of the simulated ROC curves, such as AUC, 

partial AUC and Q* statistics, and to utilize as bands those curves that correspond to chosen 

posterior percentiles of these functionals.

5. Progesterone and Diagnosis of Pregnancy Failure

Low concentration of serum progesterone in pregnancy has long been thought of as an 

indication of pregnancy disorder. It may be an early sign that the oocyte maturation was 

incomplete and that the released egg is not likely to turn into a successful embryo (Carr 

and Evans, 2000). One of the greatest benefits of serum progesterone as a test is its ease 

of implementation in emergency situations; this makes it one of the most widely performed 

tests on initial visits. For over three decades, clinicians have been studying the use of 

progesterone in distinguishing between viable intra-uterine pregnancy and pregnancy failure 

(Phipps et al., 1999; Jouppila et al., 1980). Mol et al. (1998) give a nice overview of the 

history of the serum progesterone test use in diagnosis of pregnancy disorders.

We now meta-analyze 20 studies (Table 1), published from 1980 to 1996, assessing the 

accuracy of the serum progesterone test in distinguishing between viable pregnancy and 
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pregnancy failure (defined as either ectopic or nonviable intrauterine pregnancy). We chose 

a subset of 20 out of the 27 studies originally given in Mol et al. (1998), based on the 

condition that studies should not have zero counts in more than one cell of their summary 

tables; this avoids numerical difficulties with degenerate tables. Among the selected studies, 

seven had 2 categories, four had 4, eight had 5, and one had 7. Thirteen of the studies 

were prospective and 7 retrospective. Our objective here is to derive the SROC curve for 

the single serum progesterone test for diagnosing pregnancy failure, and to examine whether 

systematic differences in diagnostic accuracy exist between retrospective and prospective 

studies. The particular study-level covariate (retrospective vs. prospective design) is used 

here simply for illustrative purposes. However, recent reviews of studies of diagnostic tests 

have discussed the influence of study design on diagnostic performance in greater detail 

(Lijmer et al., 1999; Bossuyt et al., 2003).

5.1. Fixed-Effects Analysis

Let γ be the regression coefficient corresponding to the study design covariate Rk, coded 

−1 if study k is retrospective, and 1 if prospective. Let the Y ik denote the true progesterone 

reading for the patient i in study k (that has only been observed as belonging to one of the 

reported categories). We use the following probit model:

P Y ik ≤ j ∣ Dik = Φ θjk − βDik
exp α + γRk Dik

.

Note that Rk only appears in the scale part of the model; its simultaneous presence in 

location and scale would result in highly-correlated estimates (see Tosteson and Begg, 

1988).

We first fitted a simpler model without any study-level covariates, setting γ = 0. The 

Newton-Raphson algorithm converged in 8 steps. As seen in Table 2, the location parameter 

is estimated to be 2.42, with the asymptotic standard error of 0.09, while the scale estimate 

is 0.49 with the asymptotic standard error of 0.05. Both scale and location appear to be 

significant. The SROC curve and its pointwise confidence bands (obtained via the delta 

method) are shown in Figure 1. AUC under the SROC curve was estimated numerically 

(using the trapezoidal rule) to be 0.90 (with the delta-method based standard error of 0.004). 

By analogy to the usual interpretation of the AUC, this estimated area under the SROC may 

be interpreted as an estimate of the probabilities that in a randomly chosen pair of women, 

one with viable pregnancy and the other with pregnancy failure, the first woman would have 

higher progesterone level measurement than the second. Based on these results, we may 

conclude that, on average, a single serum progesterone measurement can discriminate well 

between viable intra-uterine pregnancy and pregnancy failure in the population of women 

who come to clinics to get tested. Our results agree with those published by Mol et al. in 

1998, and those by Phipps et al. in 1999. The results also agree with those obtained when we 

applied Meta-Test, the program for meta-analysis of dichotomous diagnostic tests written by 

J. Lau (1997), to arbitrarily dichotomized versions of our 20 studies.
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As can be seen from Figure 1, the confidence bands are quite narrow. A combination of a 

large number of patients and many thresholds used in the studies has contributed to the low 

values in the asymptotic covariance matrix of the maximum likelihood estimates. Also note 

that the confidence bands based on the delta method are constrained to be equidistant from 

the SROC. To adjust for within-study correlation, bootstrap sampling was done in a simple 

fashion: only the studies were sampled randomly with replacement. The bootstrap standard 

errors, based on 1000 samples, appear to be slightly larger than the asymptotic standard 

errors: 0.20 for the location and 0.08 for scale, as shown in Table 2.

The next question of interest in this meta-analysis is whether some variation among studies 

can be explained by study characteristics such as, in our case, study design. As seen in 

Table 2, in the model with covariate, the location was estimated at 2.47 0.09 , while the 

scale was estimated at 0.55 (0.05). Both are still significantly different from zero. The 

coefficient of the study-design covariate, γ, was estimated to be 0.10 (0.03), indicating a 

significant difference in the scale estimates between prospective and retrospective studies. 

Area under the SROC curve for prospective studies was estimated to be 0.87 0.01 , while for 

retrospective studies, it is 0.91 (0.01). The difference is 0.035 and its delta-method standard 

error is 0.0015. These results are similar to what was found by Mol et al. (1998), who report 

that retrospective studies have significantly higher accuracy (the reported p-value is less than 

0.001). The SROC curves for the two types of studies are shown in Figure 2: retrospective 

SROC curve lies slightly above the SROC curve for prospective studies. The bootstrap 

standard errors were again slightly larger than the asymptotic ones: 0.20 for location, 0.09 

for scale, and 0.10 for the study indicator estimated parameter (Table 2). Interestingly, the 

significance of the study covariate is lost when the within-study correlation is accounted for 

via bootstrap.

We repeated our analysis without the apparently outlying study whose ROC curve is close to 

the diagonal (Darai et al., 1996). The retrospective studies still remained superior: AUC for 

prospective studies was estimated at 0.89, and for retrospective 0.91. The AUC in the model 

without covariate increased from 0.897 to 0.901.

5.2. Hierarchical Modeling Approach

The bootstrap analysis has shown that standard errors are inflated when the within-study 

correlation is taken into account. To compare the models more formally, we use the 

criterion based on the posterior predictive loss (PPL) function (Gelfand and Ghosh, 1998). 

Conceptually close to the Akaike Information Criterion, it favors optimal combinations of 

fit and parsimony. We compare 4 models, fixed-effect (FE) and hierarchical models (HM) 

with and without the study design covariate. For the FE models, the PPL was computed as 

if flat priors were used for all parameters. The PPL was much lower in the HM (25,848 for 

the model without, and 25,931 for the model with covariate) than in the FE models (39,080 

without and 38,566 with covariate), suggesting that accounting for study-level variation was 

beneficial. Adding the covariate to the basic HM did not change the PPL much, suggesting 

that the covariate was not as beneficial as in the FE setting.

The BUGS code and details of the Gibbs sampling scheme can be obtained from the 

authors on request. Convergence was assessed in two ways: via the modified Geweke’s 
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statistic (Geweke, 1992), comparing early and late portions of the chain, and via the Gelman 

and Rubin statistic, comparing the within to the between variability of chains started at 

dispersed initial points (Gelman et al., 1995). After thinning, the approximate joint posterior 

distribution of the parameters of interest α, β, γ  exhibits slight correlation between the mean 

scale α and the mean location parameter β, but not between β and scale regression coefficient 

γ, nor between α and γ. The marginal distributions of α, β and γ are quite symmetric, 

resembling normal distributions. The marginals of the variances of the scale and location 

parameters, σα
2 and σβ

2, resemble gamma distributions, as expected.

As seen in Table 2, in the HM with covariate, the posterior mean of all location parameters, 

μβ, is estimated to be 2.28, with the 95% posterior credible interval (CI) of 1.81,2.76 . The 

estimated posterior mean of all scale parameters, μα, is 0.48, with the 95% posterior CI 

0.34,0.62 . For the model without covariate, the situation is almost identical: the posterior 

mean of μβ is 2.29, with the 95% CI 1.83,2.76 , while the estimate of μα is 0.49, with the 

95% posterior CI 0.33,0.63 . These point estimates are close to the fixed-effect estimates, 

but the credible intervals are wider than the corresponding confidence intervals, as expected. 

For the model with covariate, the posterior median of the location variance σβ is 0.89, with 

the 95% posterior CI 0.62,1.35 , while the scale variance σα is 0.11, with the 95% posterior 

CI 0.06,0.27 . Once again, these are almost identical in the model without covariate. The 

posterior mean of the design covariate, γ, is −0.02, very close to zero, with the 95% posterior 

CI − 0.16,0.12 . As indicated by the bootstrap analysis, once the within-study correlation is 

accounted for, there seem to be no difference between prospective and retrospective studies.

The sensitivity of the posterior estimates to choice of priors was examined using four 

different priors for the variances of study location and scale parameters (Table 3). Of interest 

is to see how the posterior estimates change with the varying degrees of informativeness 

in the prior distributions. In addition to the originally used ℐG 0.01,0.01 , we place a more 

vague prior ℐG 0.001,0.001  first, then the more informative ℐG 0.1,0.1  next, and finally, the 

most informative ℐG 1,1  for the scale variance, and ℐG 1,0.1  for location variance. The 

last pair was chosen to match the observed ranges of the individual-study scale and location 

parameter estimates from each separate study. As seen in Table 3, all parameter estimates 

remain robust to different prior specifications, except for the variance-of-scale parameters, 

σα
2. The posterior distribution of this variance seems to depend strongly on the prior: the more 

informative and more concentrated away from zero the inverse gamma density, the larger the 

posterior median of the scale variance. This is not unexpected, however, given that seven of 

the studies in the meta-analysis only report 2 tables, and thus only support the estimation of 

one of the ROC parameters.

The mean SROC curve corresponding to the estimated posterior means of all scale and 

location parameters is shown in Figure 3, separately for prospective and retrospective 

studies. The estimated area under the SROC curve for prospective studies was 0.89, and for 

retrospective, 0.88, with their highest posterior density intervals overlapping almost entirely: 

(0.85, 0.93  for prospective and 0.83,0.92  for retrospective studies. These results imply that 

the collection of prospective studies has practically the same accuracy as the retrospective 

studies. Partial 95% confidence bands found via the “envelope” method over 0.1,0.9  FPR 
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range are superimposed over the collection of ROC curves from all iterations in the bottom 

half of Figure 3. AUC under the lower and upper bound for prospective studies were 0.83 

and 0.94, respectively, and 0.83 and 0.93 for retrospective studies. Although not shown, the 

pointwise confidence bands are very similar to the envelope bands.

Removing the outlying study (Darai et al., 1996) from the analysis did not affect our 

conclusions much. The AUC of prospective studies went from 0.89 to 0.90, and of 

retrospective studies, from 0.88 to 0.89. The scale estimate changed from 0.46 to 0.54 for 

prospective, and from 0.50 to 0.58 for retrospective studies.

6. Discussion

We have presented the fixed-effects and Bayesian hierarchical methods for meta-analysis of 

diagnostic test accuracy studies that report primary test outcomes in a varying number of 

nonnested ordered categories. This work generalizes the previous research done in this area 

(Moses et al., 1993; Rutter and Gatsonis, 1995, 2001; Irwig et al., 1994). The fixed-effects 

approach produces a summary measure of diagnostic accuracy for the studies used in the 

meta-analysis, and does not take into account the heterogeneity of studies. The hierarchical 

modeling approach makes it possible to explicitly model the within and between-study 

variation. It also makes it possible to generalize the findings to a population of studies 

represented by the ones used in this meta-analysis.

The hierarchical model was fitted using MCMC, yielding a sample from the joint posterior 

distribution of all parameters in the model and, consequently, a sample of ROC curves. 

Special attention has to be given to forms and meanings of summaries of such samples 

of curves; we propose and examine several summary ROC methods in this work. The 

associated parameter estimates from the fixed-effects and hierarchical models agreed 

closely, although the credible intervals from the hierarchical model were considerably 

wider than the intervals in the fixed-effects model, consistently over several choices of 

variance priors. The difference in the reported diagnostic accuracy between prospective 

and retrospective studies was significant, based on the results from the fixed-effects model, 

but did not appear important once the study heterogeneity was taken into account via a 

hierarchical model. The bootstrap analysis applied to the fixed-effects model confirmed this 

conclusion.

Several concerns and limitations of this work should be noted. First, we have not explored 

the possibilities of using covariates to explain some of the differences between study-

specific thresholds. The Bayesian model we present, however, could be naturally extended 

to allow for such covariates. Second, the use of ordinal regression models introduces 

considerable computational burden. In situations where it is not necessary or feasible to 

use the primary data from the individual studies, simpler methods for combining ROC 

curve estimates may be used. These methods can be based on the asymptotic distribution 

of estimates of ROC parameters or functionals. For example, as suggested by a referee, a 

weighted average of estimates of the study-specific vector of scale and location parameters 

could be constructed using the method described in Hall (1992). Hierarchical models using 

the asymptotic distribution of the study-specific estimates are also the subject of current 
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research. Third, a simulation-based systematic assessment of performance of our model with 

small samples (small number of studies or small number of patients within studies, or both), 

as related to small-sample performance of ordinal regression models would be of interest.

In addition, the subset of studies we chose to analyze may have been subject to bias, 

due both to our selection technique and publication bias. Reassuringly, our results agree 

with other analyses in the literature of serum progesterone accuracy. Publication bias, 

however, should be further studied and addressed as suggested by Smith et al. in Stangl 

and Berry (2000). Moreover, in this article, we have focused our attention on patients 

with spontaneous conception only, which excluded all those aided with fertility drugs or 

undergoing assisted reproductive techniques (ART). However, higher risks of pregnancy 

disorders may be associated with the the hyperstimulatory drugs used in ART, as well 

as with the conditions that have lead to opting for ART in the first place (Carr and 

Evans, 2000). Further studies are needed to monitor the accuracy of serum progesterone 

in diagnosing patients who are undergoing hormonal and fertility treatments, particularly 

because of the recent increase in the use of ART and contraceptives. An additional concern 

is that the studies in this meta-analysis are mostly limited to patients who come to clinics 

with some discomfort, such as, for example, abdominal pain. It is well known, however, that 

nonviable pregnancies may possibly pass undetected, as their symptoms vary across patients, 

from those resembling normal periods to severe clinical symptoms. It might be therefore 

useful if a general-population study addressing progesterone-based test accuracy could be 

undertaken in the future.
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Figure 1. 
Pregnancy failure meta-analysis (FE model without covariate): summary ROC curve and 

its 95% confidence pointwise bands (obtained via delta method). The dashed lines are the 

individual-study empirical ROC curves.
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Figure 2. 
Pregnancy failure meta-analysis (FE model with covariate): Summary ROC curves for 13 

prospective and 7 retrospective studies reporting on distinction between pregnancy failure 

and viable intra-uterine pregnancy. The line with dots and filled circles correspond to 

retrospective studies and the lines with clear circles correspond to prospective studies.
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Figure 3. 
Pregnancy failure meta-analysis (HM with covariate): Mean summary ROC curves for 13 

prospective and 7 retrospective studies reporting on distinction between pregnancy failure 

and viable intra-uterine pregnancy, with envelope 95% bands over 0.1,0.9  FPR region.
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Table 2

Estimates and 95% intervals for parameters in fixed-effects and hierarchical models used in meta-analysis of 

progesterone accuracy studies. The priors used on σα
2 and σβ

2 were ℐG 0.01,0.01 .

Parameter

Pregnancy failure

Covariate No covariate

FE α 0.55 (0.45, 0.64) 0.49 (0.40, 0.58)

boot CI (0.37, 0.73) (0.33, 0.65)

β 2.47 (2.29, 2.64) 2.42 (2.25, 2.59)

boot CI (2.07, 2.87) (2.02, 2.82)

γ 0.10 (0.05, 0.15) –

boot CI (−0.10, 0.30) –

HM μαk 0.48(0.34,0.62) 0.49(0.33,0.63)

σαk 0.11 (0.06, 0.27) 0.12 (0.05, 0.25)

μβk 2.28 (1.81, 2.76) 2.29 (1.83, 2.76)

σβk 0.89 (0.62, 1.35) 0.88 (0.61, 1.33)

γ −0.02 (−0.16, 0.12) –
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