Skip to main content
Ecology and Evolution logoLink to Ecology and Evolution
. 2023 Aug 14;13(8):e10332. doi: 10.1002/ece3.10332

Elemental composition and material properties of radular teeth in the heterobranch snail Gastropteron rubrum (Mollusca, Gastropoda, Cephalaspidea) foraging on hard organisms

Wencke Krings 1,2,3,4,, Charlotte Neumann 2,3, Stanislav N Gorb 4, Alexander Koehnsen 1,2, Heike Wägele 5
PMCID: PMC10425275  PMID: 37589038

Abstract

The molluscan feeding structure is the radula, a chitinous membrane with teeth, which are highly adapted to the food and the substrate to which the food is attached. In Polyplacophora and Patellogastropoda, the handling of hard ingesta can be facilitated by high content of chemical compounds containing Fe or Si in the tooth cusps. Other taxa, however, possess teeth that are less mineralized, even though animals have to avoid structural failure or high wear during feeding as well. Here, we investigated the gastropod Gastropteron rubrum, feeding on hard Foraminifera, diatoms and Porifera. Tooth morphologies and wear were documented by scanning electron microscopy and their mechanical properties were tested by nanoindentation. We determined that gradients of hard‐ and stiffness run along each tooth, decreasing from cusp to basis. We also found that inner lateral teeth were harder and stiffer than the outer ones. These findings allowed us to propose hypotheses about the radula‐ingesta interaction. In search for the origins of the gradients, teeth were visualized using confocal laser scanning microscopy, to determine the degree of tanning, and analyzed with energy‐dispersive X‐ray spectroscopy, to test the elemental composition. We found that the mechanical gradients did not have their origins in the elemental content, as the teeth did not contain high proportions of metals or other minerals. This indicates that their origin might be the degree of tanning. However, in the tooth surfaces that interact with the ingesta high Si and Ca contents were determined, which is likely an adaptation to reduce wear.

Keywords: biomineralization, elemental composition, feeding, mechanical properties, Mollusca


Mollusks possess highly adapted radular teeth that allows them to forage on their preferred food. We here investigated the teeth of a colorful sea slug that feeds on hard Foraminifera and Porifera. Teeth contained high content of silica to reduce abrasion. Mechanical property tests revealed that this radula seems to function as a clamp, which can adjust to all kinds of irregular objects.

graphic file with name ECE3-13-e10332-g001.jpg

1. INTRODUCTION

The radula is one important molluscan apomorphy and consists of a chitinous membrane with rows of embedded teeth. Radulae can show adaptations to the preferred ingesta (i.e., food, particles on the food, substrate that the food is attached to) in morphology and the arrangement of teeth on the membrane (e.g., Hawkins et al., 1989; Krings, Karabacak, & Gorb, 2021; Krings, Kovalev, & Gorb, 2021b, 2021c; Padilla, 2003; Solem, 1972, 1974; Steneck & Watling, 1982; Ukmar‐Godec et al., 2015).

Even though the radula is constantly renewed by secretion in the posterior radular region (the “radular sac”) by over‐ and underlain epithelia (Mackenstedt & Märkel, 1987; Runham, 1963; Runham & Isarankura, 1966; Vortsepneva et al., 2022), the radular material properties are adapted to reduce wear and/or structural failure, induced by the specific ingesta source, as well. Structural failure can be reduced by the presence of mechanical property gradients (i.e., of the Young's modulus) along each tooth. In polyplacophorans, limpets, or some gastropod taxa (e.g., some members of the Paludomidae and Nudibranchia), the radula needs to transfer high forces to solid surfaces (e.g., rocks) by scratching action (e.g., Herrera et al., 2015; Krings et al., 2022a, 2022d; Lu & Barber, 2012; van der Wal et al., 1999; Weaver et al., 2010) or to hard structures of the prey (e.g., sponge spiculae) by piercing action (Krings et al., 2023). Here, each tooth shows pronounced gradients with the cusp as the hardest and stiffest region, followed by the stylus and finally the basis, as the softest and most flexible region (Gorb & Krings, 2021; Herrera et al., 2015; Krings et al., 2019, 2022c, 2022d, 2023; Lu & Barber, 2012; Pohl et al., 2020; van der Wal et al., 1999; Weaver et al., 2010). This allows teeth to bend and to either gain support from the next row of teeth, which redistributes the stress, or to deform and adjust to the prey item to avoid structural damage. These mechanical property gradients have their origin in the degree of tanning, the content of inorganics, the regional water content, or the chitin fiber arrangement (e.g., Brooker & Shaw, 2012; Faivre & Ukmar‐Godec, 2015; Joester & Brooker, 2016; Krings et al., 2022d; Krings, Kovalev, & Gorb, 2021b).

With regard to abrasion resistance, some taxa, like Polyplacophora and Patellogastropoda, incorporate high proportions of iron and silicon into their very thick tooth leading edge (i.e., the surface of the tooth that interacts directly with the ingesta) resulting in hard tooth cusps as adaptation to feeding from algae growing on stones (e.g., Barber et al., 2015; Han et al., 2011; Krings et al., 2022c; Lu & Barber, 2012; Saunders et al., 2011; Shaw et al., 2009a, 2009b, 2010; van der Wal et al., 1999; Wang et al., 2014; Wealthall et al., 2005; Weaver et al., 2010). High inorganic contents such as Ca or Si were also found on the leading edges (“leading surfaces”) of other gastropod taxa (e.g., some Paludomidae foraging on algae from rocks and Nudibranchia foraging on Porifera) as well. However, the coating was very thin in comparison to the leading edge of Polyplacophora, suggesting that these teeth resemble highly functional lightweight structures (Krings et al., 2022a, 2023). Also, teeth that come in contact with abrasive particles, like sand, were found to contain a thin layer with high content of Ca on all tooth surfaces, presumably to prevent high wear (Krings & Gorb, 2023a). However, for most gastropod taxa there are huge gaps in knowledge.

In this context, we here aim at unraveling the functional principles that reflect adaptation to this hard and abrasive ingesta source in the radular teeth of the gastropod Gastropteron rubrum (Rafinesque, 1814; Heterobranchia, Euopisthobranchia), which forages on Foraminifera (DeLaHoz et al., 2018). This species belongs to the Cephalaspidea, which are known for their predation on Foraminifera (Berry & Thomson, 1990; Cedhagen, 1996; Chester, 1993; Eilertsen & Malaquias, 2013; Hurst, 1965; Malaquias et al., 2004; Rudman, 1972a, 1972b; Shonman & Nybakken, 1978; Thompson, 1976, 1988). This is the first tooth analysis of a gastropod that mainly preys on this kind of food. First, the stomach content of the sea slug was documented to gain insight into the food composition in detail. Then, the teeth were carefully documented unraveling the wear at the tooth cusps. The mechanical properties of the teeth were tested to get insights into the mechanical adaptations of the radular apparatus. In the search for the origins of the mechanical properties in the teeth, we also investigated the material composition.

2. MATERIALS AND METHODS

2.1. Specimens and preparation

Individuals of Gastropteron rubrum were collected by Yvonne Grzymbowski at Els Capets, Costa Brava, Spain, in November 2004, and fixed in 96% EtOH. Eight adult specimens were dissected for this study.

2.2. Scanning electron microscopy (SEM) and 3D visualization

For documentation of morphology using SEM, three radulae were carefully extracted and cleaned by a short ultrasonic bath in 70% EtOH. Subsequently they were mounted on SEM specimen holders by double‐sided adhesive carbon tape and sputter‐coated with platinum (5 nm layer). For visualization, we used a SEM Zeiss LEO 1525 (One Zeiss Drive). Only mature teeth from the working zone, which can be identified by lack of covering epithelia, were studied. To document the wear on the teeth, radulae were rewetted by 70% EtOH afterwards, cleaned by a short ultrasonic bath, rearranged on SEM sample holders and visualized again in the SEM. Nomenclature of teeth was adapted from Ong et al. (2017).

For the 3D visualization, mature radular teeth of the working zone of two radulae were extracted manually with forceps. Each tooth was mounted on SEM specimen holders by double‐sided adhesive carbon tape, sputter‐coated with platinum (5 nm layer), and visualized under the SEM from all sides. Using the 3D software Blender v2.83 (Blender Foundation), the teeth were then modeled by hand constantly comparing the 3D visualization with the SEM images taken from different sides (see also protocol in Krings, Marcé‐Nogué, et al., 2020; Krings, Marcé‐Nogué, & Gorb, 2021). In the same manner, the position and embedment of the teeth within the membrane were reconstructed.

2.3. Ingesta analyses

For ingesta analyses, the intestines of four specimens were opened and the particles carefully extracted by tweezers. We differentiated between ingesta in the proximal and the distal part of the intestine.

2.4. Confocal laser scanning microscope (CLSM)

To document the autofluorescence of the tooth material, two cleaned radulae and some individual mature teeth were arranged on object glass slides, following the procedure of Michels and Gorb (2012). Each radula was surrounded by a stack of reinforcement rings. The rings were filled with glycerin (greater than or equal to 99.5%, free of water, Carl Roth GmbH & Co. KG) and subsequently covered by a glass cover slip. Following the protocol of Krings et al. (2022d, 2023), samples were visualized employing a Zeiss LSM 700 confocal laser scanning microscope (Carl Zeiss Microscopy GmbH). Four stable solid‐state lasers with wavelengths of 405, 488, 555, and 639 nm were used. Bandpass or longpass emission filters (420–480 nm, greater than or equal to 490 nm, greater than or equal to 560 nm, or greater than or equal to 640 nm) were applied. After scanning, images of autofluorescence were superimposed (with maximum intensity projection) using the software Zeiss Efficient Navigation (Zen; Carl Zeiss MicroImaging GmbH). Finally, the color blue was assigned to the autofluorescence signal received from the laser with wavelength 405 nm, green to 488 nm, red (50% saturation) to 555 nm and red (50% saturation) to 639 nm.

2.5. Energy dispersive X‐ray spectroscopy (EDX)

For analysis of the elemental composition, three cleaned radulae (ultrasonic bath for 20 s) were attached to glass object slides by double‐sided adhesive tape, following our previous protocol (Krings et al., 2022a, 2022c, 2023). Then, each radula was surrounded by a small metallic ring. Afterwards the ring was filled with epoxy resin (Reckli Epoxy WST, RECKLI GmbH) to cover the radula completely. After polymerization, lasting for 3 days at room temperature, glass object slides, and adhesive tape were removed. Samples were polished with sandpapers of different roughness, until the cross‐sections of teeth were on display, and smoothened with aluminum oxide polishing powder suspension of 0.3 μm grainsize (PRESI GmbH) on a polishing machine (Minitech 233/333, PRESI GmbH) to receive a plain smooth surface. The embedding and smoothening prevent artifacts such as electron scattering during EDX analysis. Embedded samples were subsequently cleaned in an ultrasonic bath for 5 min, then mounted on SEM sample holders and sputter‐coated with platinum (5 nm layer). Elemental composition was determined with the SEM Zeiss LEO 1525 equipped with an octane silicon drift detector (SDD; micro analyses system TEAM, EDAX Inc.). For each sample, the same settings were used (i.e., an acceleration voltage of 20 kV, working distance, lens opening, etc.). Before analysis, the detector was calibrated with copper.

Small areas (no mapping) were analyzed to receive the data. Following elements were detected and their proportions measured: H (hydrogen), C (carbon), N (nitrogen), O (oxygen), Pt (platinum), Al (aluminum), Ca (calcium), Cl (chlorine), Cu (copper), Fe (iron), K (potassium), Mg (magnesium), Na (sodium), P (phosphorus), S (sulfur), Si (silicon), and Zn (zinc). Some elements were not discussed as they are either the elemental basis of chitin and proteins (H, C, N, O), the coating (Pt), or the polishing powder (Al, O). For test purposes, we also performed 10 EDX tests on the epoxy to identify putative pollution due to the mechanical application, embedding or polishing. We could not detect Si (which is part of the sandpaper), or any other elements, that we further discuss as Ae (Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, Zn), in the resin. Their presence is therefore considered part of the teeth.

The single peak of P overlaps with one of Pt. Due of this, the software could not discriminate between these two elements and P content could not be reliably determined. Therefore, P and Pt are discussed together (P + Pt). We, however, measured 20 areas of pure epoxy to receive values on their Pt content (mean ± SD; 0.15 ± 0.02 atomic %) to further estimate the proportions of P in the teeth.

We tested the inner tooth structure by EDX and the thin outer layer (“surface”) of the teeth (500–1000 nm thickness), which covers the inner tooth structure. We did not detect high content of elements in the inner structure and no differences in the distribution there. We thus decided to summarize the point measurements of the inner structure. With regard to the surfaces, we could determine variations in the distribution of elements and thus differentiated between the tooth basis, the bulges, the basal region of the stylus (stylus, basis), the terminal region of the stylus (stylus, terminal), the cusps and the sides (see Figures 1 and 2 for nomenclature). 474 point measurements on 180 mature teeth were conducted: 204 on 70 inner laterals (of which 70 on the inner tooth structure and 134 on the surface); 56 (22 on the inner tooth structure and 34 on the surface) on 22 outer laterals A, B, C; 54 (22 on the inner tooth structure and 32 on the surface) on 22 outer laterals D; 48 (22 on the inner tooth structure and 26 on the surface) on 22 outer laterals E.

FIGURE 1.

FIGURE 1

(a) Radula, overview with anatomical directions. (b–g) Magnifications, displaying cracks and wear (highlighted by arrows), probably resulting from interaction with hard ingesta particles (stones, spicules, sand, Foraminifera tests). a, anterior (towards the degenerative zone); CU, cusp; DE, denticle; GR, groove; IL, inner lateral; l, lateral; m, medial; OL A, outer lateral A; OL B, outer lateral B; OL C, outer lateral C; OL D, outer lateral D; OL E, outer lateral E; p, posterior (towards the building zone). Scale bars: (a) 200 μm; (b) 80 μm; (c–f) 20 μm; (g) 8 μm.

FIGURE 2.

FIGURE 2

3D model of the radula to introduce the nomenclature of tooth regions and the sites that were tested. (a) Radula from above. (b) Radula from the side. (c) The individual teeth from above. (d) From below. (e) Teeth from medial view, the red line indicates a cross section, from where point‐measurements were taken via EDX. (f) Schematic outline of a characteristic polished section area of a tooth. When this area was on display, the inner structure and the surfaces could be tested with point‐measurements via EDX. The surface was separated into different regions (surface of e.g., the bulge, the stylus, the sides). a, anterior (towards the degenerative zone); BA, basis; BU, bulge; CU, cusp; DE, denticle; IL, inner lateral; IS, inner structure; l, lateral; m, medial; OL A, outer lateral A; OL B, outer lateral B; OL C, outer lateral C; OL D, outer lateral D; OL E, outer lateral E; p, posterior (towards the building zone); SB, basis of stylus; SI, side; ST, terminal stylus; SU, surface.

2.6. Nanoindentation

To test the mechanical properties, nanoindentation experiments were performed on three additional radulae (for detailed protocol see Gorb & Krings, 2021; Krings et al., 2022c, 2022d, 2023). Radulae were arranged on glass object slides and surrounded by a small metallic ring. Afterwards, each ring was filled with epoxy resin, which covered the radula completely. After polymerization, samples were polished with sandpapers until tooth sections were on display (see Figure A1), and smoothened with aluminum oxide polishing powder suspension on a polishing machine. Samples were cleaned in an ultrasonic bath for 5 min. A nanoindenter SA2 (MTS Nano Instruments) equipped with a Berkovich indenter tip and a dynamic contact module head was employed. Hardness (H) and Young's modulus (E) were determined from force‐distance curves by applying the continuous stiffness mode. All tests were performed under normal room conditions (relative humidity 28%–30%, temperature 22–24°C) and each indent and corresponding curve were both manually controlled. After this, samples were smoothened and polished until the next target localities were on display.

Overall, the inner structure of each tooth was tested at five localities to receive data on mechanical property gradients within each tooth. E and H were determined at penetration depths of 500–1000 nm. For each site indented, we received ~60 values obtained at different indentation depths, which were averaged to receive one H and one E mean value per indent. 413 localities were overall tested: 118 on the inner lateral, 59 on the outer lateral A, outer lateral B, outer lateral C, outer lateral D, and outer lateral E, respectively.

2.7. Statistical analyses

All statistical analyses were performed with JMP Pro, Version 14 (SAS Institute Inc., 1989–2007). Mean values and standard deviations were calculated and Shapiro–Wilk‐W‐tests for testing of normality were conducted. As the data was non‐normally distributed, a Kruskal–Wallis/Wilcoxon test, followed by pairwise comparison with Wilcoxon method, was carried out.

3. RESULTS

3.1. Morphology and wear of teeth

Individuals of Gastropteron rubrum possessed one prominent inner lateral tooth, followed by five outer laterals to each side of the radula, per row (see Figures 1a and 2a–f). The size of these outer laterals decreased towards the margin of the radula. A central tooth was missing and the prominent inner laterals were separated by a groove. Each inner lateral contained about 10 small denticles on the medial side and a bulge on the lateral side. Each outer lateral possessed one large cusp (tip).

Using SEM, we investigated the wear of each tooth type. On the inner laterals, spalling (Figure 1d,e,g) and scratches (Figure 1c) on the cusps and the denticles were found (see Figure 1a–e); in some cases, structural loss was rather high on these regions (Figure 1g). In contrast, we did not find scratches or spalling on the outer laterals (Figure 1f); the degree of wear decreased towards the outer laterals.

3.2. Ingesta analyses

Analyses of the intestine revealed, that G. rubrum took in sand particles, Foraminifera and diatoms (Figure 3d–g). However, spicules of the tylostyle type were also found, which shows that Heteroscleromorpha sponges, like Axinellida, Biemnida, Merliida, Polymastiida, Clionaida, Tethyida, and Suberitida were eaten (see Morrow & Cárdenas, 2015; Figure 3a–c). The prey structures extracted from the distal region of the intestine (see Figure 3g) were more brittle and fractured than those from the proximal region of the intestine (compare with Figure 3d).

FIGURE 3.

FIGURE 3

Intestine content. (a–c) Spiculae, including the tylostyle type from Heteroscleromorpha (Porifera). (d) Foraminifera tests, extracted from the proximal region of the intestine. (e) Intestine content with tests of Foraminifera and stones. (f) Cracked Foraminifera tests. (g) Foraminifera tests from the distal region of the intestine. (h) Diatom. Scale bars: (a) 400 μm; (b, d) 80 μm; (c, g) 200 μm; (e) 400 μm; (f) 20 μm; (h) 40 μm.

3.3. Autofluorescence signals

All cusps and denticles from the inner lateral teeth emitted a strong green autofluorescence signal on their anterior and posterior surfaces (i.e., they emitted a strong signal after excitation with the 488 nm laser). The cusps' lateral surfaces, the tooth styli and bases appeared rather red‐ to yellow‐brown (i.e., emitted a strong signal after excitation with the lasers of 555 and 639 nm wavelength) (see Figure 4). The bulges and bases of the teeth exhibited a strong blue signal (i.e., emitted a strong signal after excitation with the 405 nm laser).

FIGURE 4.

FIGURE 4

CLSM images of Gastropteron rubrum radula. (a) Mature inner lateral teeth. (b) Whole radula. (c) One side of the radular working zone. a, anterior (towards the degenerative zone); BA, basis; BU, bulge; CU, cusp; DE, denticle; IL, inner lateral; l, lateral; m, medial; OL A, outer lateral A; OL B, outer lateral B; OL C, outer lateral C; OL D, outer lateral D; OL E, outer lateral E; p, posterior (towards the building zone); SB, basis of stylus; SI, side; ST, terminal stylus.

3.4. Elemental analysis by EDX

EDX can determine the elements present, but not the bonding conditions. We detected Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, and Zn in the teeth (see Figure 5). The content of each individual element, except Fe, showed highly significant differences between the inner structure and the surface (results from Wilcoxon‐test: p < .0001*, for p‐values see Table A1).

FIGURE 5.

FIGURE 5

Results from the EDX analysis. Content of Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, Zn, and Ae (sum of Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, and Zn) for the inner tooth structure and the tooth surface (all tooth types and regions are pooled together).

In the inner tooth structure, the following proportions were found (sorted from high to low mean content): P + Pt (mean ± standard deviation: 0.56 ± 0.26 atomic %), Fe (0.53 ± 0.35), Ca (0.47 ± 0.23), S (0.34 ± 0.12), Mg (0.26 ± 0.09), Zn (0.06 ± 0.03), Cu (0.05 ± 0.04), Si (0.04 ± 0.13), Cl (0.03 ± 0.03), and K (0.03 ± 0.02). All lateral teeth showed a rather small proportion of these elements in the inner tooth structure, compared to the surface (see below; see Table A2 for elemental content in the inner structure of the different teeth; see Figure 6). Between the tooth types, we could not detect significant differences by pairwise comparison for the individual elemental contents (see Table A3 for p‐values).

FIGURE 6.

FIGURE 6

Results from the EDX analysis. Contents of Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, Zn, and Ae (sum of Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, and Zn) for the inner tooth structure and the tooth surface regions (tooth types are pooled together). BA, basis; BU, bulge; CU, cusp; IL, inner lateral; OL A, outer lateral A; OL B, outer lateral B; OL C, outer lateral C; OL D, outer lateral D; OL E, outer lateral E; SB, basis of stylus; SI, side; ST, terminal stylus.

In the surface, the following proportions were detected (sorted from high to low mean content): Si (mean ± standard deviation: 5.79 ± 6.40 atomic %), Ca (2.28 ± 2.28), P + Pt (0.85 ± 0.60), S (0.67 ± 0.30), Fe (0.60 ± 0.72), Mg (0.34 ± 0.20), Cu (0.14 ± 0.11), Zn (0.12 ± 0.08), Cl (0.08 ± 0.08), and K (0.05 ± 0.03). In each tooth, especially Si and Ca were present in larger proportions in comparison to the other elements (see Table A2 for elemental content of the surfaces).

When the results from the tooth surfaces were sorted according to the tooth region (see Figure 2 for nomenclature and six for results), we found that the cusps contained highest contents of all elements (Ae), followed by the styli (terminal), the styli (bases), the sides, the tooth bases, and finally the bulges with the lowest content of Ae (see Table A4). This gradient in Ae was primarily caused by the content and distribution of Si (at cusps, mean ± standard deviation: 16.24 ± 2.76 atomic %; at bulges: 0.27 ± 0.14) and Ca (at cusps: 5.56 ± 2.01; at bulges: 0.05 ± 0.05). But Fe, which was present in lower proportions, probably also contributes to the gradient (at cusps: 1.26 ± 0.75; at bulges: 0.09 ± 0.07; see Table A4 for elemental content). The decreases of Si, Ca and Fe from tips to bases were found in each tooth type (see Table A5 for elemental contents of the different teeth and their regions). When comparing the various regions of each tooth, differences were highly significant (see Table A6 for p‐values). For the distribution of Cl, Cu, K, Mg, P + Pt, S, and Zn, no clear gradient could be detected, even though most regions differed highly significantly as determined by pairwise comparison (see Table A6 for p‐values). These elements were present in rather small proportions in each tooth (mean is <1 atomic %; see Tables A2 and A4). When comparing the different tooth types, we could not determine clear differences between them (see Figure A2). In most cases, we detected highly significant differences between the individual regions of the surface for Si, Ca, and Fe, when comparing the different teeth by pairwise comparison (see Table A3 for p‐values).

3.5. Mechanical properties

The hardness (H) describes the resistance to local plastic deformation induced by abrasion or indentation. The Young's modulus (E) is the measure of the stiffness of a solid material and describes the relationship between tensile stress and axial strain.

In every tooth, the cusp (E mean values range between 10.27 and 15.95 GPa; H mean values range between 0.58 and 0.85 GPa) was always the stiffest and hardest region, followed by the terminal stylus (E = 8.51–14.18 GPa; H = 0.47–0.77 GPa), the basis of the stylus (E = 7.58–12.09 GPa; H = 0.41–0.64 GPa), the basis (E = 2.64–4.23 GPa; H = 0.14–0.23 GPa), and finally the bulge as the softest and most flexible region (E = 1.75–1.84 GPa; H = 0.09–0.10 GPa). The parts of the inner laterals were harder and stiffer, followed by the outer laterals A, B, C, D, and finally E with the softest and most flexible parts (see Figure 7 and Table A7 for all values).

FIGURE 7.

FIGURE 7

Results from the nanoindentation experiments. Young's modulus and hardness (both given in GPa) for the different teeth and their regions. BA, basis; BU, bulge; CU, cusp; SB, basis of stylus; ST, terminal stylus. BA, basis; BU, bulge; CU, cusp; IL, inner lateral; OL A, outer lateral A; OL B, outer lateral B; OL C, outer lateral C; OL D, outer lateral D; OL E, outer lateral E; SB, basis of stylus; SI, side; ST, terminal stylus.

Pairwise comparison by Wilcoxon method revealed, that the regions within each tooth showed highly significant differences (p < 0.0001*; see Table A8 for all p‐values). Most regions were also highly significantly different, when they were compared between the teeth (mostly p < 0.0001*; see Table A8 for all p‐values).

Despite the differences of E and H values along the various regions of each tooth and between teeth, the two values always exhibited a very high positive correlation (r = 0.99, p < 0.0001*).

3.6. Relationship between autofluorescence, elemental composition, and mechanical properties

The regions of the teeth appearing green under CLSM (i.e., emitted a strong signal after excitation with the 488 nm laser) contained high proportions of Si and Ca. The sides of the stylus and the bases appeared red‐ to yellow‐brown (i.e., emitted a strong signal after excitation with the lasers of 555 and 639 nm wavelength); here no high contents of Ca and Si were detected. The bulges appeared blue (i.e., emitted a strong signal after excitation with the lasers of 405 nm wavelength); these regions contained no high content of the targeted elements and were the softest and most flexible tooth parts. We could not determine relationships between the elemental content of the inner tooth structure and the mechanical property values.

4. DISCUSSION

4.1. Mechanical behavior and foraging

The mechanical properties of materials directly contribute to the mechanical behavior of structures. The Young's modulus (E) relates to the ability of a structure to transmit force (Bendsøe, 1989, 1995; Bendsøe & Kikuchi, 1988; Dumont et al., 2009), its resistance to failure as well as the structures' mechanical behavior while puncturing (e.g., Freeman & Lemen, 2007; for review on puncture mechanics see Anderson, 2018). The hardness (H) is the measure of the resistance to local plastic deformation induced by indentation or abrasion.

Some gastropod species (i.e., paludomid taxa) feeding on soft ingesta (i.e., algae growing on soft substrates like sand or mud) possess soft and more flexibles teeth (E ≤ 8 GPa, H ≤ 1 GPa) without clear and pronounced gradients in mechanical properties from the tooth basis across the stylus to the cusp (Gorb & Krings, 2021). These teeth are probably not capable of transferring high forces without structural failure, but possess an increased ability to deform, bend, and twist, which reduces the risk of breaking (Krings, Kovalev, & Gorb, 2021b, 2021c). Since all teeth within one row have similar mechanical properties, they probably also have a similar function (“monofunctional radula”; see Gorb & Krings, 2021; Krings, 2020).

Species foraging on the solid ingesta (members of Paludomidae foraging on algae covering rocks, Patellogastropoda, Fissurellidae, Polyplacophora) or have some interactions with hard ingesta (the nudibranch gastropods Felimare picta and Doris pseudoargus feeding on Porifera with hard spiculae) possess harder and stiffer teeth reducing wear and structural failure. Each tooth shows pronounced gradients in both H and E: the cusp (especially the leading edge) is the hardest and stiffest part, followed by the stylus, and finally the basis as the softest and most flexible part (Barber et al., 2015; Gorb & Krings, 2021; Grunenfelder et al., 2014; Krings et al., 2019, 2022c, 2022d, 2023; Lu & Barber, 2012; Ukmar‐Godec et al., 2017; Weaver et al., 2010). In the above mentioned taxa, the tooth cusps puncture the ingesta or scratch across solid surfaces, with the possible formation of local stress at the cusps, but without high degrees of wear or structural failure. The softer and more flexible stylus, together with the basis, provides flexibility and act as shock absorber against mechanical impacts (Gorb & Krings, 2021; Herrera et al., 2015; Krings et al., 2019, 2022c, 2022d, 2023; Pohl et al., 2020).

The dominant teeth of the Polyplacophora and Patella vulgata (Patellogastropoda) are characterized by a very high inorganic content and high E and H values (see Table 1; Barber et al., 2015; Grunenfelder et al., 2014; Krings et al., 2022c; Lu & Barber, 2012; Weaver et al., 2010). Less mineralized teeth are softer and more flexible: in the vetigastropod Megathura crenulata (Fissurellidae), E values of 16 GPa were determined (see Table 1; Ukmar‐Godec et al., 2017). In the two investigated nudibranch species, where the inner structure of teeth also contained low inorganic content, E max values of 15 GPa and H max values of 0.9 GPa were found (see Table 1; Krings et al., 2023). Their thin leading surfaces were however significantly harder (H max = 2.3 GPa) and stiffer (E max = 45 GPa) than the inner structure, due to high proportions of Si or Ca. The unmineralized teeth of paludomid gastropods foraging from solid surfaces were even softer and more flexible in comparison to the inner structure of the nudibranch taxa (H = ~0.4 GPa and E = ~8 GPa; see Table 1; Gorb & Krings, 2021). However, here the neighboring teeth could interlock when loaded, leading to stress redistribution when in contact with the ingesta. This mechanical behavior of radula teeth is prospered by the arrangement and geometry of teeth, the water‐content and the material properties, which enables the bending capacity (Herrera et al., 2015; Hickman, 1980, 1984; Krings, Brütt, et al., 2020; Krings & Gorb, 2021; Krings, Karabacak, & Gorb, 2021; Krings, Kovalev, & Gorb, 2021b, 2021c; Krings, Marcé‐Nogué, et al., 2020; Krings, Marcé‐Nogué, & Gorb, 2021; Montroni et al., 2019; Morris & Hickman, 1981; Padilla, 2003; Solem, 1972; Ukmar‐Godec et al., 2015).

TABLE 1.

Results from previous mechanical property studies in comparison to the results from Gastropteron rubrum.

Taxon Young's modulus Hardness Origin of mechanical properties References
Polyplacophora 30–130 GPa 4–12 GPa High inorganic content Weaver et al. (2010), Grunenfelder et al. (2014), Krings et al. (2022c)
Patella vulgata 52–150 GPa 3–7 GPa High inorganic content Lu and Barber (2012), Barber et al. (2015)
Megathura crenulata 16 GPa Cross‐linking Ukmar‐Godec et al. (2017)
Nudibranchia (Felimare picta, Doris pseudoargus) 15 GPa (inner structure), 45 GPa (leading edge) 0.9 GPa (inner structure), 2.3 GPa (leading edge) Probably cross‐linking (inner structure), high inorganic content (leading edges) Krings et al. (2023)
Paludomid gastropods 4.1–9.2 GPa 0.10–0.50 GPa Probably cross‐linking Gorb and Krings (2021)
Gastropteron rubrum 1.60–15.95 GPa 0.10–0.85 GPa Potentially cross‐linking

Note: Here, the Young's modulus (E) and the hardness (H) values and their origins are listed.

In some solid substrate feeders (i.e., the nudibranch gastropods Felimare picta and Doris pseudoargus), the different teeth of each row had similar mechanical properties. Here, teeth probably also had similar functions (“monofunctional radula”; Krings et al., 2023). However, in other taxa, there were pronounced gradients within each transversal tooth row present, i.e., different tooth types had different mechanical properties. For example, in some paludomid gastropods, the central teeth were the stiffest and hardest elements, followed by the lateral, and finally the marginal teeth (Gorb & Krings, 2021; Krings et al., 2019, 2022d). The central and lateral teeth are probably capable of loosening algae from rocks, whereas the marginal teeth rather collect loosened food particles in a complex motion of the buccal mass afterwards. Since teeth of one row probably had different functions, this type of radula was previously termed “multifunctional radula” (see Gorb & Krings, 2021; Krings, 2020).

The teeth of G. rubrum show mechanical properties that are comparable to nudibranch teeth. In G. rubrum, the large inner laterals are harder and stiffer than the smaller outer laterals, with the outermost being the softest and most flexible ones. This indicates that the different teeth might experience different loads during foraging. With regard to the tested regions, we found that the bases and the bulges are most flexible and soft. This suggests that the teeth can bend in anterior–posterior direction around their bases, probably adjusting to the sizes of different prey items. Additionally, teeth are probably capable of bending in lateral‐medial direction with the bulges serving as cushions (see Figure 8). This mechanical behavior was also observed when the radula was manipulated by tweezers: the radula could be folded around the groove towards medial. As consequence, the teeth bent towards the center forming a groove. SEM documentation revealed that the degree of wear and structural failure decreased towards the radular sides. All of this suggests, that during feeding, the Foraminifera, the sand particles or Porifera parts are clamped between the inner laterals during folding along the groove (Figure 8c). This behavior of radula was previously also described for other cephalaspid taxa foraging on worms or bivalves (Hurst, 1965; Rudman, 1972a). During this, the softer and more flexible outer teeth could serve as cushions and supporting structures, which would render this radula to be multifunctional since teeth have different functions. Subsequently, the radula with the particles is probably pulled into the mouth cavity. This system would allow G. rubrum to take in ingesta of different sizes, since its radula could easily adapt.

FIGURE 8.

FIGURE 8

Proposed biomechanical behavior of Gastropteron rubrum's radula, based on data from mechanical property tests and the documentation of the radular wear. (a) Radula 3D model from frontal view with clamped Foraminifera between inner laterals. (b) Model from above. (c) Model from the side. Arrows indicate the folding towards the radular groove, which enables the clamping of ingesta. Afterwards the radula with the particles is pulled into the mouth cavity (arrow in b). a, anterior; IL, inner lateral; l, lateral; m, medial; OL A, outer lateral A; OL B, outer lateral B; OL C, outer lateral C; OL D, outer lateral D; OL E, outer lateral E; p, posterior.

The prey from the distal region of the intestine was more brittle and fractured than the prey extracted from the proximal regions. In many Cephalaspidea, a strongly muscularized gizzard with plates is located after the esophagus, which crushes the food items as shells, Foraminifera, or diatoms (Cedhagen, 1996; Eilertsen & Malaquias, 2013; Malaquias et al., 2004; Rudman, 1972a; Shepelenko et al., 2015). In Gastropteridae, however, gizzard plates were probably lost (Rudman, 1978) and were not detected in G. rubrum here. Besides of the prey items, we detected various sand particles in the intestine. This either indicates, that individuals of G. rubrum do not feed selectively, but instead probably feed on the sand surface and take everything randomly in, or that they use the sand to crush the prey items. However, the fragmentation of the prey items might also involve acidic liquids, which should be investigated in the future.

4.2. Wear reduction

Wear reducing mechanisms are well‐investigated in Polyplacophora and Patellogastropoda. Here, high proportions of iron and silicon are incorporated into the thick leading edges (surface layer), which are hard and protected against wear (Brooker et al., 2003; Kim et al., 1989; Kirschvink & Lowenstam, 1979; Kisailus & Nemoto, 2018; Krings et al., 2022c; Lee, Brooker, Macey, et al., 2003; Lee, Brooker, van Bronswijk, et al., 2003; Lowenstam & Weiner, 1989; Saunders et al., 2009, 2011; van der Wal, 1989; van der Wal et al., 1999; Wang et al., 2013; Weaver et al., 2010). Compared to the harder outer surface layer, the teeth possess a softer inner core, which reduces crack formation (Grunenfelder et al., 2014; van der Wal et al., 1989; van der Wal et al., 1999). In some paludomid and nudibranch taxa, we previously also identified a surface layer with high Si or Ca content at the tooth region, which interacts with the food (Krings et al., 2022a, 2023; Krings & Gorb, 2023a). This layer, however, was very thin in comparison with that of the chitons and limpets, rendering these teeth as lightweight structures. In G. rubrum, we detected high content of Si and Ca in the tooth regions, which interact with the ingesta. This suggests that this also reduces wear during feeding. A similar adaptation involving the incorporation of Si at the tooth tip and the presence of a soft tooth base to reduce wear by foraging on hard prey, such as diatoms, has also been found in the gnathobases of Copepoda (Michels et al., 2012; Michels & Gorb, 2015).

4.3. The origin of the mechanical properties

In some taxa (i.e., Polyplacophora or Patellogastropoda), high proportions of iron, silicon, and calcium are incorporated into some tooth cusps, which directly relate to mechanical property differences in the various tooth regions (for in depth reviews, see Brooker & Shaw, 2012; Faivre & Ukmar‐Godec, 2015; Joester & Brooker, 2016). In G. rubrum, each tooth showed mechanical property gradients in its inner structure; but we could not relate these gradients with the inorganic content.

As the radula is composed of an organic matrix of chitin fibers with associated proteins (Guralnick & Smith, 1999; Runham, 1963), the fiber architecture (i.e., fiber density, size, etc.) can promote regional mechanical property differences (Evans et al., 1990, 1994; Gordon & Joester, 2011; Grunenfelder et al., 2014; Krings, Brütt, et al., 2020, Krings, Marcé‐Nogué, et al., 2020, Krings et al., 2022a; Lu & Barber, 2012; Runham, 1963; Shaw et al., 2010; Stegbauer et al., 2021; Ukmar‐Godec, 2016; Ukmar‐Godec et al., 2017; van der Wal, 1989; van der Wal et al., 1999; Wang et al., 2013; Wealthall et al., 2005). Whether this is the case for G. rubrum awaits further investigations, for example, in the form of tooth section investigations in TEM.

The chitin can also show different regional degrees of tanning, which result in different mechanical properties. The degree of tanning can be visualized by applying CLSM, according to the protocol of Michels and Gorb (2012). This protocol was developed for insect cuticle, which consists of unmineralized chitin. It allowed previously the identification of cuticle regions with certain dominating material composition in insect cuticle (see Table 2): Blue signals were induced from regions containing high proportions of resilin or proteins; these regions were relatively soft and flexible. Sclerotized cuticle was associated with a red signal; this region was relatively hard and stiff. Weakly‐sclerotized chitin was related to a green signal indicating regions, which were flexible and relatively tough. When proteins were abundant, those structures appeared brown, yellow, or pink in overlay. This protocol (Michels & Gorb, 2012) was applied in many studies on arthropod cuticles (e.g., Beutel et al., 2020; Friedrich & Kubiak, 2018; Lehnert et al., 2021; Matsumura et al., 2021; Peisker et al., 2013) and cross‐validated by employing nanoindentation in lady beetles and antlions (Krings & Gorb, 2023b; Peisker et al., 2013).

TABLE 2.

Results from previous CSLM studies in comparison to the results from Gastropteron rubrum.

Laser wavelength (nm) Assigned color Insect cuticle (Michels & Gorb, 2012) Crustacean feeding structures (Krings et al., 2022b; Michels et al., 2012; Michels & Gorb, 2015) Paludomid radula (Lavigeria grandis; Krings et al., 2022d) Nudibranch radula (Felimare picta and Doris pseudoargus; Krings et al., 2023) Radula of Gastropteron rubrum
405 Blue Resilin, proteins, unsclerotized chitin Calcium and proteins or probably unsclerotized chitin Probably proteins or unsclerotized chitin Calcium and proteins or unsclerotized chitin Probably proteins or unsclerotized chitin
488 Green Weakly‐sclerotized chitin Silicon Probably weakly‐sclerotized chitin Silicon Silicon
555 and 639 Red Sclerotized chitin Probably sclerotized chitin Probably sclerotized chitin Probably sclerotized chitin Probably sclerotized chitin
405, 488, 555, 639 Brown, yellow, or pink Proteins and sclerotized chitin in overlay Proteins and chitin in overlay Probably proteins and chitin in overlay

Note: Here, the lasers of the distinct wavelengths, their assigned colors and the materials, which emitted the strong autofluorescence signals after excitements, are listed.

The same protocol was applied by Krings et al. (2022d) to the radula of the paludomid Lavigeria grandis, which possesses relatively low mineral content. Here, the autofluorescence signals (see Table 2) directly related to the mechanical property values received from nanoindentation technique. We also applied this protocol for the radulae of the nudibranch gastropods Felimare picta and Doris pseudoargus, but detected that the autofluorescence signal was distorted by the content of Ca and Si in the tooth surfaces (Krings et al., 2023). Nudibranch teeth with surfaces full of Ca showed a strong blue signal, and teeth containing high Si content in the surfaces a strong green signal (see Table 2). This pattern was previously also detected in crustacean feeding structures, the gnathobases and gastric mill teeth, containing either high content of Ca or Si (see Table 2; Krings et al., 2022b; Michels et al., 2012; Michels & Gorb, 2015). In G. rubrum, we detected that the surfaces containing Si appeared green (see Table 2). This shows that the protocol of Michels and Gorb (2012) cannot be directly applied to mineralized structures and that EDX analyses should be included into studies. However, the tooth sides of G. rubrum did not contain high proportions of Ca and Si or any of the other analyzed elements, so that the protocol could be applied to these regions. Potentially teeth were here sclerotized with a decreasing degree towards the basis. The bases and bulges of G. rubrum teeth were unmineralized and appeared strongly blue, which indicates that either proteins or unsclerotized chitin were present in these regions, which both increase the softness and flexibility.

AUTHOR CONTRIBUTIONS

Wencke Krings: Conceptualization (lead); data curation (lead); funding acquisition (lead); investigation (equal); methodology (equal); project administration (lead); supervision (lead); validation (lead); visualization (lead); writing – original draft (lead); writing – review and editing (lead). Charlotte Neumann: Investigation (equal); methodology (equal); validation (supporting); visualization (supporting). Stanislav N. Gorb: Conceptualization (supporting); methodology (supporting); project administration (supporting); resources (lead); writing – review and editing (supporting). Alexander Koehnsen: Investigation (supporting); methodology (supporting). Heike Wägele: Conceptualization (supporting); project administration (supporting); resources (supporting); supervision (supporting); writing – review and editing (equal).

FUNDING INFORMATION

This research was financed by the Deutsche Forschungsgemeinschaft (DFG) grant 470833544 to WK.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no competing interests.

CONSENT FOR PUBLICATION

Not applicable.

ACKNOWLEDGMENTS

We would like to thank Elke Woelken from the Institute of Cell and Systems Biology of Animals, Universität Hamburg, for her support on the SEM. We are highly grateful for the helpful comments of the anonymous reviewers. Open Access funding enabled and organized by Projekt DEAL.

APPENDIX 1.

FIGURE A1.

FIGURE A1

(a) SEM image of teeth. (b) Embedded radula sample for EDX analysis and nanoindentation experiments. Representative EDX spectra of the inner tooth structure (c) and the surface at the tooth basis (d). BA, basis; BU, bulge; CU, cusp; IL, inner lateral tooth; IS, inner tooth structure; SB, basis of stylus; SI, side; SU, tooth surface; ST, terminal stylus. Scale bars: (a) 40 μm; (b) 0.5mm.

FIGURE A2.

FIGURE A2

Results from EDX analysis. Content of Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, Zn, and Ae (sum of Ca, Cl, Cu, Fe, K, Mg, P + Pt, S, Si, and Zn) for the inner tooth structure and the tooth surface for each tooth type. Regions of tooth surfaces are pooled together.

TABLE A1.

Results from the EDX analysis (mean and standard deviation; given in atomic %) for the inner tooth structure and the tooth surface (all tooth types and regions pooled together).

Locality N Ca Results from Wilcoxon‐test Cl Results from Wilcoxon‐test Cu Results from Wilcoxon‐test
Mean SD χ2 df p‐value Mean SD χ2 df p‐value Mean SD χ2 df p‐value
Inner structure 180 0.47 0.23 5.1434 1 <.0001* 0.03 0.03 141.9183 1 <.0001* 0.05 0.04 136.0744 1 <.0001*
Surface 294 2.28 2.28 0.08 0.08 0.14 0.11
Locality N Fe Results from Wilcoxon‐test K Results from Wilcoxon‐test Mg Results from Wilcoxon‐test
Mean SD χ2 df p‐value Mean SD χ2 df p‐value Mean SD χ2 df p‐value
Inner structure 180 0.53 0.35 10.8848 1 .0010* 0.03 0.02 81.4326 1 <.0001* 0.26 0.09 39.7468 1 <.0001*
Surface 294 0.60 0.72 0.05 0.03 0.34 0.20
Locality N P + Pt Results from Wilcoxon‐test S Results from Wilcoxon‐test Si Results from Wilcoxon‐test
Mean SD χ2 df p‐value Mean SD χ2 df p‐value Mean SD χ2 df p‐value
Inner structure 180 0.56 0.26 44.7110 1 <.0001* 0.34 0.12 239.1987 1 <.0001* 0.04 0.13 305.4376 1 <.0001*
Surface 294 0.85 0.60 0.67 0.30 5.79 6.40
Locality N Zn Results from Wilcoxon‐test Ae Results from Wilcoxon‐test
Mean SD χ2 df p‐value Mean SD χ2 df p‐value
Inner structure 180 0.06 0.03 117.5291 1 <.0001* 2.12 0.74 153.9240 1 <.0001*
Surface 294 0.12 0.08 10.63 9.70

Note: Results from pairwise comparison by Wilcoxon method between the inner tooth structure and the surface layer for the elemental proportions. Orange p‐values = highly significant differences, red p‐values = significant differences, black = no significant differences.

Abbreviations: df, degrees of freedom; N, quantity of point measurements; SD, standard deviation.

TABLE A2.

Results from the EDX analysis (mean and standard deviation; given in atomic %).

Tooth type Locality N Ca Cl Cu Fe K Mg
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Inner laterals Inner structure 70 0.32 0.20 0.05 0.04 0.08 0.04 0.73 0.46 0.03 0.01 0.23 0.09
Inner laterals Surface 134 2.60 3.01 0.08 0.07 0.15 0.11 0.80 0.90 0.05 0.03 0.31 0.17
Outer laterals A Inner structure 22 0.60 0.20 0.01 0.01 0.02 0.01 0.41 0.18 0.03 0.02 0.29 0.09
Outer laterals A Surface 34 1.62 2.18 0.06 0.06 0.10 0.08 0.38 0.38 0.05 0.03 0.36 0.23
Outer laterals B Inner structure 22 0.56 0.19 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.27 0.09
Outer laterals B Surface 34 1.99 2.66 0.08 0.09 0.13 0.11 0.43 0.37 0.06 0.04 0.36 0.22
Outer laterals C Inner structure 22 0.56 0.19 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.27 0.09
Outer laterals C Surface 34 2.21 2.78 0.08 0.08 0.15 0.11 0.51 0.51 0.05 0.03 0.37 0.23
Outer laterals D Inner structure 22 0.56 0.18 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.27 0.09
Outer laterals D Surface 32 2.21 2.78 0.07 0.08 0.09 0.10 0.52 0.59 0.06 0.03 0.39 0.22
Outer laterals E Inner structure 22 0.56 0.19 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.28 0.09
Outer laterals E Surface 26 1.87 2.71 0.11 0.10 0.15 0.13 0.31 0.36 0.05 0.02 0.29 0.23
Tooth type Locality N P + Pt S Si Zn Ae
Mean SD Mean SD Mean SD Mean SD Mean SD
Inner laterals Inner structure 70 0.58 0.30 0.43 0.14 0.06 0.20 0.07 0.04 2.25 0.79
Inner laterals Surface 134 0.85 0.64 0.69 0.30 6.63 6.80 0.11 0.07 12.01 10.34
Outer laterals A Inner structure 22 0.55 0.24 0.30 0.07 0.03 0.02 0.05 0.02 2.09 0.72
Outer laterals A Surface 34 0.80 0.55 0.59 0.25 4.26 5.07 0.11 0.06 8.10 7.76
Outer laterals B Inner structure 22 0.55 0.24 0.29 0.06 0.02 0.01 0.05 0.02 2.02 0.71
Outer laterals B Surface 34 0.99 0.64 0.70 0.32 4.81 5.53 0.13 0.08 9.41 8.51
Outer laterals C Inner structure 22 0.55 0.24 0.29 0.07 0.02 0.02 0.05 0.02 2.03 0.71
Outer laterals C Surface 34 0.81 0.60 0.67 0.28 5.19 5.84 0.13 0.09 9.96 9.32
Outer laterals D Inner structure 22 0.55 0.24 0.29 0.07 0.02 0.01 0.05 0.02 2.02 0.70
Outer laterals D Surface 32 0.85 0.54 0.66 0.32 6.09 6.57 0.11 0.08 10.82 9.99
Outer laterals E Inner structure 22 0.55 0.25 0.28 0.06 0.02 0.01 0.05 0.02 2.03 0.71
Outer laterals E Surface 26 0.73 0.40 0.63 0.33 5.11 7.13 0.09 0.05 9.02 9.82

Note: For the inner tooth structure and the tooth surface, elemental proportions are sorted according to tooth types.

Abbreviations: N, quantity of point measurements; SD, standard deviation.

TABLE A3.

For the elemental proportions: results from pairwise comparison by Wilcoxon method between the inner tooth structure and the tooth surface sorted to tooth types.

Element Structure 1 Structure 2 Results from Wilcoxon‐test p‐value Element Structure 1 Structure 2 Results from Wilcoxon‐test p‐value
χ2 df p‐value χ2 df p‐value
Ae IL Olayer IL IS 163.706 11 <.0001* <.0001* Mg IL Olayer IL IS 55.1818 11 <.0001* .0015*
Ae OL B Olayer IL IS <.0001* Mg OL D Olayer IL IS .0003*
Ae OL D Olayer IL IS .0002* Mg OL D Olayer IL Olayer .0531
Ae OL C Olayer IL IS .0015* Mg OL B Olayer IL IS .0110*
Ae OL E Olayer IL IS .0021* Mg OL C Olayer IL IS .0110*
Ae OL B Olayer OL B IS .0006* Mg OL A IS IL IS .0253*
Ae OL D Olayer OL B IS .0007* Mg OL A Olayer IL IS .0462*
Ae OL B Olayer OL A IS .0010* Mg OL C IS IL IS .0662
Ae OL D Olayer OL D IS .0007* Mg OL C Olayer IL Olayer .2015
Ae OL A Olayer IL IS .0201* Mg OL E IS IL IS .0704
Ae OL D Olayer OL C IS .0008* Mg OL D IS IL IS .0718
Ae OL D Olayer OL A IS .0013* Mg OL B IS IL IS .0778
Ae OL C Olayer OL B IS .0052* Mg OL B Olayer IL Olayer .2681
Ae OL C Olayer OL C IS .0055* Mg OL D Olayer OL B IS .0620
Ae OL E Olayer OL C IS .0023* Mg OL D Olayer OL C IS .0658
Ae OL E Olayer OL D IS .0023* Mg OL D Olayer OL D IS .0698
Ae OL E Olayer OL E IS .0023* Mg OL A Olayer IL Olayer .3982
Ae OL E Olayer OL B IS .0024* Mg OL D Olayer OL A IS .1111
Ae OL C Olayer OL A IS .0078* Mg OL C Olayer OL B IS .2113
Ae OL E Olayer OL A IS .0044* Mg OL C Olayer OL C IS .2270
Ae OL A Olayer OL A IS .0274* Mg OL B Olayer OL B IS .2436
Ae OL D Olayer OL A Olayer .2430 Mg OL C Olayer OL A IS .2791
Ae OL B Olayer OL A Olayer .2777 Mg OL D Olayer OL A Olayer .4263
Ae OL C Olayer OL A Olayer .3739 Mg OL B Olayer OL A IS .4109
Ae OL E Olayer OL A Olayer .4468 Mg OL D Olayer OL B Olayer .4724
Ae OL D Olayer OL C Olayer .5944 Mg OL C Olayer OL B Olayer .6677
Ae OL D Olayer OL B Olayer .6861 Mg OL A Olayer OL A IS .6749
Ae OL E Olayer OL C Olayer .8991 Mg OL C Olayer OL A Olayer .6992
Ae OL C IS OL B IS .9813 Mg OL E Olayer IL IS .7981
Ae OL E IS OL D IS .9813 Mg OL D Olayer OL C Olayer .7630
Ae OL D IS OL B IS 1.0000 Mg OL D IS OL C IS .9813
Ae OL E IS OL B IS 1.0000 Mg OL D IS OL B IS 1.0000
Ae OL E IS OL C IS 1.0000 Mg OL E IS OL C IS 1.0000
Ae OL D IS OL C IS .9439 Mg OL C IS OL B IS .9813
Ae OL C Olayer OL B Olayer .9072 Mg OL E IS OL D IS .9813
Ae OL E Olayer OL B Olayer .7826 Mg OL E IS OL B IS .9532
Ae OL E IS OL A IS .6641 Mg OL B Olayer OL A Olayer .9511
Ae OL C IS OL A IS .6472 Mg OL C IS OL A IS .6303
Ae OL B IS OL A IS .6304 Mg OL A IS IL Olayer .8506
Ae OL D IS OL A IS .6138 Mg OL D IS OL A IS .5651
Ae OL E Olayer OL D Olayer .6279 Mg OL E IS OL A IS .5651
Ae OL A IS IL IS .4612 Mg OL B IS OL A IS .5185
Ae OL D Olayer IL Olayer .5707 Mg OL E Olayer OL E IS .5279
Ae OL B IS IL IS .3031 Mg OL E Olayer OL B IS .5012
Ae OL E IS IL IS .2988 Mg OL E Olayer OL C IS .4947
Ae OL D IS IL IS .2946 Mg OL E Olayer OL D IS .4817
Ae OL C IS IL IS .2821 Mg OL D IS OL A Olayer .5183
Ae OL B IS OL A Olayer .0176* Mg OL B IS OL A Olayer .4915
Ae OL C IS OL A Olayer .0176* Mg OL C IS OL A Olayer .4758
Ae OL D IS OL A Olayer .0176* Mg OL E IS OL A Olayer .4654
Ae OL E IS OL A Olayer .0176* Mg OL E Olayer OL A IS .3359
Ae OL E Olayer IL Olayer .2843 Mg OL E Olayer OL A Olayer .2929
Ae OL B Olayer IL Olayer .2506 Mg OL D IS OL B Olayer .2645
Ae OL C Olayer IL Olayer .1988 Mg OL C IS OL B Olayer .2369
Ae OL E IS OL C Olayer .0055* Mg OL D IS OL C Olayer .2369
Ae OL D IS OL C Olayer .0050* Mg OL E IS OL B Olayer .2303
Ae OL E IS OL D Olayer .0008* Mg OL E IS OL C Olayer .2270
Ae OL D IS OL B Olayer .0006* Mg OL C IS IL Olayer .5789
Ae OL E IS OL B Olayer .0006* Mg OL E IS IL Olayer .5771
Ae OL C IS OL B Olayer .0005* Mg OL B IS IL Olayer .5616
Ae OL A Olayer IL Olayer .0200* Mg OL E Olayer OL B Olayer .1770
Ae OL A IS IL Olayer <.0001* Mg OL D IS IL Olayer .5479
Ae OL C IS IL Olayer <.0001* Mg OL E Olayer OL C Olayer .1088
Ae OL E IS IL Olayer <.0001* Mg OL E IS OL D Olayer .0633
Ae OL B IS IL Olayer <.0001* Mg OL E Olayer OL D Olayer .0368*
Ae OL D IS IL Olayer <.0001* Mg OL E Olayer IL Olayer .2750
Ca OL A IS IL IS 26.1852 11 .0061 <.0001* P + Pt IL Olayer IL IS 48.2629 11 <.0001* .0023*
Ca OL C IS IL IS <.0001* P + Pt OL B Olayer IL IS <.0001*
Ca OL D IS IL IS <.0001* P + Pt OL B Olayer IL Olayer .0610
Ca OL E IS IL IS <.0001* P + Pt OL D Olayer IL IS .0182*
Ca OL B IS IL IS <.0001* P + Pt OL C Olayer IL IS .0192*
Ca IL Olayer IL IS .2167 P + Pt OL E Olayer IL IS .0327*
Ca OL C IS OL B Olayer .3022 P + Pt OL B Olayer OL B IS .0031*
Ca OL D IS OL B Olayer .3022 P + Pt OL B Olayer OL A IS .0042*
Ca OL E IS OL B Olayer .3022 P + Pt OL A Olayer IL IS .0882
Ca OL D IS OL A Olayer .3264 P + Pt OL D Olayer OL B IS .0561
Ca OL B IS OL A Olayer .3347 P + Pt OL D Olayer OL C IS .0561
Ca OL C IS OL A Olayer .3347 P + Pt OL D Olayer OL D IS .0561
Ca OL E IS OL A Olayer .3347 P + Pt OL D Olayer OL A IS .0671
Ca OL D IS OL C Olayer .4655 P + Pt OL C Olayer OL B IS .0984
Ca OL E IS OL C Olayer .4655 P + Pt OL B Olayer OL A Olayer .1283
Ca OL A Olayer IL IS .6599 P + Pt OL C Olayer OL C IS .1091
Ca OL E IS OL D Olayer .5792 P + Pt OL C Olayer OL A IS .1128
Ca OL D Olayer IL IS .7592 P + Pt OL E Olayer OL D IS .1688
Ca OL E Olayer OL C Olayer .7484 P + Pt OL A Olayer OL A IS .2113
Ca OL A IS IL Olayer .9048 P + Pt OL E Olayer OL B IS .1820
Ca OL C IS IL Olayer .9371 P + Pt OL E Olayer OL C IS .1889
Ca OL E IS IL Olayer .9371 P + Pt OL D Olayer IL Olayer .5735
Ca OL B IS IL Olayer .9411 P + Pt OL E Olayer OL E IS .2032
Ca OL D IS IL Olayer .9411 P + Pt OL E Olayer OL A IS .2300
Ca OL E Olayer OL D Olayer .9253 P + Pt OL D Olayer OL A Olayer .5768
Ca OL E Olayer OL B Olayer .9584 P + Pt OL D Olayer OL C Olayer .5856
Ca OL E IS OL D IS .9625 P + Pt OL C Olayer IL Olayer .9104
Ca OL E IS OL C IS .9719 P + Pt OL E Olayer IL Olayer .9226
Ca OL D Olayer OL C Olayer .9949 P + Pt OL C Olayer OL A Olayer .9316
Ca OL D IS OL B IS 1.0000 P + Pt OL E IS OL D IS .9719
Ca OL D IS OL C IS 1.0000 P + Pt OL E Olayer OL A Olayer .9821
Ca OL E IS OL B IS 1.0000 P + Pt OL E IS OL B IS .9813
Ca OL D Olayer OL A Olayer .9795 P + Pt OL E IS OL A IS .9906
Ca OL D Olayer OL B Olayer .9795 P + Pt OL C IS OL A IS 1.0000
Ca OL C IS OL B IS .9625 P + Pt OL C IS OL B IS 1.0000
Ca OL C Olayer OL B Olayer .9072 P + Pt OL D IS OL B IS 1.0000
Ca OL C Olayer OL A Olayer .8492 P + Pt OL E IS OL C IS 1.0000
Ca OL B Olayer OL A Olayer .7267 P + Pt OL D IS OL C IS .9906
Ca OL E Olayer OL A Olayer .7036 P + Pt OL B IS OL A IS .9719
Ca OL B Olayer IL IS .7790 P + Pt OL D IS OL A IS .9719
Ca OL C Olayer IL IS .7368 P + Pt OL E Olayer OL C Olayer .9405
Ca OL D Olayer OL B IS .6035 P + Pt OL A IS IL IS .8691
Ca OL D Olayer OL C IS .6035 P + Pt OL A Olayer IL Olayer .8917
Ca OL D Olayer OL D IS .6035 P + Pt OL E IS IL IS .8368
Ca OL D Olayer OL A IS .5672 P + Pt OL C IS IL IS .8225
Ca OL C IS OL A IS .4886 P + Pt OL D IS IL IS .8225
Ca OL E IS OL A IS .4455 P + Pt OL B IS IL IS .8083
Ca OL D IS OL A IS .4316 P + Pt OL E Olayer OL D Olayer .4866
Ca OL B IS OL A IS .4046 P + Pt OL D Olayer OL B Olayer .3556
Ca OL C Olayer OL A IS .4655 P + Pt OL E IS OL A Olayer .2303
Ca OL C Olayer OL B IS .4655 P + Pt OL C IS OL A Olayer .2239
Ca OL C Olayer OL C IS .4655 P + Pt OL B IS OL A Olayer .2114
Ca OL A Olayer OL A IS .3181 P + Pt OL D IS OL A Olayer .1994
Ca OL B Olayer OL B IS .3022 P + Pt OL E IS OL C Olayer .1129
Ca OL B Olayer OL A IS .2645 P + Pt OL E Olayer OL B Olayer .1121
Ca OL E Olayer IL IS .3451 P + Pt OL D IS OL C Olayer .0984
Ca OL E Olayer OL B IS .0769 P + Pt OL C Olayer OL B Olayer .1207
Ca OL E Olayer OL D IS .0769 P + Pt OL E IS OL D Olayer .0561
Ca OL A Olayer IL Olayer .4391 P + Pt OL E IS OL B Olayer .0034*
Ca OL E Olayer OL A IS .0735 P + Pt OL C IS OL B Olayer .0031*
Ca OL E Olayer OL C IS .0735 P + Pt OL D IS OL B Olayer .0027*
Ca OL E Olayer OL E IS .0735 P + Pt OL A IS IL Olayer .0816
Ca OL E Olayer IL Olayer .3883 P + Pt OL E IS IL Olayer .0794
Ca OL D Olayer IL Olayer .3209 P + Pt OL B IS IL Olayer .0751
Ca OL B Olayer IL Olayer .2838 P + Pt OL C IS IL Olayer .0743
Ca OL C Olayer IL Olayer .2631 P + Pt OL D IS IL Olayer .0743
Cl IL Olayer IL IS 195.6244 11 <.0001* .0067* S IL Olayer IL IS 264.2958 11 <.0001* <.0001*
Cl OL A Olayer OL A IS <.0001* S OL B Olayer IL IS <.0001*
Cl OL E Olayer OL A IS <.0001* S OL C Olayer IL IS <.0001*
Cl OL E Olayer OL B IS <.0001* S OL D Olayer IL IS .0002*
Cl OL E Olayer OL C IS <.0001* S OL C Olayer OL C IS <.0001*
Cl OL E Olayer OL D IS <.0001* S OL C Olayer OL B IS <.0001*
Cl OL E Olayer OL E IS <.0001* S OL B Olayer OL B IS <.0001*
Cl OL D Olayer OL A IS <.0001* S OL C Olayer OL A IS <.0001*
Cl OL C Olayer OL C IS <.0001* S OL B Olayer OL A IS <.0001*
Cl OL D Olayer OL C IS <.0001* S OL A Olayer IL IS .0007*
Cl OL C Olayer OL A IS <.0001* S OL D Olayer OL B IS <.0001*
Cl OL C Olayer OL B IS <.0001* S OL D Olayer OL C IS <.0001*
Cl OL D Olayer OL B IS <.0001* S OL A Olayer OL A IS <.0001*
Cl OL D Olayer OL D IS <.0001* S OL D Olayer OL D IS <.0001*
Cl OL B Olayer OL A IS <.0001* S OL D Olayer OL A IS <.0001*
Cl OL E Olayer IL IS .0037* S OL E Olayer IL IS .0042*
Cl OL B Olayer OL B IS <.0001* S OL E Olayer OL E IS .0003*
Cl OL E Olayer IL Olayer .1135 S OL E Olayer OL C IS .0003*
Cl OL E Olayer OL A Olayer .0224* S OL E Olayer OL B IS .0003*
Cl OL C Olayer IL IS .1940 S OL E Olayer OL D IS .0003*
Cl OL E Olayer OL D Olayer .0758 S OL E Olayer OL A IS .0006*
Cl OL B Olayer IL IS .2131 S OL B Olayer OL A Olayer .1602
Cl OL D Olayer IL IS .2934 S OL C Olayer OL A Olayer .2199
Cl OL E Olayer OL B Olayer .2155 S OL D Olayer OL A Olayer .4685
Cl OL E Olayer OL C Olayer .2265 S OL E Olayer OL A Olayer .5657
Cl OL B Olayer OL A Olayer .4144 S OL B Olayer IL Olayer .8761
Cl OL A Olayer IL IS .5425 S OL E IS OL C IS .8879
Cl OL C Olayer OL A Olayer .4390 S OL D IS OL C IS .9906
Cl OL D Olayer OL A Olayer .8122 S OL E IS OL D IS .9906
Cl OL D IS OL C IS .9528 S OL D IS OL B IS 1.0000
Cl OL D IS OL B IS .9716 S OL E IS OL B IS .9532
Cl OL E IS OL C IS .9430 S OL C IS OL B IS .9158
Cl OL C IS OL B IS .9337 S OL C Olayer OL B Olayer .9170
Cl OL E IS OL D IS .9337 S OL E Olayer OL D Olayer .8328
Cl OL C Olayer OL B Olayer .9169 S OL C Olayer IL Olayer .8948
Cl OL E IS OL B IS .8862 S OL D Olayer OL C Olayer .7242
Cl OL D IS OL A IS .8217 S OL E Olayer OL C Olayer .6926
Cl OL C IS OL A IS .6781 S OL E Olayer OL B Olayer .6438
Cl OL B IS OL A IS .6435 S OL D Olayer OL B Olayer .6350
Cl OL E IS OL A IS .5447 S OL D IS OL A IS .5338
Cl OL D Olayer OL B Olayer .6031 S OL B IS OL A IS .5184
Cl OL D Olayer OL C Olayer .5545 S OL E IS OL A IS .5033
Cl OL B Olayer IL Olayer .7104 S OL C IS OL A IS .4595
Cl OL C Olayer IL Olayer .6987 S OL D Olayer IL Olayer .6031
Cl OL D Olayer IL Olayer .4091 S OL E Olayer IL Olayer .5098
Cl OL A Olayer IL Olayer .1488 S OL A Olayer IL Olayer .1059
Cl OL D IS OL B Olayer <.0001* S OL E IS OL D Olayer <.0001*
Cl OL C IS OL B Olayer <.0001* S OL D IS OL A Olayer <.0001*
Cl OL E IS OL B Olayer <.0001* S OL C IS OL A Olayer <.0001*
Cl OL D IS OL C Olayer <.0001* S OL E IS OL A Olayer <.0001*
Cl OL B IS OL A Olayer <.0001* S OL B IS OL A Olayer <.0001*
Cl OL D IS OL A Olayer <.0001* S OL D IS OL B Olayer <.0001*
Cl OL E IS OL D Olayer <.0001* S OL E IS OL B Olayer <.0001*
Cl OL E IS OL C Olayer <.0001* S OL C IS OL B Olayer <.0001*
Cl OL C IS OL A Olayer <.0001* S OL D IS OL C Olayer <.0001*
Cl OL E IS OL A Olayer <.0001* S OL E IS OL C Olayer <.0001*
Cl OL A IS IL IS <.0001* S OL A IS IL IS <.0001*
Cl OL D IS IL IS <.0001* S OL D IS IL IS <.0001*
Cl OL B IS IL IS <.0001* S OL C IS IL IS <.0001*
Cl OL C IS IL IS <.0001* S OL B IS IL IS <.0001*
Cl OL E IS IL IS <.0001* S OL E IS IL IS <.0001*
Cl OL B IS IL Olayer <.0001* S OL A IS IL Olayer <.0001*
Cl OL D IS IL Olayer <.0001* S OL B IS IL Olayer <.0001*
Cl OL C IS IL Olayer <.0001* S OL D IS IL Olayer <.0001*
Cl OL A IS IL Olayer <.0001* S OL C IS IL Olayer <.0001*
Cl OL E IS IL Olayer <.0001* S OL E IS IL Olayer <.0001*
Cu IL Olayer IL IS 209.6904 11 <.0001* <.0001* Si IL Olayer IL IS 310.6357 11 <.0001* <.0001*
Cu OL C Olayer OL A IS <.0001* Si OL C Olayer IL IS <.0001*
Cu OL C Olayer OL B IS <.0001* Si OL B Olayer IL IS <.0001*
Cu OL C Olayer OL C IS <.0001* Si OL A Olayer IL IS <.0001*
Cu OL B Olayer OL B IS <.0001* Si OL D Olayer IL IS <.0001*
Cu OL B Olayer OL A IS <.0001* Si OL E Olayer IL IS <.0001*
Cu OL A Olayer OL A IS <.0001* Si OL A Olayer OL A IS <.0001*
Cu OL E Olayer OL D IS <.0001* Si OL B Olayer OL A IS <.0001*
Cu OL E Olayer OL A IS <.0001* Si OL B Olayer OL B IS <.0001*
Cu OL E Olayer OL B IS <.0001* Si OL C Olayer OL A IS <.0001*
Cu OL E Olayer OL E IS <.0001* Si OL C Olayer OL B IS <.0001*
Cu OL E Olayer OL C IS <.0001* Si OL C Olayer OL C IS <.0001*
Cu OL C Olayer IL IS .0027* Si OL D Olayer OL A IS <.0001*
Cu OL D Olayer OL D IS <.0001* Si OL D Olayer OL B IS <.0001*
Cu OL D Olayer OL B IS <.0001* Si OL D Olayer OL C IS <.0001*
Cu OL D Olayer OL C IS <.0001* Si OL D Olayer OL D IS <.0001*
Cu OL D Olayer OL A IS <.0001* Si OL E Olayer OL A IS <.0001*
Cu OL C Olayer OL A Olayer .0201* Si OL E Olayer OL B IS <.0001*
Cu OL E Olayer IL IS .0852 Si OL E Olayer OL C IS <.0001*
Cu OL E Olayer OL D Olayer .0638 Si OL E Olayer OL D IS <.0001*
Cu OL E Olayer OL A Olayer .1087 Si OL E Olayer OL E IS <.0001*
Cu OL B Olayer IL IS .2915 Si OL C Olayer OL B Olayer .0229*
Cu OL C Olayer OL B Olayer .2886 Si OL D Olayer OL B Olayer .0235*
Cu OL B Olayer OL A Olayer .3770 Si OL D Olayer OL A Olayer .0628
Cu OL E Olayer OL B Olayer .4831 Si OL C Olayer OL A Olayer .0826
Cu OL D IS OL C IS .7677 Si OL D Olayer OL C Olayer .1160
Cu OL E IS OL C IS .9056 Si OL B Olayer OL A Olayer .1298
Cu OL D IS OL B IS .9718 Si OL E Olayer OL B Olayer .1500
Cu OL E IS OL D IS .9155 Si OL D Olayer IL Olayer .5960
Cu OL C Olayer IL Olayer .9496 Si OL E Olayer OL A Olayer .2964
Cu OL E IS OL B IS .8502 Si OL E Olayer OL C Olayer .4292
Cu OL A Olayer IL IS .9034 Si OL D IS OL B IS .9154
Cu OL C IS OL B IS .7145 Si OL C IS OL B IS .9436
Cu OL E Olayer OL C Olayer .7036 Si OL E IS OL B IS .9624
Cu OL D Olayer OL A Olayer .6077 Si OL D IS OL C IS 1.0000
Cu OL E IS OL A IS .5110 Si OL E IS OL C IS 1.0000
Cu OL B IS OL A IS .3967 Si OL E IS OL D IS .9718
Cu OL E Olayer IL Olayer .6338 Si OL A IS IL IS .9434
Cu OL D Olayer OL B Olayer .2302 Si OL E Olayer IL Olayer .9465
Cu OL D Olayer IL IS .3459 Si OL E Olayer OL D Olayer .6672
Cu OL D IS OL A IS .1070 Si OL B IS OL A IS .2246
Cu OL C IS OL A IS .0967 Si OL C IS OL A IS .2247
Cu OL B Olayer IL Olayer .1795 Si OL D IS OL A IS .2244
Cu OL D Olayer OL C Olayer .0076* Si OL E IS OL A IS .2246
Cu OL E IS OL D Olayer <.0001* Si OL C Olayer IL Olayer .5009
Cu OL E IS OL A Olayer <.0001* Si OL B IS IL IS .1110
Cu OL C IS OL A Olayer <.0001* Si OL C IS IL IS .1110
Cu OL B IS OL A Olayer <.0001* Si OL D IS IL IS .1110
Cu OL D IS OL A Olayer <.0001* Si OL E IS IL IS .1110
Cu OL C IS OL B Olayer <.0001* Si OL B Olayer IL Olayer .0249*
Cu OL E IS OL B Olayer <.0001* Si OL A Olayer IL Olayer .0098*
Cu OL D IS OL B Olayer <.0001* Si OL E IS OL D Olayer <.0001*
Cu OL E IS OL C Olayer <.0001* Si OL B IS OL A Olayer <.0001*
Cu OL D IS OL C Olayer <.0001* Si OL C IS OL A Olayer <.0001*
Cu OL A Olayer IL Olayer .0046* Si OL C IS OL B Olayer <.0001*
Cu OL D Olayer IL Olayer .0013* Si OL D IS OL A Olayer <.0001*
Cu OL A IS IL IS <.0001* Si OL D IS OL B Olayer <.0001*
Cu OL E IS IL IS <.0001* Si OL D IS OL C Olayer <.0001*
Cu OL B IS IL IS <.0001* Si OL E IS OL A Olayer <.0001*
Cu OL C IS IL IS <.0001* Si OL E IS OL B Olayer <.0001*
Cu OL D IS IL IS <.0001* Si OL E IS OL C Olayer <.0001*
Cu OL C IS IL Olayer <.0001* Si OL A IS IL Olayer <.0001*
Cu OL E IS IL Olayer <.0001* Si OL B IS IL Olayer <.0001*
Cu OL A IS IL Olayer <.0001* Si OL C IS IL Olayer <.0001*
Cu OL B IS IL Olayer <.0001* Si OL D IS IL Olayer <.0001*
Cu OL D IS IL Olayer <.0001* Si OL E IS IL Olayer <.0001*
Fe OL C IS OL A Olayer 38.1268 11 <.0001* .1019 Zn IL Olayer IL IS 127.1231 11 <.0001* .0003*
Fe OL E IS OL A Olayer .1019 Zn OL D Olayer IL IS <.0001*
Fe OL B IS OL A Olayer .1129 Zn OL B Olayer IL IS <.0001*
Fe OL D IS OL A Olayer .1129 Zn OL A Olayer IL IS .0004*
Fe OL C Olayer OL A Olayer .2565 Zn OL B Olayer OL B IS <.0001*
Fe OL B Olayer OL A Olayer .2777 Zn OL D Olayer OL B IS <.0001*
Fe OL C IS OL B Olayer .4655 Zn OL B Olayer OL A IS <.0001*
Fe OL E IS OL B Olayer .4863 Zn OL D Olayer OL A IS <.0001*
Fe OL E IS OL D Olayer .4868 Zn OL D Olayer OL D IS <.0001*
Fe OL D IS OL B Olayer .5183 Zn OL D Olayer OL C IS <.0001*
Fe OL D IS OL C Olayer .6810 Zn OL A Olayer OL A IS <.0001*
Fe OL E IS OL C Olayer .6810 Zn OL C Olayer IL IS .0054*
Fe OL D Olayer OL A Olayer .7051 Zn OL D Olayer IL Olayer .1266
Fe OL C Olayer OL B Olayer .9072 Zn OL B Olayer IL Olayer .1402
Fe OL D IS OL C IS .9532 Zn OL E Olayer IL IS .0496*
Fe OL D IS OL B IS 1.0000 Zn OL C Olayer OL B IS .0105*
Fe OL E IS OL C IS .9813 Zn OL C Olayer OL C IS .0105*
Fe OL C IS OL B IS .9625 Zn OL C Olayer OL A IS .0124*
Fe OL E IS OL B IS .9345 Zn OL E Olayer OL B IS .0142*
Fe OL E IS OL D IS .9158 Zn OL E Olayer OL C IS .0150*
Fe OL E Olayer OL A Olayer .9228 Zn OL E Olayer OL D IS .0159*
Fe OL E IS OL A IS .8973 Zn OL E Olayer OL E IS .0168*
Fe OL C IS OL A IS .8602 Zn OL E Olayer OL A IS .0240*
Fe OL B IS OL A IS .8418 Zn OL C Olayer IL Olayer .4883
Fe OL D IS OL A IS .8053 Zn OL A Olayer IL Olayer .5804
Fe OL D Olayer OL B Olayer .7338 Zn OL D Olayer OL A Olayer .4042
Fe OL C Olayer OL B IS .7058 Zn OL B Olayer OL A Olayer .4882
Fe OL A IS IL Olayer .8546 Zn OL C Olayer OL A Olayer .6766
Fe OL C Olayer OL C IS .6445 Zn OL D Olayer OL C Olayer .6765
Fe OL E Olayer OL D Olayer .6334 Zn OL D IS OL C IS .9251
Fe OL C Olayer OL A IS .5856 Zn OL D Olayer OL B Olayer .9488
Fe OL D Olayer OL C Olayer .5811 Zn OL D IS OL B IS .9812
Fe OL D Olayer OL B IS .5320 Zn OL E IS OL C IS .9812
Fe OL C IS IL Olayer .7775 Zn OL E IS OL B IS 1.0000
Fe OL B Olayer OL B IS .5075 Zn OL E IS OL D IS .9812
Fe OL D Olayer OL D IS .4868 Zn OL E IS OL A IS .9718
Fe OL D IS IL Olayer .7697 Zn OL C IS OL B IS .9625
Fe OL E IS IL Olayer .7542 Zn OL C IS OL A IS .7501
Fe OL D Olayer OL C IS .4543 Zn OL C Olayer OL B Olayer .7544
Fe OL B IS IL Olayer .7503 Zn OL B IS OL A IS .6798
Fe OL D Olayer OL A IS .4438 Zn OL D IS OL A IS .4864
Fe OL B Olayer OL A IS .4452 Zn OL E Olayer OL A Olayer .3067
Fe OL E Olayer OL B Olayer .1794 Zn OL E Olayer OL C Olayer .2385
Fe OL E Olayer OL C Olayer .1746 Zn OL E Olayer IL Olayer .4905
Fe OL A Olayer OL A IS .0886 Zn OL A IS IL IS .2791
Fe OL E Olayer OL B IS .0106* Zn OL E Olayer OL D Olayer .1072
Fe OL E Olayer OL D IS .0106* Zn OL E IS IL IS .2647
Fe OL E Olayer OL E IS .0100* Zn OL C IS IL IS .2204
Fe OL E Olayer OL C IS .0094* Zn OL E Olayer OL B Olayer .0722
Fe OL E Olayer OL A IS .0074* Zn OL B IS IL IS .2069
Fe OL C Olayer IL Olayer .2129 Zn OL D IS IL IS .1816
Fe OL B Olayer IL Olayer .1213 Zn OL E IS OL C Olayer .0105*
Fe IL Olayer IL IS .0376* Zn OL D IS OL C Olayer .0095*
Fe OL D Olayer IL Olayer .0544 Zn OL E IS OL A Olayer <.0001*
Fe OL D Olayer IL IS .0035* Zn OL C IS OL A Olayer <.0001*
Fe OL C Olayer IL IS .0030* Zn OL D IS OL A Olayer <.0001*
Fe OL A IS IL IS .0026* Zn OL B IS OL A Olayer <.0001*
Fe OL D IS IL IS .0020* Zn OL E IS OL D Olayer <.0001*
Fe OL B IS IL IS .0019* Zn OL D IS OL B Olayer <.0001*
Fe OL E IS IL IS .0018* Zn OL E IS OL B Olayer <.0001*
Fe OL C IS IL IS .0018* Zn OL C IS OL B Olayer <.0001*
Fe OL B Olayer IL IS .0004* Zn OL A IS IL Olayer .0014*
Fe OL E Olayer IL Olayer .0140* Zn OL E IS IL Olayer .0011*
Fe OL A Olayer IL Olayer .0083* Zn OL C IS IL Olayer .0011*
Fe OL A Olayer IL IS <.0001* Zn OL B IS IL Olayer .0009*
Fe OL E Olayer IL IS <.0001* Zn OL D IS IL Olayer .0008*
K IL Olayer IL IS 85.9342 11 <.0001* <.0001* K OL E Olayer OL C Olayer .7426
K OL A Olayer IL IS <.0001* K OL D IS OL A IS .8229
K OL D Olayer IL IS <.0001* K OL E Olayer OL A Olayer .8696
K OL B Olayer IL IS .0002* K OL D IS OL B IS .8597
K OL E Olayer IL IS .0008* K OL D IS OL C IS .9250
K OL C Olayer IL IS .0025* K OL C IS OL B IS .9625
K OL B Olayer OL B IS .0297* K OL E IS OL B IS .9718
K OL B Olayer OL A IS .0333* K OL E IS OL C IS 1.0000
K OL D Olayer OL A IS .0334* K OL B IS OL A IS .9343
K OL D Olayer OL B IS .0338* K OL D Olayer OL B Olayer .9284
K OL D Olayer OL C IS .0353* K OL E IS OL D IS .9063
K OL D Olayer OL D IS .0402* K OL C IS OL A IS .8969
K OL D IS IL IS .1698 K OL E IS OL A IS .7865
K OL A Olayer OL A IS .0500* K OL C Olayer IL Olayer .8947
K OL B Olayer IL Olayer .3542 K OL C Olayer OL A Olayer .7871
K OL E Olayer OL A IS .0450* K OL E Olayer OL D Olayer .7366
K OL E Olayer OL B IS .0457* K OL E Olayer OL B Olayer .4971
K OL E Olayer OL D IS .0457* K OL C Olayer OL B Olayer .3605
K OL E Olayer OL E IS .0480* K OL D IS OL C Olayer .1053
K OL A IS IL IS .2085 K OL E IS OL C Olayer .0885
K OL D Olayer IL Olayer .3998 K OL D IS OL A Olayer .0613
K OL E Olayer OL C IS .0504 K OL B IS OL A Olayer .0526
K OL B IS IL IS .2354 K OL C IS OL A Olayer .0526
K OL C Olayer OL A IS .0879 K OL E IS OL A Olayer .0486*
K OL C Olayer OL B IS .0916 K OL D IS OL B Olayer .0397*
K OL C Olayer OL C IS .1018 K OL E IS OL D Olayer .0338*
K OL C IS IL IS .2994 K OL C IS OL B Olayer .0352*
K OL E IS IL IS .4481 K OL E IS OL B Olayer .0297*
K OL D Olayer OL C Olayer .3897 K OL D IS IL Olayer .0330*
K OL B Olayer OL A Olayer .5274 K OL C IS IL Olayer .0226*
K OL E Olayer IL Olayer .7794 K OL B IS IL Olayer .0208*
K OL D Olayer OL A Olayer .6210 K OL A IS IL Olayer .0202*
K OL A Olayer IL Olayer .8126 K OL E IS IL Olayer .0175*

Note: Orange p‐values = highly significant differences, red p‐values = significant differences, black = no significant differences.

Abbreviations: N, quantity of point measurements; IL, inner lateral tooth; IS, inner structure; OL, outer lateral tooth; Olayer, outer layer.

TABLE A4.

Results from the EDX analysis (mean and standard deviation; given in atomic %).

Locality Tooth region N Ca Cl Cu Fe
Mean SD Mean SD Mean SD Mean SD
Surface Bulge 46 0.05 0.05 0.02 0.02 0.08 0.08 0.09 0.07
Surface Basis 46 0.08 0.07 0.06 0.05 0.15 0.12 0.14 0.09
Surface Stylus, basis 46 3.41 2.41 0.09 0.08 0.12 0.08 1.00 0.81
Surface Stylus, terminal 46 5.32 1.72 0.12 0.11 0.13 0.08 1.12 0.68
Surface Cusp 46 5.56 2.01 0.10 0.08 0.13 0.07 1.26 0.75
Surface Sides 64 0.10 0.09 0.08 0.06 0.19 0.14 0.17 0.10
Inner structure Whole tooth area 180 0.47 0.23 0.03 0.03 0.05 0.04 0.53 0.35
Locality Locality N K Mg Na P + Pt
Mean SD Mean SD Mean SD Mean SD
Surface Bulge 46 0.02 0.01 0.13 0.04 0.00 0.00 0.49 0.38
Surface Basis 46 0.05 0.03 0.23 0.08 0.00 0.00 0.91 0.67
Surface Stylus, basis 46 0.06 0.03 0.52 0.21 0.00 0.00 1.05 0.70
Surface Stylus, terminal 46 0.06 0.03 0.50 0.20 0.00 0.00 0.81 0.41
Surface Cusp 46 0.05 0.03 0.44 0.17 0.00 0.00 0.80 0.44
Surface Sides 64 0.06 0.03 0.25 0.08 0.00 0.00 0.97 0.69
Inner structure Whole tooth area 180 0.03 0.02 0.26 0.09 0.00 0.00 0.56 0.26
Locality Locality N S Si Zn Ae
Mean SD Mean SD Mean SD Mean SD
Surface Bulge 46 0.26 0.10 0.27 0.14 0.04 0.02 1.37 0.49
Surface Basis 46 0.67 0.22 0.35 0.16 0.10 0.05 2.45 0.85
Surface Stylus, basis 46 0.66 0.27 8.00 1.77 0.14 0.08 14.74 3.80
Surface Stylus, terminal 46 0.85 0.25 11.58 1.26 0.14 0.08 20.31 2.61
Surface Cusp 46 0.76 0.26 16.24 2.76 0.15 0.08 25.17 4.04
Surface Sides 64 0.78 0.27 0.38 0.19 0.11 0.06 2.76 0.87
Inner structure Whole tooth area 180 0.34 0.12 0.04 0.13 0.06 0.03 2.12 0.74

Note: For the inner tooth structure and the tooth surface (all tooth types pooled together), elemental proportions are sorted according to regions.

Abbreviations: N, quantity of point measurements; SD, standard deviation.

TABLE A5.

Results from the EDX analysis (mean and standard deviation; given in atomic %).

Tooth type Locality Locality N Ca Cl Cu Fe K Mg
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Inner laterals Surface Bulge 23 0.05 0.03 0.03 0.02 0.09 0.08 0.11 0.07 0.02 0.01 0.14 0.04
Inner laterals Surface Basis 23 0.07 0.05 0.07 0.06 0.17 0.13 0.16 0.09 0.06 0.03 0.24 0.07
Inner laterals Surface Stylus, basis 23 3.53 2.60 0.08 0.07 0.13 0.09 1.17 1.06 0.06 0.03 0.49 0.21
Inner laterals Surface Stylus, terminal 23 5.59 1.81 0.11 0.08 0.15 0.09 1.49 0.77 0.05 0.02 0.38 0.16
Inner laterals Surface Cusp 23 5.85 2.12 0.10 0.07 0.16 0.06 1.59 0.77 0.05 0.02 0.36 0.10
Inner laterals Surface Sides 19 0.08 0.06 0.08 0.06 0.22 0.14 0.20 0.10 0.06 0.03 0.26 0.08
Inner laterals Inner structure Whole tooth area 70 0.32 0.20 0.05 0.04 0.08 0.04 0.73 0.46 0.03 0.01 0.23 0.09
Outer laterals A Surface Bulge 5 0.11 0.09 0.02 0.01 0.06 0.05 0.09 0.07 0.02 0.01 0.10 0.02
Outer laterals A Surface Basis 5 0.16 0.14 0.04 0.02 0.12 0.11 0.12 0.09 0.05 0.01 0.18 0.01
Outer laterals A Surface Stylus, basis 5 2.42 2.07 0.08 0.06 0.13 0.07 0.63 0.50 0.06 0.03 0.51 0.11
Outer laterals A Surface Stylus, terminal 5 4.00 2.57 0.12 0.11 0.09 0.06 0.92 0.22 0.06 0.03 0.57 0.16
Outer laterals A Surface Cusp 5 4.11 1.46 0.07 0.06 0.09 0.07 0.62 0.12 0.04 0.02 0.66 0.18
Outer laterals A Surface Sides 9 0.14 0.14 0.04 0.02 0.09 0.10 0.11 0.08 0.07 0.02 0.24 0.07
Outer laterals A Inner structure Whole tooth area 22 0.60 0.20 0.01 0.01 0.02 0.01 0.41 0.18 0.03 0.02 0.29 0.09
Outer laterals B Surface Bulge 5 0.03 0.02 0.01 0.01 0.08 0.11 0.10 0.09 0.02 0.01 00.12 0.04
Outer laterals B Surface Basis 5 0.05 0.03 0.03 0.02 0.13 0.14 0.15 0.12 0.04 0.03 0.22 0.09
Outer laterals B Surface Stylus, basis 5 2.90 2.74 0.09 0.08 0.09 0.09 0.84 0.31 0.08 0.03 0.54 0.12
Outer laterals B Surface Stylus, terminal 5 5.52 1.51 0.20 0.15 0.14 0.07 0.73 0.17 0.07 0.02 0.63 0.26
Outer laterals B Surface Cusp 5 4.90 1.98 0.09 0.10 0.12 0.10 0.76 0.36 0.05 0.06 0.50 0.07
Outer laterals B Surface Sides 9 0.07 0.04 0.06 0.03 0.17 0.12 0.19 0.08 0.07 0.03 0.26 0.08
Outer laterals B Inner structure Whole tooth area 22 0.56 0.19 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.27 0.09
Outer laterals C Surface Bulge 5 0.03 0.02 0.02 0.02 0.10 0.07 0.10 0.07 0.01 0.01 0.10 0.04
Outer laterals C Surface Basis 5 0.05 0.03 0.04 0.04 0.17 0.10 0.14 0.09 0.02 0.02 0.17 0.07
Outer laterals C Surface Stylus, basis 5 4.75 1.84 0.09 0.09 0.13 0.06 0.94 0.35 0.08 0.03 0.59 0.07
Outer laterals C Surface Stylus, terminal 5 4.83 0.90 0.14 0.14 0.11 0.10 0.67 0.17 0.05 0.02 0.66 0.11
Outer laterals C Surface Cusp 5 5.80 2.29 0.06 0.03 0.10 0.05 1.27 0.59 0.06 0.02 0.54 0.12
Outer laterals C Surface Sides 9 0.08 0.06 0.10 0.09 0.24 0.15 0.19 0.12 0.04 0.02 0.26 0.08
Outer laterals C Inner structure Whole tooth area 22 0.56 0.19 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.27 0.09
Outer laterals D Surface Bulge 5 0.03 0.02 0.02 0.01 0.05 0.06 0.06 0.06 0.02 0.02 0.16 0.07
Outer laterals D Surface Basis 5 0.05 0.03 0.04 0.03 0.07 0.06 0.08 0.06 0.04 0.03 0.27 0.07
Outer laterals D Surface Stylus, basis 5 2.57 1.93 0.09 0.11 0.06 0.05 0.94 0.29 0.06 0.03 0.61 0.21
Outer laterals D Surface Stylus, terminal 5 5.34 1.27 0.15 0.13 0.14 0.10 0.67 0.25 0.08 0.04 0.58 0.20
Outer laterals D Surface Cusp 5 5.99 2.26 0.08 0.04 0.09 0.05 1.37 0.73 0.06 0.03 0.54 0.12
Outer laterals D Surface Sides 7 0.13 0.13 0.05 0.03 0.13 0.18 0.14 0.12 0.06 0.03 0.25 0.08
Outer laterals D Inner structure Whole tooth area 22 0.56 0.18 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.27 0.09
Outer laterals E Surface Bulge 3 0.04 0.03 0.03 0.01 0.07 0.07 0.11 0.05 0.02 0.01 0.14 0.03
Outer laterals E Surface Basis 3 0.06 0.05 0.08 0.03 0.13 0.11 0.14 0.04 0.04 0.03 0.26 0.08
Outer laterals E Surface Stylus, basis 3 4.12 2.91 0.13 0.12 0.14 0.10 0.83 0.73 0.06 0.03 0.53 0.53
Outer laterals E Surface Stylus, terminal 3 5.79 1.43 0.06 0.06 0.05 0.02 0.68 0.30 0.03 0.03 0.58 0.18
Outer laterals E Surface Cusp 3 5.75 0.97 0.25 0.12 0.13 0.05 0.38 0.20 0.07 0.03 0.18 0.21
Outer laterals E Surface Sides 11 0.12 0.10 0.10 0.08 0.20 0.16 0.16 0.12 0.05 0.02 0.23 0.06
Outer laterals E Inner structure Whole tooth area 22 0.56 0.19 0.01 0.01 0.02 0.01 0.40 0.18 0.03 0.02 0.28 0.09
Tooth type Locality Locality N Na P + Pt S Si Zn Ae
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Inner laterals Surface Bulge 23 0.00 0.00 0.51 0.39 0.29 0.11 0.30 0.15 0.05 0.02 1.48 0.47
Inner laterals Surface Basis 23 0.00 0.00 0.93 0.66 0.72 0.23 0.37 0.17 0.11 0.05 2.61 0.80
Inner laterals Surface Stylus, basis 23 0.00 0.00 1.15 0.83 0.67 0.31 8.40 1.83 0.15 0.08 15.50 3.92
Inner laterals Surface Stylus, terminal 23 0.00 0.00 0.76 0.44 0.86 0.20 12.19 1.17 0.11 0.08 21.38 2.58
Inner laterals Surface Cusp 23 0.00 0.00 0.75 0.50 0.82 0.23 17.10 2.79 0.13 0.08 26.61 3.93
Inner laterals Surface Sides 19 0.00 0.00 1.04 0.77 0.83 0.28 0.34 0.14 0.12 0.06 2.89 0.90
Inner laterals Inner structure Whole tooth area 70 0.00 0.00 0.58 0.30 0.43 0.14 0.06 0.20 0.07 0.04 2.25 0.79
Outer laterals A Surface Bulge 5 0.00 0.00 0.41 0.33 0.22 0.09 0.12 0.02 0.04 0.02 1.08 0.41
Outer laterals A Surface Basis 5 0.00 0.00 0.80 0.67 0.58 0.23 0.15 0.02 0.09 0.04 2.02 0.80
Outer laterals A Surface Stylus, basis 5 0.00 0.00 0.71 0.67 0.56 0.15 5.71 2.83 0.11 0.05 10.69 5.42
Outer laterals A Surface Stylus, terminal 5 0.00 0.00 0.87 0.37 0.80 0.22 9.54 0.09 0.17 0.09 16.86 2.41
Outer laterals A Surface Cusp 5 0.00 0.00 0.95 0.29 0.72 0.13 12.77 0.18 0.15 0.06 19.90 1.69
Outer laterals A Surface Sides 9 0.00 0.00 0.93 0.68 0.63 0.23 0.40 0.29 0.11 0.04 2.50 0.93
Outer laterals A Inner structure Whole tooth area 22 0.00 0.00 0.55 0.24 0.30 0.07 0.03 0.02 0.05 0.02 2.09 0.72
Outer laterals B Surface Bulge 5 0.00 0.00 0.75 0.61 0.26 0.11 0.21 0.04 0.06 0.03 1.54 0.85
Outer laterals B Surface Basis 5 0.00 0.00 1.34 1.16 0.65 0.24 0.26 0.04 0.13 0.07 2.70 1.53
Outer laterals B Surface Stylus, basis 5 0.00 0.00 0.97 0.33 0.70 0.26 7.51 0.24 0.14 0.10 13.59 3.01
Outer laterals B Surface Stylus, terminal 5 0.00 0.00 0.95 0.57 1.00 0.30 10.40 0.33 0.20 0.05 19.49 1.75
Outer laterals B Surface Cusp 5 0.00 0.00 0.76 0.30 0.78 0.38 13.94 0.26 0.18 0.13 21.77 2.56
Outer laterals B Surface Sides 9 0.00 0.00 1.10 0.63 0.77 0.18 0.22 0.07 0.10 0.05 2.72 0.67
Outer laterals B Inner structure Whole tooth area 22 0.00 0.00 0.55 0.24 0.29 0.06 0.02 0.01 0.05 0.02 2.02 0.71
Outer laterals C Surface Bulge 5 0.00 0.00 0.28 0.11 0.24 0.10 0.26 0.04 0.03 0.03 1.06 0.19
Outer laterals C Surface Basis 5 0.00 0.00 0.58 0.19 0.64 0.24 0.34 0.02 0.07 0.06 1.91 0.35
Outer laterals C Surface Stylus, basis 5 0.00 0.00 0.96 0.56 0.68 0.20 7.94 0.15 0.18 0.06 16.04 2.31
Outer laterals C Surface Stylus, terminal 5 0.00 0.00 0.90 0.22 0.79 0.21 11.13 0.16 0.16 0.10 19.16 0.80
Outer laterals C Surface Cusp 5 0.00 0.00 0.96 0.51 0.75 0.09 14.86 0.46 0.18 0.09 24.26 3.11
Outer laterals C Surface Sides 9 0.00 0.00 1.00 0.93 0.82 0.29 0.43 0.07 0.14 0.09 2.95 1.10
Outer laterals C Inner structure Whole tooth area 22 0.00 0.00 0.55 0.24 0.29 0.07 0.02 0.02 0.05 0.02 2.03 0.71
Outer laterals D Surface Bulge 5 0.00 0.00 0.49 0.28 0.23 0.06 0.38 0.06 0.04 0.02 1.41 0.43
Outer laterals D Surface Basis 5 0.00 0.00 0.80 0.37 0.57 0.14 0.47 0.05 0.10 0.04 2.30 0.58
Outer laterals D Surface Stylus, basis 5 0.00 0.00 1.04 0.63 0.71 0.24 8.43 0.18 0.15 0.09 14.39 1.31
Outer laterals D Surface Stylus, terminal 5 0.00 0.00 0.74 0.44 0.91 0.46 11.92 0.36 0.21 0.09 20.39 1.91
Outer laterals D Surface Cusp 5 0.00 0.00 0.89 0.52 0.81 0.10 17.03 0.79 0.17 0.10 26.72 2.89
Outer laterals D Surface Sides 7 0.00 0.00 1.06 0.76 0.71 0.30 0.52 0.27 0.12 0.04 2.90 0.99
Outer laterals D Inner structure Whole tooth area 22 0.00 0.00 0.55 0.24 0.29 0.07 0.02 0.01 0.05 0.02 2.02 0.70
Outer laterals E Surface Bulge 3 0.00 0.00 0.44 0.33 0.25 0.02 0.12 0.02 0.02 0.01 1.49 0.28
Outer laterals E Surface Basis 3 0.00 0.00 0.86 0.63 0.67 0.15 0.59 0.04 0.05 0.02 2.70 0.70
Outer laterals E Surface Stylus, basis 3 0.00 0.00 1.09 0.77 0.53 0.41 8.93 0.13 0.12 0.05 16.04 2.63
Outer laterals E Surface Stylus, terminal 3 0.00 0.00 0.89 0.18 0.67 0.31 12.46 0.01 0.09 0.03 21.07 2.24
Outer laterals E Surface Cusp 3 0.00 0.00 0.61 0.16 0.34 0.49 20.30 1.18 0.14 0.03 27.60 2.07
Outer laterals E Surface Sides 11 0.00 0.00 0.66 0.28 0.83 0.32 0.41 0.17 0.10 0.05 2.53 0.70
Outer laterals E Inner structure Whole tooth area 22 0.00 0.00 0.55 0.25 0.28 0.06 0.02 0.01 0.05 0.02 2.03 0.71

Note: For the inner tooth structure and the tooth surface, elemental proportions are sorted according to tooth types and regions.

Abbreviations: N, quantity of point measurements; SD, standard deviation.

TABLE A6.

For the elemental proportions: results from pairwise comparison by Wilcoxon method between the inner tooth structure and the tooth surface (all tooth types pooled together) are sorted according to regions.

Element Structure 1 Structure 2 Results from Wilcoxon‐test p‐value Element Structure 1 Structure 2 Results from Wilcoxon‐test p‐value
χ2 df p‐value χ2 df p‐value
Ae Side OL IS 298.4635 5 <.0001* <.0001* Mg Stylus, terminal OL Basis OL 166.1782 5 <.0001* <.0001*
Ae Stylus, terminal OL Basis OL <.0001* Mg Stylus, basis OL Basis OL <.0001*
Ae Cusp OL Basis OL <.0001* Mg Cusp OL Basis OL <.0001*
Ae Stylus, basis OL Basis OL <.0001* Mg IS Basis OL .0276*
Ae Cusp OL Stylus, basis OL <.0001* Mg Side OL Basis OL .0686
Ae Stylus, terminal OL Stylus, basis OL <.0001* Mg Cusp OL Stylus, terminal OL .1907
Ae Cusp OL Stylus, terminal OL <.0001* Mg Side OL IS .4387
Ae Side OL Basis OL .0264* Mg Stylus, terminal OL Stylus, basis OL .1430
Ae IS Basis OL .0227* Mg Cusp OL Stylus, basis OL .0101*
Ae Bulge OL Basis OL <.0001* Mg Bulge OL Basis OL <.0001*
Ae Bulge OL Stylus, basis OL <.0001* Mg Bulge OL Stylus, basis OL <.0001*
Ae Bulge OL Stylus, terminal OL <.0001* Mg Bulge OL Cusp OL <.0001*
Ae Bulge OL Cusp OL <.0001* Mg Side OL Cusp OL <.0001*
Ae Bulge OL Side OL <.0001* Mg Side OL Stylus, terminal OL <.0001*
Ae Side OL Stylus, basis OL <.0001* Mg Bulge OL Stylus, terminal OL <.0001*
Ae Side OL Stylus, terminal OL <.0001* Mg Side OL Stylus, basis OL <.0001*
Ae Side OL Cusp OL <.0001* Mg Bulge OL Side OL <.0001*
Ae Bulge OL IS <.0001* Mg IS Cusp OL <.0001*
Ae IS Stylus, basis OL <.0001* Mg IS Stylus, terminal OL <.0001*
Ae IS Stylus, terminal OL <.0001* Mg IS Stylus, basis OL <.0001*
Ae IS Cusp OL <.0001* Mg Bulge OL IS <.0001*
Ca IS Basis OL 339.5842 5 <.0001* <.0001* P + Pt Side OL IS 47.0579 5 <.0001* <.0001*
Ca Stylus, terminal OL Basis OL <.0001* P + Pt Side OL Cusp OL .2152
Ca Cusp OL Basis OL <.0001* P + Pt Stylus, basis OL Basis OL .2658
Ca Stylus, basis OL Basis OL <.0001* P + Pt Side OL Basis OL .4506
Ca Cusp OL Stylus, basis OL .0002* P + Pt Stylus, terminal OL Basis OL .7518
Ca Stylus, terminal OL Stylus, basis OL .0002* P + Pt Side OL Stylus, terminal OL .7968
Ca Side OL Basis OL .0312* P + Pt Cusp OL Basis OL .5819
Ca Cusp OL Stylus, terminal OL .9222 P + Pt Cusp OL Stylus, terminal OL .4234
Ca Bulge OL Basis OL .0065* P + Pt Side OL Stylus, basis OL .4506
Ca Bulge OL Side OL <.0001* P + Pt Stylus, terminal OL Stylus, basis OL .2494
Ca Bulge OL Stylus, basis OL <.0001* P + Pt Cusp OL Stylus, basis OL .0947
Ca Bulge OL Stylus, terminal OL <.0001* P + Pt Bulge OL Basis OL <.0001*
Ca Bulge OL Cusp OL <.0001* P + Pt Bulge OL Cusp OL <.0001*
Ca Side OL Stylus, basis OL <.0001* P + Pt Bulge OL Stylus, terminal OL <.0001*
Ca Side OL Stylus, terminal OL <.0001* P + Pt Bulge OL Stylus, basis OL <.0001*
Ca Side OL Cusp OL <.0001* P + Pt Bulge OL Side OL <.0001*
Ca IS Stylus, basis OL <.0001* P + Pt Bulge OL IS .0036*
Ca Side OL IS <.0001* P + Pt IS Cusp OL .0008*
Ca Bulge OL IS <.0001* P + Pt IS Basis OL .0003*
Ca IS Stylus, terminal OL <.0001* P + Pt IS Stylus, terminal OL <.0001*
Ca IS Cusp OL <.0001* P + Pt IS Stylus, basis OL <.0001*
Cl Side OL IS 151.7305 5 <.0001* <.0001* S Side OL IS 250.0864 5 <.0001* <.0001*
Cl Stylus, terminal OL Basis OL .0005* S Stylus, terminal OL Stylus, basis OL .0002*
Cl Cusp OL Basis OL .0045* S Stylus, terminal OL Basis OL .0003*
Cl Side OL Basis OL .0142* S Side OL Basis OL .0147*
Cl Stylus, terminal OL Stylus, basis OL .0318* S Cusp OL Stylus, basis OL .0101*
Cl Stylus, basis OL Basis OL .1245 S Cusp OL Basis OL .0126*
Cl Cusp OL Stylus, basis OL .3055 S Side OL Stylus, basis OL .0420*
Cl Side OL Stylus, basis OL .6958 S Stylus, basis OL Basis OL .8178
Cl Cusp OL Stylus, terminal OL .3247 S Side OL Cusp OL .5245
Cl Side OL Cusp OL .1651 S Cusp OL Stylus, terminal OL .2044
Cl Side OL Stylus, terminal OL .0300* S Side OL Stylus, terminal OL .0820
Cl Bulge OL IS .1582 S Bulge OL Stylus, basis OL <.0001*
Cl Bulge OL Basis OL <.0001* S Bulge OL Cusp OL <.0001*
Cl Bulge OL Stylus, basis OL <.0001* S Bulge OL Basis OL <.0001*
Cl Bulge OL Cusp OL <.0001* S Bulge OL Stylus, terminal OL <.0001*
Cl Bulge OL Stylus, terminal OL <.0001* S Bulge OL IS <.0001*
Cl Bulge OL Side OL <.0001* S Bulge OL Side OL <.0001*
Cl IS Basis OL <.0001* S IS Stylus, basis OL <.0001*
Cl IS Stylus, basis OL <.0001* S IS Basis OL <.0001*
Cl IS Cusp OL <.0001* S IS Cusp OL <.0001*
Cl IS Stylus, terminal OL <.0001* S IS Stylus, terminal OL <.0001*
Cu Side OL IS 139.2310 5 <.0001* <.0001* Si Side OL IS 381.5313 5 <.0001* <.0001*
Cu Bulge OL IS .0165* Si Bulge OL IS <.0001*
Cu Side OL Stylus, basis OL .0211* Si Stylus, terminal OL Basis OL <.0001*
Cu Side OL Basis OL .0723 Si Cusp OL Basis OL <.0001*
Cu Side OL Stylus, terminal OL .1967 Si Cusp OL Stylus, basis OL <.0001*
Cu Side OL Cusp OL .3232 Si Stylus, basis OL Basis OL <.0001*
Cu Stylus, terminal OL Stylus, basis OL .3307 Si Stylus, terminal OL Stylus, basis OL <.0001*
Cu Cusp OL Stylus, basis OL .3546 Si Cusp OL Stylus, terminal OL <.0001*
Cu Cusp OL Basis OL .8056 Si Side OL Basis OL .5148
Cu Cusp OL Stylus, terminal OL .8238 Si Bulge OL Basis OL .0360*
Cu Stylus, terminal OL Basis OL .9969 Si Bulge OL Side OL .0106*
Cu Stylus, basis OL Basis OL .4509 Si Bulge OL Stylus, basis OL <.0001*
Cu Bulge OL Stylus, basis OL .0197* Si Bulge OL Stylus, terminal OL <.0001*
Cu Bulge OL Basis OL .0065* Si Bulge OL Cusp OL <.0001*
Cu Bulge OL Stylus, terminal OL .0011* Si Side OL Stylus, basis OL <.0001*
Cu Bulge OL Cusp OL .0003* Si Side OL Stylus, terminal OL <.0001*
Cu Bulge OL Side OL <.0001* Si Side OL Cusp OL <.0001*
Cu IS Basis OL <.0001* Si IS Basis OL <.0001*
Cu IS Stylus, basis OL <.0001* Si IS Stylus, basis OL <.0001*
Cu IS Stylus, terminal OL <.0001* Si IS Stylus, terminal OL <.0001*
Cu IS Cusp OL <.0001* Si IS Cusp OL <.0001*
Fe IS Basis OL 252.1298 5 <.0001* <.0001* Zn Side OL IS 127.5303 5 <.0001* <.0001*
Fe Stylus, terminal OL Basis OL <.0001* Zn Stylus, basis OL Basis OL .0045*
Fe Cusp OL Basis OL <.0001* Zn Cusp OL Basis OL .0048*
Fe Stylus, basis OL Basis OL <.0001* Zn Stylus, terminal OL Basis OL .0082*
Fe Cusp OL Stylus, basis OL .0411* Zn Side OL Basis OL .0891
Fe Side OL Basis OL .1680 Zn Cusp OL Stylus, terminal OL .7665
Fe Stylus, terminal OL Stylus, basis OL .1742 Zn Cusp OL Stylus, basis OL .8056
Fe Cusp OL Stylus, terminal OL .3775 Zn Stylus, terminal OL Stylus, basis OL .9906
Fe Bulge OL Basis OL .0189* Zn Side OL Stylus, terminal OL .1526
Fe Bulge OL Side OL .0003* Zn Side OL Stylus, basis OL .0820
Fe Bulge OL Stylus, basis OL <.0001* Zn Side OL Cusp OL .0615
Fe Bulge OL Cusp OL <.0001* Zn Bulge OL Basis OL <.0001*
Fe Bulge OL Stylus, terminal OL <.0001* Zn Bulge OL Stylus, terminal OL <.0001*
Fe IS Stylus, basis OL <.0001* Zn Bulge OL Cusp OL <.0001*
Fe Side OL Stylus, basis OL <.0001* Zn Bulge OL Stylus, basis OL <.0001*
Fe Side OL Cusp OL <.0001* Zn Bulge OL Side OL <.0001*
Fe Side OL Stylus, terminal OL <.0001* Zn Bulge OL IS <.0001*
Fe IS Stylus, terminal OL <.0001* Zn IS Basis OL <.0001*
Fe IS Cusp OL <.0001* Zn IS Stylus, terminal OL <.0001*
Fe Side OL IS <.0001* Zn IS Cusp OL <.0001*
Fe Bulge OL IS <.0001* Zn IS Stylus, basis OL <.0001*
K Side OL IS 88.4850 5 <.0001* <.0001* K Bulge OL Basis OL <.0001*
K Stylus, basis OL Basis OL .0186* K Bulge OL Stylus, terminal OL <.0001*
K Side OL Basis OL .0520 K Bulge OL Cusp OL <.0001*
K Stylus, terminal OL Basis OL .1520 K IS Basis OL .0007*
K Cusp OL Basis OL .3125 K Bulge OL Stylus, basis OL <.0001*
K Side OL Cusp OL .4875 K Bulge OL Side OL <.0001*
K Side OL Stylus, terminal OL .8533 K Bulge OL IS <.0001*
K Cusp OL Stylus, terminal OL .7159 K IS Cusp OL <.0001*
K Stylus, terminal OL Stylus, basis OL .3958 K IS Stylus, terminal OL <.0001*
K Side OL Stylus, basis OL .4253 K IS Stylus, basis OL <.0001*
K Cusp OL Stylus, basis OL .1531

Note: Orange p‐values = highly significant differences, red p‐values = significant differences, black = no significant differences.

Abbreviation: df, degrees of freedom; IS, inner structure; OL, outer layer.

TABLE A7.

Results from nanoindentation experiments (mean and standard deviation).

Tooth type Locality N Young's modulus Hardness
Mean SD Mean SD
Inner laterals Bulge 24 1.84 0.42 0.10 0.02
Inner laterals Basis 24 4.23 0.68 0.23 0.04
Inner laterals Stylus, basis 24 12.09 0.89 0.64 0.05
Inner laterals Stylus, terminal 23 14.18 0.41 0.77 0.04
Inner laterals Cusp 23 15.95 0.88 0.85 0.05
Outer laterals A Bulge 11 1.60 0.49 0.10 0.03
Outer laterals A Basis 11 3.96 0.71 0.21 0.04
Outer laterals A Stylus, basis 11 11.44 0.81 0.61 0.06
Outer laterals A Stylus, terminal 13 12.81 0.53 0.70 0.04
Outer laterals A Cusp 13 15.55 1.61 0.88 0.14
Outer laterals B Bulge 11 2.17 0.73 0.12 0.04
Outer laterals B Basis 11 3.76 0.68 0.20 0.04
Outer laterals B Stylus, basis 11 10.81 0.80 0.58 0.06
Outer laterals B Stylus, terminal 13 12.15 0.66 0.67 0.05
Outer laterals B Cusp 13 14.69 1.55 0.83 0.13
Outer laterals C Bulge 11 2.12 0.60 0.11 0.03
Outer laterals C Basis 11 3.36 0.61 0.18 0.03
Outer laterals C Stylus, basis 11 9.67 0.72 0.52 0.05
Outer laterals C Stylus, terminal 13 10.87 0.62 0.60 0.04
Outer laterals C Cusp 13 13.13 1.40 0.74 0.12
Outer laterals D Bulge 11 1.98 0.17 0.11 0.01
Outer laterals D Basis 11 3.03 0.57 0.16 0.03
Outer laterals D Stylus, basis 11 8.69 0.70 0.46 0.05
Outer laterals D Stylus, terminal 13 9.75 0.65 0.54 0.04
Outer laterals D Cusp 13 11.77 1.26 0.67 0.10
Outer laterals E Bulge 11 1.75 0.49 0.09 0.03
Outer laterals E Basis 11 2.64 0.49 0.14 0.03
Outer laterals E Stylus, basis 11 7.58 0.60 0.41 0.04
Outer laterals E Stylus, terminal 13 8.51 0.56 0.47 0.04
Outer laterals E Cusp 13 10.27 1.10 0.58 0.09

Note: For each tooth type, the hardness and Young's modulus (both given in GPa) from different regions (basis, stylus, and cusp) of the inner tooth structure are given.

Abbreviations: N, quantity of point measurements; SD, standard deviation.

TABLE A8.

For the mechanical property hardness (H) and Young's modulus (E): results from Kruskal–Wallis test and pairwise comparison by Wilcoxon method between the regions.

Parameter Structure 1 Structure 2 Results from Wilcoxon‐test p‐value Parameter Structure 1 Structure 2 Results from Wilcoxon‐test p‐value
χ2 df p‐value χ2 df p‐value
H IL Stylus, basis IL Basis 386.8802 29 <.0001* <.0001* E IL Stylus, basis IL Basis 386.8802 29 <.0001* <.0001*
H IL Stylus, basis IL Bulge <.0001* E IL Stylus, basis IL Bulge <.0001*
H IL Stylus, term IL Basis <.0001* E IL Stylus, term IL Basis <.0001*
H IL Stylus, term IL Bulge <.0001* E IL Stylus, term IL Bulge <.0001*
H IL Cusp IL Basis <.0001* E IL Stylus, term IL Stylus, basis <.0001*
H IL Cusp IL Bulge <.0001* E IL Cusp IL Basis <.0001*
H IL Cusp IL Stylus, basis <.0001* E IL Cusp IL Bulge <.0001*
H IL Stylus, term IL Stylus, basis <.0001* E IL Cusp IL Stylus, basis <.0001*
H OL A Stylus, term IL Basis <.0001* E IL Cusp IL Stylus, term <.0001*
H OL A Stylus, term IL Bulge <.0001* E OL A Stylus, term IL Basis <.0001*
H OL A Cusp IL Basis <.0001* E OL A Stylus, term IL Bulge <.0001*
H OL A Cusp IL Bulge <.0001* E OL A Cusp IL Basis <.0001*
H OL B Stylus, term IL Basis <.0001* E OL A Cusp IL Bulge <.0001*
H OL B Stylus, term IL Bulge <.0001* E OL A Cusp IL Stylus, basis <.0001*
H OL B Cusp IL Basis <.0001* E OL B Stylus, term IL Basis <.0001*
H OL B Cusp IL Bulge <.0001* E OL B Stylus, term IL Bulge <.0001*
H OL C Stylus, term IL Basis <.0001* E OL B Cusp IL Basis <.0001*
H OL C Stylus, term IL Bulge <.0001* E OL B Cusp IL Bulge <.0001*
H OL C Cusp IL Basis <.0001* E OL C Stylus, term IL Basis <.0001*
H OL C Cusp IL Bulge <.0001* E OL C Stylus, term IL Bulge <.0001*
H OL D Stylus, term IL Basis <.0001* E OL C Cusp IL Basis <.0001*
H OL D Stylus, term IL Bulge <.0001* E OL C Cusp IL Bulge <.0001*
H OL Cusp IL Basis <.0001* E OL D Stylus, term IL Basis <.0001*
H OL Cusp IL Bulge <.0001* E OL D Stylus, term IL Bulge <.0001*
H OL E Stylus, term IL Basis <.0001* E OL D Cusp IL Basis <.0001*
H OL E Stylus, term IL Bulge <.0001* E OL D Cusp IL Bulge <.0001*
H OL E Cusp IL Basis <.0001* E OL E Stylus, term IL Basis <.0001*
H OL E Cusp IL Bulge <.0001* E OL E Stylus, term IL Bulge <.0001*
H OL A Cusp IL Stylus, basis <.0001* E OL E Cusp IL Basis <.0001*
H OL A Basis IL Bulge <.0001* E OL E Cusp IL Bulge <.0001*
H OL A Stylus, basis IL Basis <.0001* E OL A Basis IL Bulge <.0001*
H OL A Stylus, basis IL Bulge <.0001* E OL A Stylus, basis IL Basis <.0001*
H OL B Basis IL Bulge <.0001* E OL A Stylus, basis IL Bulge <.0001*
H OL B Stylus, basis IL Basis <.0001* E OL B Basis IL Bulge <.0001*
H OL B Stylus, basis IL Bulge <.0001* E OL B Stylus, basis IL Basis <.0001*
H OL C Stylus, basis IL Basis <.0001* E OL B Stylus, basis IL Bulge <.0001*
H OL C Stylus, basis IL Bulge <.0001* E OL C Stylus, basis IL Basis <.0001*
H OL D Stylus, basis IL Basis <.0001* E OL C Stylus, basis IL Bulge <.0001*
H OL D Stylus, basis IL Bulge <.0001* E OL D Stylus, basis IL Basis <.0001*
H OL E Stylus, basis IL Basis <.0001* E OL D Stylus, basis IL Bulge <.0001*
H OL E Stylus, basis IL Bulge <.0001* E OL E Stylus, basis IL Basis <.0001*
H IL Cusp IL Stylus, term <.0001* E OL E Stylus, basis IL Bulge <.0001*
H OL C Basis IL Bulge <.0001* E OL C Basis IL Bulge <.0001*
H OL D Basis IL Bulge <.0001* E OL D Basis IL Bulge <.0001*
H OL B Cusp IL Stylus, basis .0001* E OL B Cusp IL Stylus, basis <.0001*
H OL E Basis IL Bulge .0002* E OL E Basis IL Bulge .0002*
H OL A Stylus, term OL A Basis <.0001* E OL A Cusp OL A Stylus, term <.0001*
H OL A Stylus, term OL A Bulge <.0001* E OL A Stylus, term OL A Basis <.0001*
H OL A Cusp OL A Basis <.0001* E OL A Stylus, term OL A Bulge <.0001*
H OL A Cusp OL A Bulge <.0001* E OL A Cusp OL A Basis <.0001*
H OL B Stylus, term OL A Basis <.0001* E OL A Cusp OL A Bulge <.0001*
H OL B Stylus, term OL A Bulge <.0001* E OL A Cusp OL A Stylus, basis <.0001*
H OL B Stylus, term OL B Basis <.0001* E OL B Stylus, term OL A Basis <.0001*
H OL B Stylus, term OL B Bulge <.0001* E OL B Stylus, term OL A Bulge <.0001*
H OL B Cusp OL A Basis <.0001* E OL B Stylus, term OL B Basis <.0001*
H OL B Cusp OL A Bulge <.0001* E OL B Stylus, term OL B Bulge <.0001*
H OL B Cusp OL B Basis <.0001* E OL B Cusp OL A Basis <.0001*
H OL B Cusp OL B Bulge <.0001* E OL B Cusp OL A Bulge <.0001*
H OL C Stylus, term OL A Basis <.0001* E OL B Cusp OL B Basis <.0001*
H OL C Stylus, term OL A Bulge <.0001* E OL B Cusp OL B Bulge <.0001*
H OL C Stylus, term OL B Basis <.0001* E OL B Cusp OL B Stylus, basis <.0001*
H OL C Stylus, term OL B Bulge <.0001* E OL C Stylus, term OL A Basis <.0001*
H OL C Stylus, term OL C Basis <.0001* E OL C Stylus, term OL A Bulge <.0001*
H OL C Stylus, term OL C Bulge <.0001* E OL C Stylus, term OL B Basis <.0001*
H OL C Cusp OL A Basis <.0001* E OL C Stylus, term OL B Bulge <.0001*
H OL C Cusp OL A Bulge <.0001* E OL C Stylus, term OL C Basis <.0001*
H OL C Cusp OL B Basis <.0001* E OL C Stylus, term OL C Bulge <.0001*
H OL C Cusp OL B Bulge <.0001* E OL C Cusp OL A Basis <.0001*
H OL C Cusp OL C Basis <.0001* E OL C Cusp OL A Bulge <.0001*
H OL C Cusp OL C Bulge <.0001* E OL C Cusp OL B Basis <.0001*
H OL D Stylus, term OL A Basis <.0001* E OL C Cusp OL B Bulge <.0001*
H OL D Stylus, term OL A Bulge <.0001* E OL C Cusp OL C Basis <.0001*
H OL D Stylus, term OL B Basis <.0001* E OL C Cusp OL C Bulge <.0001*
H OL D Stylus, term OL B Bulge <.0001* E OL C Cusp OL C Stylus, basis <.0001*
H OL D Stylus, term OL C Basis <.0001* E OL D Stylus, term OL A Basis <.0001*
H OL D Stylus, term OL C Bulge <.0001* E OL D Stylus, term OL A Bulge <.0001*
H OL D Stylus, term OL D Basis <.0001* E OL D Stylus, term OL B Basis <.0001*
H OL D Stylus, term OL D Bulge <.0001* E OL D Stylus, term OL B Bulge <.0001*
H OL Cusp OL A Basis <.0001* E OL D Stylus, term OL C Basis <.0001*
H OL Cusp OL A Bulge <.0001* E OL D Stylus, term OL C Bulge <.0001*
H OL Cusp OL B Basis <.0001* E OL D Stylus, term OL D Basis <.0001*
H OL Cusp OL B Bulge <.0001* E OL D Stylus, term OL D Bulge <.0001*
H OL Cusp OL C Basis <.0001* E OL D Cusp OL A Basis <.0001*
H OL Cusp OL C Bulge <.0001* E OL D Cusp OL A Bulge <.0001*
H OL Cusp OL D Basis <.0001* E OL D Cusp OL B Basis <.0001*
H OL Cusp OL D Bulge <.0001* E OL D Cusp OL B Bulge <.0001*
H OL E Stylus, term OL A Basis <.0001* E OL D Cusp OL C Basis <.0001*
H OL E Stylus, term OL A Bulge <.0001* E OL D Cusp OL C Bulge <.0001*
H OL E Stylus, term OL B Basis <.0001* E OL D Cusp OL D Basis <.0001*
H OL E Stylus, term OL B Bulge <.0001* E OL D Cusp OL D Bulge <.0001*
H OL E Stylus, term OL C Basis <.0001* E OL D Cusp OL D Stylus, basis <.0001*
H OL E Stylus, term OL C Bulge <.0001* E OL E Stylus, term OL A Basis <.0001*
H OL E Stylus, term OL D Basis <.0001* E OL E Stylus, term OL A Bulge <.0001*
H OL E Stylus, term OL D Bulge <.0001* E OL E Stylus, term OL B Basis <.0001*
H OL E Stylus, term OL E Basis <.0001* E OL E Stylus, term OL B Bulge <.0001*
H OL E Stylus, term OL E Bulge <.0001* E OL E Stylus, term OL C Basis <.0001*
H OL E Cusp OL A Basis <.0001* E OL E Stylus, term OL C Bulge <.0001*
H OL E Cusp OL A Bulge <.0001* E OL E Stylus, term OL D Basis <.0001*
H OL E Cusp OL B Basis <.0001* E OL E Stylus, term OL D Bulge <.0001*
H OL E Cusp OL B Bulge <.0001* E OL E Stylus, term OL E Basis <.0001*
H OL E Cusp OL C Basis <.0001* E OL E Stylus, term OL E Bulge <.0001*
H OL E Cusp OL C Bulge <.0001* E OL E Cusp OL A Basis <.0001*
H OL E Cusp OL D Basis <.0001* E OL E Cusp OL A Bulge <.0001*
H OL E Cusp OL D Bulge <.0001* E OL E Cusp OL B Basis <.0001*
H OL E Cusp OL E Basis <.0001* E OL E Cusp OL B Bulge <.0001*
H OL E Cusp OL E Bulge <.0001* E OL E Cusp OL C Basis <.0001*
H OL A Stylus, term IL Stylus, basis .0015* E OL E Cusp OL C Bulge <.0001*
H OL B Cusp OL B Stylus, basis <.0001* E OL E Cusp OL D Basis <.0001*
H OL C Cusp OL C Stylus, basis <.0001* E OL E Cusp OL D Bulge <.0001*
H OL A Cusp OL A Stylus, basis <.0001* E OL E Cusp OL E Basis <.0001*
H OL E Cusp OL E Stylus, basis .0001* E OL E Cusp OL E Bulge <.0001*
H OL Cusp OL D Stylus, basis .0001* E OL E Cusp OL E Stylus, basis <.0001*
H OL A Stylus, basis OL A Basis <.0001* E OL B Cusp OL A Stylus, basis <.0001*
H OL A Stylus, basis OL A Bulge <.0001* E OL B Cusp OL B Stylus, term .0001*
H OL B Basis OL A Bulge <.0001* E OL C Cusp OL C Stylus, term .0001*
H OL B Stylus, basis OL A Basis <.0001* E OL E Cusp OL E Stylus, term .0001*
H OL B Stylus, basis OL A Bulge <.0001* E OL D Cusp OL D Stylus, term .0002*
H OL B Stylus, basis OL B Basis <.0001* E OL A Stylus, basis OL A Basis <.0001*
H OL B Stylus, basis OL B Bulge <.0001* E OL A Stylus, basis OL A Bulge <.0001*
H OL C Stylus, basis OL A Basis <.0001* E OL B Basis OL A Bulge <.0001*
H OL C Stylus, basis OL A Bulge <.0001* E OL B Stylus, basis OL A Basis <.0001*
H OL C Stylus, basis OL B Basis <.0001* E OL B Stylus, basis OL A Bulge <.0001*
H OL C Stylus, basis OL B Bulge <.0001* E OL B Stylus, basis OL B Basis <.0001*
H OL C Stylus, basis OL C Basis <.0001* E OL B Stylus, basis OL B Bulge <.0001*
H OL C Stylus, basis OL C Bulge <.0001* E OL C Basis OL A Bulge <.0001*
H OL D Stylus, basis OL A Basis <.0001* E OL C Stylus, basis OL A Basis <.0001*
H OL D Stylus, basis OL A Bulge <.0001* E OL C Stylus, basis OL A Bulge <.0001*
H OL D Stylus, basis OL B Basis <.0001* E OL C Stylus, basis OL B Basis <.0001*
H OL D Stylus, basis OL B Bulge <.0001* E OL C Stylus, basis OL B Bulge <.0001*
H OL D Stylus, basis OL C Basis <.0001* E OL C Stylus, basis OL C Basis <.0001*
H OL D Stylus, basis OL C Bulge <.0001* E OL C Stylus, basis OL C Bulge <.0001*
H OL D Stylus, basis OL D Basis <.0001* E OL D Stylus, basis OL A Basis <.0001*
H OL D Stylus, basis OL D Bulge <.0001* E OL D Stylus, basis OL A Bulge <.0001*
H OL E Stylus, basis OL A Basis <.0001* E OL D Stylus, basis OL B Basis <.0001*
H OL E Stylus, basis OL A Bulge <.0001* E OL D Stylus, basis OL B Bulge <.0001*
H OL E Stylus, basis OL B Basis <.0001* E OL D Stylus, basis OL C Basis <.0001*
H OL E Stylus, basis OL B Bulge <.0001* E OL D Stylus, basis OL C Bulge <.0001*
H OL E Stylus, basis OL C Basis <.0001* E OL D Stylus, basis OL D Basis <.0001*
H OL E Stylus, basis OL C Bulge <.0001* E OL D Stylus, basis OL D Bulge <.0001*
H OL E Stylus, basis OL D Basis <.0001* E OL E Stylus, basis OL A Basis <.0001*
H OL E Stylus, basis OL D Bulge <.0001* E OL E Stylus, basis OL A Bulge <.0001*
H OL E Stylus, basis OL E Basis <.0001* E OL E Stylus, basis OL B Basis <.0001*
H OL E Stylus, basis OL E Bulge <.0001* E OL E Stylus, basis OL B Bulge <.0001*
H OL B Cusp OL A Stylus, basis .0002* E OL E Stylus, basis OL C Basis <.0001*
H OL C Basis OL A Bulge .0001* E OL E Stylus, basis OL C Bulge <.0001*
H OL D Basis OL A Bulge .0002* E OL E Stylus, basis OL D Basis <.0001*
H OL B Stylus, term OL B Stylus, basis .0010* E OL E Stylus, basis OL D Bulge <.0001*
H OL C Stylus, term OL C Stylus, basis .0010* E OL E Stylus, basis OL E Basis <.0001*
H OL A Stylus, term OL A Stylus, basis .0011* E OL E Stylus, basis OL E Bulge <.0001*
H OL E Basis OL A Bulge .0008* E OL D Basis OL A Bulge .0001*
H OL A Cusp OL A Stylus, term .0025* E OL A Stylus, term OL A Stylus, basis .0003*
H OL B Cusp OL B Stylus, term .0025* E OL C Cusp OL B Stylus, basis .0003*
H OL C Cusp OL C Stylus, term .0025* E OL D Cusp OL C Stylus, basis .0003*
H OL Cusp OL C Stylus, basis .0018* E OL E Basis OL A Bulge .0004*
H OL E Cusp OL E Stylus, term .0029* E OL B Stylus, term OL B Stylus, basis .0008*
H OL C Cusp OL B Stylus, basis .0021* E OL B Cusp OL A Stylus, term .0012*
H OL Cusp OL D Stylus, term .0035* E OL E Basis OL D Bulge .0008*
H OL D Stylus, term OL D Stylus, basis .0026* E OL C Stylus, term OL C Stylus, basis .0014*
H OL E Stylus, term OL E Stylus, basis .0026* E OL E Cusp OL D Stylus, basis .0018*
H OL E Basis OL D Bulge .0020* E OL A Cusp IL Stylus, term .0231*
H OL C Cusp IL Stylus, basis .0249* E OL C Cusp IL Stylus, basis .0293*
H OL E Cusp OL D Stylus, basis .0045* E OL C Cusp OL A Stylus, basis .0054*
H OL C Basis OL B Bulge .0031* E OL A Stylus, term IL Stylus, basis .0344*
H OL A Cusp IL Stylus, term .0322* E OL C Basis OL B Bulge .0047*
H OL D Basis OL C Bulge .0071* E OL D Stylus, term OL D Stylus, basis .0077*
H OL C Cusp OL A Stylus, basis .0175* E OL E Stylus, term OL E Stylus, basis .0077*
H OL B Stylus, term OL A Stylus, basis .0205* E OL D Basis OL C Bulge .0058*
H OL B Cusp OL A Stylus, term .0274* E OL E Basis OL C Bulge .0215*
H OL D Basis OL B Bulge .0256* E OL D Basis OL B Bulge .0256*
H OL E Basis OL C Bulge .0302* E OL D Cusp OL C Stylus, term .0578
H OL Cusp OL B Stylus, basis .0426* E OL B Stylus, term OL A Stylus, basis .0559
H OL E Cusp OL C Stylus, basis .0822 E OL C Cusp OL B Stylus, term .0727
H OL D Bulge OL A Bulge .0877 E OL D Cusp OL B Stylus, basis .0822
H OL B Cusp IL Stylus, term .1989 E OL B Bulge OL A Bulge .1150
H OL Cusp OL C Stylus, term .1239 E OL D Bulge OL A Bulge .1310
H OL B Bulge OL A Bulge .1006 E OL E Basis OL B Bulge .1310
H OL E Basis OL B Bulge .1310 E OL B Bulge IL Bulge .2945
H OL C Cusp OL B Stylus, term .1662 E OL E Cusp OL C Stylus, basis .2024
H OL B Bulge IL Bulge .2785 E OL C Bulge OL A Bulge .2122
H OL Cusp OL A Stylus, basis .1643 E OL B Cusp IL Stylus, term .3564
H OL C Bulge OL A Bulge .1484 E OL E Cusp OL D Stylus, term .2815
H OL E Cusp OL D Stylus, term .1824 E OL C Bulge OL B Bulge .2934
H OL B Stylus, term IL Stylus, basis .3163 E OL E Bulge OL A Bulge .2934
H OL A Cusp IL Cusp .3073 E OL D Bulge OL C Bulge .3933
H OL Cusp IL Stylus, basis .3816 E OL D Cusp OL A Stylus, basis .4869
H OL E Bulge OL A Bulge .3245 E OL D Bulge IL Bulge .6569
H OL D Stylus, term OL C Stylus, basis .3539 E OL C Cusp OL A Stylus, term .6444
H OL C Cusp OL A Stylus, term .3833 E OL D Stylus, term OL C Stylus, basis .6851
H OL C Stylus, term OL B Stylus, basis .4173 E OL D Bulge OL B Bulge .7928
H OL C Bulge OL B Bulge .5114 E OL C Bulge IL Bulge .9292
H OL D Bulge IL Bulge .6828 E OL C Stylus, term OL B Stylus, basis 1.0000
H OL D Bulge OL C Bulge .6936 E OL B Stylus, term IL Stylus, basis .9873
H OL C Bulge IL Bulge .7899 E OL E Bulge IL Bulge .9858
H OL Cusp OL B Stylus, term .7976 E OL E Bulge OL D Bulge .4307
H OL E Stylus, term OL D Stylus, basis .8167 E OL D Cusp OL B Stylus, term .4418
H OL E Cusp OL B Stylus, basis .8620 E OL A Cusp IL Cusp .4892
H OL D Bulge OL B Bulge .8955 E OL D Cusp IL Stylus, basis .4741
H OL B Cusp IL Cusp .9475 E OL B Basis OL A Basis .3246
H OL E Cusp OL C Stylus, term .9183 E OL E Stylus, term OL D Stylus, basis .3247
H OL C Cusp IL Stylus, term .9213 E OL D Basis OL C Basis .2372
H OL E Bulge IL Bulge .8451 E OL E Cusp OL B Stylus, basis .2466
H OL Cusp OL A Stylus, term .5727 E OL C Basis OL B Basis .1891
H OL E Cusp OL A Stylus, basis .4868 E OL E Bulge OL C Bulge .1891
H OL C Stylus, term OL A Stylus, basis .4512 E OL B Cusp OL A Cusp .1584
H OL B Basis OL A Basis .4306 E OL E Basis OL D Basis .1150
H OL E Bulge OL D Bulge .3933 E OL E Cusp OL C Stylus, term .1370
H OL E Bulge OL C Bulge .3246 E OL A Basis IL Basis .2202
H OL C Basis OL B Basis .2643 E OL C Stylus, term OL A Stylus, basis .0929
H OL D Basis OL C Basis .2643 E OL E Bulge OL B Bulge .0762
H OL B Cusp OL A Cusp .2930 E OL B Stylus, basis OL A Stylus, basis .0660
H OL A Basis IL Basis .3285 E OL C Basis OL A Basis .0569
H OL B Stylus, basis OL A Stylus, basis .1678 E OL A Bulge IL Bulge .1059
H OL E Basis OL D Basis .1486 E OL B Basis IL Basis .0985
H OL E Bulge OL B Bulge .1310 E OL D Basis OL B Basis .0256*
H OL D Stylus, term OL B Stylus, basis .0725 E OL D Cusp OL A Stylus, term .0355*
H OL C Basis OL A Basis .0488* E OL B Stylus, term OL A Stylus, term .0257*
H OL D Stylus, basis OL C Stylus, basis .0488* E OL C Cusp OL B Cusp .0240*
H OL Cusp OL C Cusp .0649 E OL E Basis OL C Basis .0126*
H OL B Stylus, term OL A Stylus, term .0612 E OL D Cusp OL C Cusp .0183*
H OL C Cusp OL B Cusp .0578 E OL D Stylus, basis OL C Stylus, basis .0104*
H OL A Stylus, basis IL Stylus, basis .1221 E OL D Basis OL A Basis .0086*
H OL E Cusp OL Cusp .0513 E OL E Cusp OL A Stylus, basis .0108*
H OL C Stylus, basis OL B Stylus, basis .0256* E OL C Stylus, basis OL B Stylus, basis .0058*
H OL A Bulge IL Bulge .0914 E OL C Cusp IL Stylus, term .0323*
H OL B Basis IL Basis .0914 E OL E Cusp OL D Cusp .0089*
H OL E Stylus, basis OL D Stylus, basis .0215* E OL A Stylus, basis IL Stylus, basis .0345*
H OL E Stylus, term OL C Stylus, basis .0277* E OL E Stylus, basis OL D Stylus, basis .0039*
H OL D Basis OL B Basis .0181* E OL D Stylus, term OL B Stylus, basis .0054*
H OL E Basis OL C Basis .0151* E OL B Cusp IL Cusp .0231*
H OL E Cusp OL B Stylus, term .0240* E OL C Bulge OL C Basis .0025*
H OL C Cusp OL A Cusp .0210* E OL E Basis OL B Basis .0016*
H OL D Basis OL A Basis .0104* E OL E Bulge OL E Basis .0016*
H OL E Cusp IL Stylus, basis .0504 E OL E Stylus, term OL C Stylus, basis .0018*
H OL Cusp OL B Cusp .0077* E OL C Cusp OL A Cusp .0021*
H OL E Cusp OL C Cusp .0056* E OL C Stylus, basis OL A Stylus, basis .0004*
H OL C Stylus, basis OL A Stylus, basis .0025* E OL E Basis OL A Basis .0004*
H OL D Stylus, term OL A Stylus, basis .0038* E OL D Stylus, term OL A Stylus, basis .0006*
H OL E Bulge OL E Basis .0020* E OL B Bulge OL B Basis .0003*
H OL C Bulge OL C Basis .0016* E OL C Bulge OL B Basis .0003*
H OL E Basis OL B Basis .0013* E OL D Stylus, term OL C Stylus, term .0006*
H OL D Stylus, term OL C Stylus, term .0021* E OL C Bulge OL A Basis .0002*
H OL Cusp OL A Cusp .0018* E OL E Bulge OL D Basis .0002*
H OL C Cusp IL Cusp .0093* E OL B Bulge OL A Basis .0001*
H OL D Stylus, basis OL B Stylus, basis .0005* E OL E Stylus, term OL D Stylus, term .0004*
H OL E Basis OL A Basis .0004* E OL D Bulge OL D Basis .0001*
H OL C Stylus, term OL B Stylus, term .0010* E OL D Cusp OL B Cusp .0003*
H OL C Stylus, term IL Stylus, basis .0079* E OL A Bulge OL A Basis <.0001*
H OL B Bulge OL B Basis .0003* E OL B Basis OL A Stylus, basis <.0001*
H OL C Bulge OL B Basis .0003* E OL B Bulge OL A Stylus, basis <.0001*
H OL E Stylus, basis OL C Stylus, basis .0003* E OL C Basis OL A Stylus, basis <.0001*
H OL E Stylus, term OL D Stylus, term .0009* E OL C Basis OL B Stylus, basis <.0001*
H OL B Bulge OL A Basis .0002* E OL C Bulge OL A Stylus, basis <.0001*
H OL C Bulge OL A Basis .0002* E OL C Bulge OL B Stylus, basis <.0001*
H OL D Stylus, basis OL A Stylus, basis .0002* E OL D Basis OL A Stylus, basis <.0001*
H OL E Bulge OL D Basis .0002* E OL D Basis OL B Stylus, basis <.0001*
H OL D Bulge OL D Basis .0001* E OL D Basis OL C Stylus, basis <.0001*
H OL E Cusp OL A Stylus, term .0004* E OL D Bulge OL A Basis <.0001*
H OL B Stylus, basis IL Stylus, basis .0042* E OL D Bulge OL A Stylus, basis <.0001*
H OL A Bulge OL A Basis <.0001* E OL D Bulge OL B Basis <.0001*
H OL B Basis OL A Stylus, basis <.0001* E OL D Bulge OL B Stylus, basis <.0001*
H OL B Bulge OL A Stylus, basis <.0001* E OL D Bulge OL C Basis <.0001*
H OL C Basis OL A Stylus, basis <.0001* E OL D Bulge OL C Stylus, basis <.0001*
H OL C Basis OL B Stylus, basis <.0001* E OL D Stylus, basis OL A Stylus, basis <.0001*
H OL C Bulge OL A Stylus, basis <.0001* E OL D Stylus, basis OL B Stylus, basis <.0001*
H OL C Bulge OL B Stylus, basis <.0001* E OL E Basis OL A Stylus, basis <.0001*
H OL D Basis OL A Stylus, basis <.0001* E OL E Basis OL B Stylus, basis <.0001*
H OL D Basis OL B Stylus, basis <.0001* E OL E Basis OL C Stylus, basis <.0001*
H OL D Basis OL C Stylus, basis <.0001* E OL E Basis OL D Stylus, basis <.0001*
H OL D Bulge OL A Basis <.0001* E OL E Bulge OL A Basis <.0001*
H OL D Bulge OL A Stylus, basis <.0001* E OL E Bulge OL A Stylus, basis <.0001*
H OL D Bulge OL B Basis <.0001* E OL E Bulge OL B Basis <.0001*
H OL D Bulge OL B Stylus, basis <.0001* E OL E Bulge OL B Stylus, basis <.0001*
H OL D Bulge OL C Basis <.0001* E OL E Bulge OL C Basis <.0001*
H OL D Bulge OL C Stylus, basis <.0001* E OL E Bulge OL C Stylus, basis <.0001*
H OL E Basis OL A Stylus, basis <.0001* E OL E Bulge OL D Stylus, basis <.0001*
H OL E Basis OL B Stylus, basis <.0001* E OL E Stylus, basis OL A Stylus, basis <.0001*
H OL E Basis OL C Stylus, basis <.0001* E OL E Stylus, basis OL B Stylus, basis <.0001*
H OL E Basis OL D Stylus, basis <.0001* E OL E Stylus, basis OL C Stylus, basis <.0001*
H OL E Bulge OL A Basis <.0001* E OL C Stylus, term OL B Stylus, term .0002*
H OL E Bulge OL A Stylus, basis <.0001* E OL E Cusp OL B Stylus, term .0002*
H OL E Bulge OL B Basis <.0001* E OL C Basis IL Basis .0024*
H OL E Bulge OL B Stylus, basis <.0001* E OL E Cusp OL C Cusp <.0001*
H OL E Bulge OL C Basis <.0001* E OL B Stylus, basis IL Stylus, basis .0017*
H OL E Bulge OL C Stylus, basis <.0001* E OL B Basis OL A Stylus, term <.0001*
H OL E Bulge OL D Stylus, basis <.0001* E OL B Basis OL A Cusp <.0001*
H OL E Stylus, basis OL A Stylus, basis <.0001* E OL B Bulge OL A Stylus, term <.0001*
H OL E Stylus, basis OL B Stylus, basis <.0001* E OL B Bulge OL A Cusp <.0001*
H OL B Stylus, basis OL A Stylus, term .0001* E OL B Stylus, basis OL A Stylus, term <.0001*
H OL Cusp IL Stylus, term .0024* E OL B Stylus, basis OL A Cusp <.0001*
H OL E Stylus, term OL B Stylus, basis .0001* E OL C Basis OL A Stylus, term <.0001*
H OL C Basis IL Basis .0027* E OL C Basis OL A Cusp <.0001*
H OL B Stylus, term OL A Cusp .0001* E OL C Basis OL B Stylus, term <.0001*
H OL E Cusp OL B Cusp .0001* E OL C Basis OL B Cusp <.0001*
H OL D Stylus, basis OL C Stylus, term <.0001* E OL C Bulge OL A Stylus, term <.0001*
H OL E Stylus, basis OL D Stylus, term <.0001* E OL C Bulge OL A Cusp <.0001*
H OL C Stylus, basis OL B Stylus, term <.0001* E OL C Bulge OL B Stylus, term <.0001*
H OL B Basis OL A Stylus, term <.0001* E OL C Bulge OL B Cusp <.0001*
H OL B Basis OL A Cusp <.0001* E OL C Stylus, basis OL A Stylus, term <.0001*
H OL B Bulge OL A Stylus, term <.0001* E OL C Stylus, basis OL A Cusp <.0001*
H OL B Bulge OL A Cusp <.0001* E OL C Stylus, basis OL B Stylus, term <.0001*
H OL B Stylus, basis OL A Cusp <.0001* E OL C Stylus, basis OL B Cusp <.0001*
H OL C Basis OL A Stylus, term <.0001* E OL D Basis OL A Stylus, term <.0001*
H OL C Basis OL A Cusp <.0001* E OL D Basis OL A Cusp <.0001*
H OL C Basis OL B Stylus, term <.0001* E OL D Basis OL B Stylus, term <.0001*
H OL C Basis OL B Cusp <.0001* E OL D Basis OL B Cusp <.0001*
H OL C Bulge OL A Stylus, term <.0001* E OL D Basis OL C Stylus, term <.0001*
H OL C Bulge OL A Cusp <.0001* E OL D Basis OL C Cusp <.0001*
H OL C Bulge OL B Stylus, term <.0001* E OL D Bulge OL A Stylus, term <.0001*
H OL C Bulge OL B Cusp <.0001* E OL D Bulge OL A Cusp <.0001*
H OL C Stylus, basis OL A Stylus, term <.0001* E OL D Bulge OL B Stylus, term <.0001*
H OL C Stylus, basis OL A Cusp <.0001* E OL D Bulge OL B Cusp <.0001*
H OL C Stylus, basis OL B Cusp <.0001* E OL D Bulge OL C Stylus, term <.0001*
H OL D Basis OL A Stylus, term <.0001* E OL D Bulge OL C Cusp <.0001*
H OL D Basis OL A Cusp <.0001* E OL D Stylus, basis OL A Stylus, term <.0001*
H OL D Basis OL B Stylus, term <.0001* E OL D Stylus, basis OL A Cusp <.0001*
H OL D Basis OL B Cusp <.0001* E OL D Stylus, basis OL B Stylus, term <.0001*
H OL D Basis OL C Stylus, term <.0001* E OL D Stylus, basis OL B Cusp <.0001*
H OL D Basis OL C Cusp <.0001* E OL D Stylus, basis OL C Stylus, term <.0001*
H OL D Bulge OL A Stylus, term <.0001* E OL D Stylus, basis OL C Cusp <.0001*
H OL D Bulge OL A Cusp <.0001* E OL E Basis OL A Stylus, term <.0001*
H OL D Bulge OL B Stylus, term <.0001* E OL E Basis OL A Cusp <.0001*
H OL D Bulge OL B Cusp <.0001* E OL E Basis OL B Stylus, term <.0001*
H OL D Bulge OL C Stylus, term <.0001* E OL E Basis OL B Cusp <.0001*
H OL D Bulge OL C Cusp <.0001* E OL E Basis OL C Stylus, term <.0001*
H OL D Stylus, basis OL A Stylus, term <.0001* E OL E Basis OL C Cusp <.0001*
H OL D Stylus, basis OL A Cusp <.0001* E OL E Basis OL D Stylus, term <.0001*
H OL D Stylus, basis OL B Stylus, term <.0001* E OL E Basis OL D Cusp <.0001*
H OL D Stylus, basis OL B Cusp <.0001* E OL E Bulge OL A Stylus, term <.0001*
H OL D Stylus, basis OL C Cusp <.0001* E OL E Bulge OL A Cusp <.0001*
H OL E Basis OL A Stylus, term <.0001* E OL E Bulge OL B Stylus, term <.0001*
H OL E Basis OL A Cusp <.0001* E OL E Bulge OL B Cusp <.0001*
H OL E Basis OL B Stylus, term <.0001* E OL E Bulge OL C Stylus, term <.0001*
H OL E Basis OL B Cusp <.0001* E OL E Bulge OL C Cusp <.0001*
H OL E Basis OL C Stylus, term <.0001* E OL E Bulge OL D Stylus, term <.0001*
H OL E Basis OL C Cusp <.0001* E OL E Bulge OL D Cusp <.0001*
H OL E Basis OL D Stylus, term <.0001* E OL E Stylus, basis OL A Stylus, term <.0001*
H OL E Basis OL Cusp <.0001* E OL E Stylus, basis OL A Cusp <.0001*
H OL E Bulge OL A Stylus, term <.0001* E OL E Stylus, basis OL B Stylus, term <.0001*
H OL E Bulge OL A Cusp <.0001* E OL E Stylus, basis OL B Cusp <.0001*
H OL E Bulge OL B Stylus, term <.0001* E OL E Stylus, basis OL C Stylus, term <.0001*
H OL E Bulge OL B Cusp <.0001* E OL E Stylus, basis OL C Cusp <.0001*
H OL E Bulge OL C Stylus, term <.0001* E OL E Stylus, basis OL D Stylus, term <.0001*
H OL E Bulge OL C Cusp <.0001* E OL E Stylus, basis OL D Cusp <.0001*
H OL E Bulge OL D Stylus, term <.0001* E OL E Stylus, term OL A Stylus, basis <.0001*
H OL E Bulge OL Cusp <.0001* E OL E Stylus, term OL B Stylus, basis <.0001*
H OL E Stylus, basis OL A Stylus, term <.0001* E OL D Cusp OL A Cusp <.0001*
H OL E Stylus, basis OL A Cusp <.0001* E OL B Stylus, term OL A Cusp <.0001*
H OL E Stylus, basis OL B Stylus, term <.0001* E OL C Stylus, term OL A Stylus, term <.0001*
H OL E Stylus, basis OL B Cusp <.0001* E OL C Stylus, term OL A Cusp <.0001*
H OL E Stylus, basis OL C Stylus, term <.0001* E OL C Stylus, term OL B Cusp <.0001*
H OL E Stylus, basis OL C Cusp <.0001* E OL D Stylus, term OL A Stylus, term <.0001*
H OL E Stylus, basis OL Cusp <.0001* E OL D Stylus, term OL A Cusp <.0001*
H OL E Stylus, term OL A Stylus, basis <.0001* E OL D Stylus, term OL B Stylus, term <.0001*
H OL C Stylus, term OL A Stylus, term <.0001* E OL D Stylus, term OL B Cusp <.0001*
H OL C Stylus, term OL B Cusp <.0001* E OL D Stylus, term OL C Cusp <.0001*
H OL D Stylus, term OL C Cusp <.0001* E OL E Stylus, term OL A Stylus, term <.0001*
H OL E Cusp OL A Cusp <.0001* E OL E Stylus, term OL A Cusp <.0001*
H OL A Stylus, term IL Stylus, term .0007* E OL E Stylus, term OL B Stylus, term <.0001*
H OL E Stylus, term OL Cusp <.0001* E OL E Stylus, term OL B Cusp <.0001*
H OL D Stylus, term OL B Stylus, term <.0001* E OL E Stylus, term OL C Stylus, term <.0001*
H OL C Stylus, term OL A Cusp <.0001* E OL E Stylus, term OL C Cusp <.0001*
H OL D Stylus, term OL A Stylus, term <.0001* E OL E Stylus, term OL D Cusp <.0001*
H OL D Stylus, term OL A Cusp <.0001* E OL E Cusp OL A Stylus, term <.0001*
H OL D Stylus, term OL B Cusp <.0001* E OL E Cusp OL A Cusp <.0001*
H OL E Stylus, term OL A Stylus, term <.0001* E OL E Cusp OL B Cusp <.0001*
H OL E Stylus, term OL A Cusp <.0001* E OL C Stylus, term IL Stylus, basis .0005*
H OL E Stylus, term OL B Stylus, term <.0001* E OL D Basis IL Basis .0002*
H OL E Stylus, term OL B Cusp <.0001* E OL E Cusp IL Stylus, basis .0001*
H OL E Stylus, term OL C Stylus, term <.0001* E OL E Basis IL Basis <.0001*
H OL E Stylus, term OL C Cusp <.0001* E OL A Basis IL Stylus, term <.0001*
H OL D Basis IL Basis .0002* E OL A Basis IL Cusp <.0001*
H OL B Stylus, term IL Stylus, term <.0001* E OL A Bulge IL Stylus, term <.0001*
H OL C Stylus, basis IL Stylus, basis <.0001* E OL A Bulge IL Cusp <.0001*
H OL A Stylus, basis IL Stylus, term <.0001* E OL A Stylus, basis IL Stylus, term <.0001*
H OL D Stylus, term IL Stylus, basis <.0001* E OL A Stylus, basis IL Cusp <.0001*
H OL Cusp IL Cusp <.0001* E OL B Basis IL Stylus, term <.0001*
H OL E Basis IL Basis <.0001* E OL B Basis IL Cusp <.0001*
H OL A Basis IL Stylus, term <.0001* E OL B Bulge IL Stylus, term <.0001*
H OL A Basis IL Cusp <.0001* E OL B Bulge IL Cusp <.0001*
H OL A Bulge IL Stylus, term <.0001* E OL B Stylus, basis IL Stylus, term <.0001*
H OL A Bulge IL Cusp <.0001* E OL B Stylus, basis IL Cusp <.0001*
H OL A Stylus, basis IL Cusp <.0001* E OL C Basis IL Stylus, term <.0001*
H OL B Basis IL Stylus, term <.0001* E OL C Basis IL Cusp <.0001*
H OL B Basis IL Cusp <.0001* E OL C Bulge IL Stylus, term <.0001*
H OL B Bulge IL Stylus, term <.0001* E OL C Bulge IL Cusp <.0001*
H OL B Bulge IL Cusp <.0001* E OL C Stylus, basis IL Stylus, term <.0001*
H OL B Stylus, basis IL Stylus, term <.0001* E OL C Stylus, basis IL Cusp <.0001*
H OL B Stylus, basis IL Cusp <.0001* E OL D Basis IL Stylus, term <.0001*
H OL C Basis IL Stylus, term <.0001* E OL D Basis IL Cusp <.0001*
H OL C Basis IL Cusp <.0001* E OL D Bulge IL Stylus, term <.0001*
H OL C Bulge IL Stylus, term <.0001* E OL D Bulge IL Cusp <.0001*
H OL C Bulge IL Cusp <.0001* E OL D Stylus, basis IL Stylus, term <.0001*
H OL C Stylus, basis IL Stylus, term <.0001* E OL D Stylus, basis IL Cusp <.0001*
H OL C Stylus, basis IL Cusp <.0001* E OL E Basis IL Stylus, term <.0001*
H OL D Basis IL Stylus, term <.0001* E OL E Basis IL Cusp <.0001*
H OL D Basis IL Cusp <.0001* E OL E Bulge IL Stylus, term <.0001*
H OL D Bulge IL Stylus, term <.0001* E OL E Bulge IL Cusp <.0001*
H OL D Bulge IL Cusp <.0001* E OL E Stylus, basis IL Stylus, term <.0001*
H OL D Stylus, basis IL Stylus, term <.0001* E OL E Stylus, basis IL Cusp <.0001*
H OL D Stylus, basis IL Cusp <.0001* E OL A Stylus, term IL Stylus, term <.0001*
H OL E Basis IL Stylus, term <.0001* E OL C Cusp IL Cusp <.0001*
H OL E Basis IL Cusp <.0001* E OL C Stylus, basis IL Stylus, basis <.0001*
H OL E Bulge IL Stylus, term <.0001* E OL A Basis IL Stylus, basis <.0001*
H OL E Bulge IL Cusp <.0001* E OL A Bulge IL Basis <.0001*
H OL E Stylus, basis IL Stylus, term <.0001* E OL A Bulge IL Stylus, basis <.0001*
H OL E Stylus, basis IL Cusp <.0001* E OL B Basis IL Stylus, basis <.0001*
H OL E Cusp IL Stylus, term <.0001* E OL B Bulge IL Basis <.0001*
H OL B Bulge IL Basis <.0001* E OL B Bulge IL Stylus, basis <.0001*
H OL C Bulge IL Basis <.0001* E OL C Basis IL Stylus, basis <.0001*
H OL D Stylus, basis IL Stylus, basis <.0001* E OL C Bulge IL Basis <.0001*
H OL A Stylus, term IL Cusp <.0001* E OL C Bulge IL Stylus, basis <.0001*
H OL A Basis IL Stylus, basis <.0001* E OL D Basis IL Stylus, basis <.0001*
H OL A Bulge IL Basis <.0001* E OL D Bulge IL Basis <.0001*
H OL A Bulge IL Stylus, basis <.0001* E OL D Bulge IL Stylus, basis <.0001*
H OL B Basis IL Stylus, basis <.0001* E OL D Stylus, basis IL Stylus, basis <.0001*
H OL B Bulge IL Stylus, basis <.0001* E OL E Basis IL Stylus, basis <.0001*
H OL C Basis IL Stylus, basis <.0001* E OL E Bulge IL Basis <.0001*
H OL C Bulge IL Stylus, basis <.0001* E OL E Bulge IL Stylus, basis <.0001*
H OL D Basis IL Stylus, basis <.0001* E OL E Stylus, basis IL Stylus, basis <.0001*
H OL D Bulge IL Basis <.0001* E OL D Cusp IL Stylus, term <.0001*
H OL D Bulge IL Stylus, basis <.0001* E OL B Stylus, term IL Stylus, term <.0001*
H OL E Basis IL Stylus, basis <.0001* E OL A Stylus, term IL Cusp <.0001*
H OL E Bulge IL Basis <.0001* E OL B Stylus, term IL Cusp <.0001*
H OL E Bulge IL Stylus, basis <.0001* E OL C Stylus, term IL Stylus, term <.0001*
H OL E Stylus, basis IL Stylus, basis <.0001* E OL C Stylus, term IL Cusp <.0001*
H OL C Stylus, term IL Stylus, term <.0001* E OL D Stylus, term IL Stylus, term <.0001*
H OL B Stylus, term IL Cusp <.0001* E OL D Stylus, term IL Cusp <.0001*
H OL C Stylus, term IL Cusp <.0001* E OL D Cusp IL Cusp <.0001*
H OL D Stylus, term IL Stylus, term <.0001* E OL E Stylus, term IL Stylus, term <.0001*
H OL D Stylus, term IL Cusp <.0001* E OL E Stylus, term IL Cusp <.0001*
H OL E Stylus, term IL Stylus, term <.0001* E OL E Cusp IL Stylus, term <.0001*
H OL E Stylus, term IL Cusp <.0001* E OL E Cusp IL Cusp <.0001*
H OL E Cusp IL Cusp <.0001* E OL D Stylus, term IL Stylus, basis <.0001*
H OL E Stylus, term IL Stylus, basis <.0001* E OL E Stylus, term IL Stylus, basis <.0001*
H IL Bulge IL Basis <.0001* E IL Bulge IL Basis <.0001*

Note: Orange p‐values = highly significant differences, red p‐values = significant differences, black = no significant differences.

Abbreviation: df, degrees of freedom; IL, inner lateral; OL, outer lateral; term, terminal.

Krings, W. , Neumann, C. , Gorb, S. N. , Koehnsen, A. , & Wägele, H. (2023). Elemental composition and material properties of radular teeth in the heterobranch snail Gastropteron rubrum (Mollusca, Gastropoda, Cephalaspidea) foraging on hard organisms. Ecology and Evolution, 13, e10332. 10.1002/ece3.10332

DATA AVAILABILITY STATEMENT

The 3D model can be found in Dryad: Wencke Krings, 3D model radula of Gastropteron rubrum; DOI: 10.5061/dryad.s4mw6m9bp. The data on mechanical properties and elemental analysis can be found in the Appendix 1.

REFERENCES

  1. Anderson, P. S. L. (2018). Making a point: Shared mechanics underlying the diversity of biological puncture. The Journal of Experimental Biology, 221, jeb187294. [DOI] [PubMed] [Google Scholar]
  2. Barber, A. H. , Lu, D. , & Pugno, N. M. (2015). Extreme strength observed in limpet teeth. Journal of The Royal Society Interface, 12(105), 20141326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1, 193–202. [Google Scholar]
  4. Bendsøe, M. P. (1995). Optimization of structural topology. Shape and material. Springer. [Google Scholar]
  5. Bendsøe, M. P. , & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, 197–224. [Google Scholar]
  6. Berry, A. J. , & Thomson, D. R. (1990). Changing prey size preferences in the annual cycle of Retusa obtusa (Montagu) (Opisthobranchia) feeding on Hydrobia ulvae (Pennant) (Prosobranchia). Journal of Experimental Marine Biology and Ecology, 141, 145–158. [Google Scholar]
  7. Beutel, R. G. , Richter, A. , Keller, R. A. , Garcia, F. H. , Matsumura, Y. , Economo, E. P. , & Gorb, S. N. (2020). Distal leg structures of the Aculeata (Hymenoptera): A comparative evolutionary study of Sceliphron (Sphecidae) and Formica (Formicidae). Journal of Morphology, 281, 737–753. [DOI] [PubMed] [Google Scholar]
  8. Brooker, L. R. , Lee, A. P. , Macey, D. J. , van Bronswijk, W. , & Webb, J. (2003). Multiple‐front iron‐mineralisation in chiton teeth (Acanthopleura echinata: Mollusca: Polyplacophora). Marine Biology, 142, 447–454. [Google Scholar]
  9. Brooker, L. R. , & Shaw, J. A. (2012). The chiton radula: A unique model for biomineralization studies. In Seto J. (Ed.), Advanced topics in biomineralization (pp. 65–84). Intech Open. [Google Scholar]
  10. Cedhagen, T. (1996). Foraminiferans as food for cephalaspideans (Gastropoda: Opisthobranchia), with notes on secondary tests around calcareous foraminiferans. Special Publication. Phuket Marine Biological Center, 16, 279–290. [Google Scholar]
  11. Chester, C. M. (1993). Comparative feeding biology of Acteocina canaliculata (Say, 1826) and Haminoea solitaria (Say, 1822) (Opisthobranchia: Cephalaspidea). American Malacological Bulletin, 10(1), 93–101. [Google Scholar]
  12. DeLaHoz, M. V. , Sardà, F. , Coll, M. , Sáez, R. , Mechó, A. , Oliva, F. , Ballesteros, M. , & Palomera, I. (2018). Biodiversity patterns of megabenthic non‐crustacean invertebrates from an exploited ecosystem of the northwestern Mediterranean Sea. Regional Studies in Marine Science, 19, 47–68. [Google Scholar]
  13. Dumont, E. R. , Grosse, I. R. , & Slater, G. J. (2009). Requirements for comparing the performance of finite element models of biological structures. Journal of Theoretical Biology, 256, 96–103. [DOI] [PubMed] [Google Scholar]
  14. Eilertsen, M. H. , & Malaquias, M. A. E. (2013). Unique digestive system, trophic specialization, and diversification in the deep‐sea gastropod genus Scaphander . Biological Journal of the Linnean Society, 109(3), 512–525. [Google Scholar]
  15. Evans, L. A. , Macey, D. J. , & Webb, J. (1990). Characterization and structural organization of the organic matrix of radula teeth of the chiton Acanthopleura hirtosa . Philosophical Transactions of the Royal Society London B, 329, 87–96. [Google Scholar]
  16. Evans, L. A. , Macey, D. J. , & Webb, J. (1994). Matrix heterogeneity in the radular teeth of the chiton Acanthopleura hirtosa . Acta Zoologica, 75, 75–79. [Google Scholar]
  17. Faivre, D. , & Ukmar‐Godec, T. (2015). From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angewandte Chemie, International Edition, 54(16), 4728–4747. [DOI] [PubMed] [Google Scholar]
  18. Freeman, P. W. , & Lemen, C. A. (2007). The trade‐off between tooth strength and tooth penetration: Predicting optimal shape of canine teeth. Journal of Zoology, 273, 273–280. [Google Scholar]
  19. Friedrich, F. , & Kubiak, M. (2018). Comparative anatomy of pupal tarsi in caddisflies (Insecta: Trichoptera) with focus on the claw system. Zoomorphology, 137, 305–314. [Google Scholar]
  20. Gorb, S. N. , & Krings, W. (2021). Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomaterialia, 134(15), 513–530. [DOI] [PubMed] [Google Scholar]
  21. Gordon, L. , & Joester, D. (2011). Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature, 469, 194–198. [DOI] [PubMed] [Google Scholar]
  22. Grunenfelder, L. K. , de Obaldia, E. E. , Wang, Q. , Li, D. , Weden, B. , Salinas, C. , Wuhrer, R. , Zavattieri, P. , & Kisailus, D. (2014). Biomineralization: Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri . Advanced Functional Materials, 24(39), 6093–6104. [Google Scholar]
  23. Guralnick, R. , & Smith, K. (1999). Historical and biomechanical analysis of integration and dissociation in molluscan feeding, with special emphasis on the true limpets (Patellogastropoda: Gastropoda). Journal of Morphology, 241, 175–195. [DOI] [PubMed] [Google Scholar]
  24. Han, Y. , Liu, C. , Zhou, D. , Li, F. , Wang, Y. , & Han, X. (2011). Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus . Bioelectromagnetics, 32, 226–233. [DOI] [PubMed] [Google Scholar]
  25. Hawkins, S. J. , Watson, D. C. , Hill, A. S. , Harding, S. P. , Kyriakides, M. A. , Hutchinson, S. , & Norton, T. A. (1989). A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. Journal of Molluscan Studies, 55(2), 151–165. [Google Scholar]
  26. Herrera, S. A. , Grunenfelder, L. , Escobar, E. , Wang, Q. , Salinas, C. , Yaraghi, N. , Geiger, J. , Wuhrer, R. , Zavattieri, P. , & Kisailus, D. (2015). Stylus support structure and function of radular teeth in Cryptochiton stelleri. 20th International Conference on Composite Materials, Copenhagen, 19–24th July.
  27. Hickman, C. S. (1980). Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology, 6, 276–294. [Google Scholar]
  28. Hickman, C. S. (1984). Implications of radular tooth‐row functional‐integration for archaeogastropod systematics. Malacologia, 25, 143–160. [Google Scholar]
  29. Hurst, A. (1965). Studies on the structure and function of the feeding apparatus of Philineaperta with comparative consideration of some other opisthobranchs. Malacologia, 2, 281–347. [Google Scholar]
  30. Joester, D. , & Brooker, L. R. (2016). The chiton radula: A model system for versatile use of iron oxides. In Faivre D. (Ed.), Iron oxides: From nature to applications (pp. 177–205). Wiley‐VCH. [Google Scholar]
  31. Kim, K. S. , Macey, D. J. , Webb, J. , & Mann, S. (1989). Iron mineralisation in the radula teeth of the chiton Acanthopleura hirtosa . Proceedings of the Royal Society B, 237, 335–346. [Google Scholar]
  32. Kirschvink, J. L. , & Lowenstam, H. A. (1979). Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentalogic and biologic implications of organic magnetite. Earth and Planetary Science Letters, 44(2), 193–204. [Google Scholar]
  33. Kisailus, D. , & Nemoto, M. (2018). Structural and proteomic analyses of iron oxide biomineralization in chiton teeth. In Matsunaga T., Tanaka T., & Kisailus D. (Eds.), Biological magnetic materials and applications (pp. 53–73). Springer. [Google Scholar]
  34. Krings, W. (2020). Trophic specialization of paludomid gastropods from 'ancient' Lake Tanganyika reflected by radular tooth morphologies and material properties. Dissertation, University of Hamburg.
  35. Krings, W. , Brütt, J.‐O. , & Gorb, S. N. (2022a). Micro‐cracks and micro‐fractures reveal radular tooth architecture and its functional significance in the paludomid gastropod Lavigeria grandis . Philosophical Transactions of the Royal Society A, 380, 20210335. [DOI] [PubMed] [Google Scholar]
  36. Krings, W. , Brütt, J.‐O. , & Gorb, S. N. (2022b). Mechanical properties, degree of sclerotisation and elemental composition of the gastric mill in the red swamp crayfish Procambarus clarkii (Decapoda, Crustacea). Scientific Reports, 12, 17799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Krings, W. , Brütt, J.‐O. , & Gorb, S. N. (2022c). Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea . Frontiers in Zoology, 19, 19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Krings, W. , Brütt, J.‐O. , & Gorb, S. N. (2022d). Material gradients in gastropod radulae and their biomechanical significance: A combined approach on the paludomid Lavigeria grandis . The Science of Nature, 109, 52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Krings, W. , Brütt, J.‐O. , Gorb, S. N. , & Glaubrecht, M. (2020). Tightening it up: Diversity of the chitin anchorage of radular‐teeth in paludomid freshwater‐gastropods. Malacologia, 63, 77–94. [Google Scholar]
  40. Krings, W. , & Gorb, S. N. (2021). Radula packing and storage facilitated by tooth morphology in selected taenioglossan Gastropoda. Journal of Molluscan Studies, 87, eyab007. [Google Scholar]
  41. Krings, W. , & Gorb, S. N. (2023a). Resistance to abrasive particles in soft radular teeth (Paludomidae, Gastropoda, Mollusca). Invertebrate Biology. In press. [Google Scholar]
  42. Krings, W. , & Gorb, S. N. (2023b). Mechanical properties of larval mouthparts of the antlion Euroleon nostras (Neuroptera: Myrmeleontidae) and their correlation with cuticular material composition. Zoomorphology. [Google Scholar]
  43. Krings, W. , Karabacak, H. , & Gorb, S. N. (2021). From the knitting shop: The first physical and dynamic model of the taenioglossan radula (Mollusca: Gastropoda) aids in unravelling functional principles of the radular morphology. Journal of the Royal Society Interface, 18(182), 20210377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Krings, W. , Kovalev, A. , Glaubrecht, M. , & Gorb, S. N. (2019). Differences in the young modulus and hardness reflect different functions of teeth within the taenioglossan radula of gastropods. Zoology, 137, 125713. [DOI] [PubMed] [Google Scholar]
  45. Krings, W. , Kovalev, A. , & Gorb, S. N. (2021b). Influence of water content on mechanical behaviour of gastropod taenioglossan radulae. Proceedings of the Royal Society B, 288, 20203173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Krings, W. , Kovalev, A. , & Gorb, S. N. (2021c). Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomaterialia, 135, 458–172. [DOI] [PubMed] [Google Scholar]
  47. Krings, W. , Marcé‐Nogué, J. , & Gorb, S. N. (2021). Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Scientific Reports, 11, 22775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Krings, W. , Marcé‐Nogué, J. , Karabacak, H. , Glaubrecht, M. , & Gorb, S. N. (2020). Finite element analysis of individual taenioglossan radular teeth (Mollusca). Acta Biomaterialia, 115, 317–332. [DOI] [PubMed] [Google Scholar]
  49. Krings, W. , Wägele, H. , Neumann, C. , & Gorb, S. N. (2023). Coping with abrasive food: Diverging composition of radular teeth in two Porifera‐consuming nudibranch species (Mollusca, Gastropoda). Journal of the Royal Society Interface, 20, 20220927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lee, A. P. , Brooker, L. R. , Macey, D. J. , Webb, J. , & van Bronswijk, W. (2003). A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida . Journal of Biological Inorganic Chemistry, 8, 256–262. [DOI] [PubMed] [Google Scholar]
  51. Lee, A. P. , Brooker, L. R. , van Bronswijk, W. , Macey, D. J. , & Webb, J. (2003). Contribution of Raman spectroscopy to identification of biominerals present in teeth of Acanthopleura rehderi, Acanthopleura curtisiana, and Onithochiton quercinus . Biopolymers, 72, 299–301. [DOI] [PubMed] [Google Scholar]
  52. Lehnert, M. S. , Johnson, D. D. , Wu, J. , Sun, Y. , Fonseca, R. J. , Michels, J. , Shell, J. S. , & Reiter, K. E. (2021). Physical adaptations of butterfly proboscises enable feeding from narrow floral tubes. Functional Ecology, 35, 1925–1937. [Google Scholar]
  53. Lowenstam, H. A. , & Weiner, S. (1989). Mollusca. In Lowenstam H. A. & Weiner S. (Eds.), On biomineralization (pp. 88–305). Oxford University Press. [Google Scholar]
  54. Lu, D. , & Barber, A. H. (2012). Optimized nanoscale composite behaviour in limpet teeth. Journal of the Royal Society Interface, 9(71), 1318–1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Mackenstedt, U. , & Märkel, K. (1987). Experimental and comparative morphology of radula renewal in pulmonates (Mollusca, Gastropoda). Zoomorphology, 107, 209–239. [Google Scholar]
  56. Malaquias, M. , Condinho, S. , Cervera, J. , & Sprung, M. (2004). Diet and feeding biology of Haminoea orbygniana (Mollusca: Gastropoda: Cephalaspidea). Journal of the Marine Biological Association of the United Kingdom, 84(4), 767–772. [Google Scholar]
  57. Matsumura, Y. , Kovalev, A. , & Gorb, S. N. (2021). Mechanical properties of a female reproductive tract of a beetle and implications for penile penetration. Proceedings of the Royal Society B, 288, 20211125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Michels, J. , & Gorb, S. N. (2012). Detailed three‐dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. Journal of Microscopy, 245(1), 1–16. [DOI] [PubMed] [Google Scholar]
  59. Michels, J. , & Gorb, S. N. (2015). Mandibular gnathobases of marine planktonic copepods—Structural and mechanical challenges for diatom frustules in evolution of lightweight structures. In Hamm C. (Ed.), Biologically‐inspired systems (pp. 59–73). Springer. [Google Scholar]
  60. Michels, J. , Vogt, J. , & Gorb, S. N. (2012). Tools for crushing diatoms—Opal teeth in copepods feature a rubber‐like bearing composed of resilin. Scientific Reports, 2, 465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Montroni, D. , Zhang, X. , Leonard, J. , Kaya, M. , Amemiya, C. , Falini, G. , & Rolandi, M. (2019). Structural characterization of the buccal mass of Ariolimax californicus (Gastropoda; Stylommatophora). PLoS One, 14, e0212249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Morris, T. E. , & Hickman, C. S. (1981). A method for artificially protruding gastropod radulae and a new model of radula function. Veliger, 24, 85–89. [Google Scholar]
  63. Morrow, C. , & Cárdenas, P. (2015). Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology, 12, 7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ong, E. , Hallas, J. M. , & Gosliner, T. M. (2017). Like a bat out of heaven: The phylogeny and diversity of the bat‐winged slugs (Heterobranchia: Gastropteridae). Zoological Journal of the Linnean Society, 180(4), 755–789. [Google Scholar]
  65. Padilla, D. K. (2003). Form and function of radular teeth of herbivorous molluscs: Focus on the future. American Malacological Bulletin, 18(1–2), 163–168. [Google Scholar]
  66. Peisker, H. , Michels, J. , & Gorb, S. N. (2013). Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata . Nature Communications, 4, 1661. [DOI] [PubMed] [Google Scholar]
  67. Pohl, A. , Herrera, S. A. , Restrepo, D. , Negishi, R. , Jung, J.‐Y. , Salinas, C. , Wuhrer, R. , Yoshino, T. , McKittrick, J. , Arakaki, A. , Nemoto, M. , Zavattieri, P. , & Kisailus, D. (2020). Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber‐reinforced composite. Journal of the Mechanical Behavior of Biomedical Materials, 111, 103991. [DOI] [PubMed] [Google Scholar]
  68. Rudman, W. B. (1972a). Structure and functioning of the gut in the Bullomorpha (Opisthobranchia). Part 3. Philinidae. Journal of Natural History, 6, 459–474. [Google Scholar]
  69. Rudman, W. B. (1972b). The genus Philine (Opisthobranchia, Gastropoda). Proceedings of the Malacological Society of London, 40, 171–187. [Google Scholar]
  70. Rudman, W. B. (1978). A new species and genus of the Aglajidae and the evolution of the philinacean opisthobranch molluscs. Zoological Journal of the Linnean Society, 62(1), 89–107. [Google Scholar]
  71. Runham, N. W. (1963). A study of the replacement mechanism of the pulmonate radula. Journal of Cell Science, 3(66), 271–277. [Google Scholar]
  72. Runham, N. W. , & Isarankura, K. (1966). Studies on radula replacement. Malacologia, 5, 73. [Google Scholar]
  73. Saunders, M. , Kong, C. , Shaw, J. A. , & Clode, P. L. (2011). Matrix‐mediated biomineralization in marine mollusks: A combined transmission electron microscopy and focused ion beam approach. Microscopy and Microanalysis, 17, 220–225. [DOI] [PubMed] [Google Scholar]
  74. Saunders, M. , Kong, C. , Shaw, J. A. , Macey, D. J. , & Clode, P. L. (2009). Characterization of biominerals in the radula teeth of the chiton, Acanthopleura hirtosa . Journal of Structural Biology, 167, 55–61. [DOI] [PubMed] [Google Scholar]
  75. Shaw, J. A. , Macey, D. J. , Brooker, L. R. , & Clode, P. L. (2010). Tooth use and wear in three iron‐biomineralizing mollusc species. The Biological Bulletin, 218, 132–144. [DOI] [PubMed] [Google Scholar]
  76. Shaw, J. A. , Macey, D. J. , Brooker, L. R. , Stockdale, E. J. , Saunders, M. , & Clode, P. L. (2009a). The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. Journal of Morphology, 270, 588–600. [DOI] [PubMed] [Google Scholar]
  77. Shaw, J. A. , Macey, D. J. , Brooker, L. R. , Stockdale, E. J. , Saunders, M. , & Clode, P. L. (2009b). Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa . Microscopy and Microanalysis, 15(2), 154–165. [DOI] [PubMed] [Google Scholar]
  78. Shepelenko, M. , Brumfeld, V. , Cohen, S. R. , Klein, E. , Lubinevsky, H. , Addadi, L. , & Weiner, S. (2015). The gizzard plates in the Cephalaspidean gastropod Philine quadripartita: Analysis of structure and function. Quaternary International, 390, 4–14. [Google Scholar]
  79. Shonman, D. , & Nybakken, J. W. (1978). Food preferences, food availability and food re‐source partioning in two sympatric species of cephalaspidean opisthobranchs. The Veliger, 21(1), 120–126. [Google Scholar]
  80. Solem, A. (1972). Malacological applications of scanning electron microscopy II. Radular structure and functioning. Veliger, 14, 327–336. [Google Scholar]
  81. Solem, A. (1974). The shell makers: Introducing mollusks. Jon Wiley & Sons. [Google Scholar]
  82. Stegbauer, L. , Smeets, P. J. M. , Free, R. , Wallace, S. G. , Hersam, M. C. , Alp, E. E. , & Joester, D. (2021). Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020160118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Steneck, R. S. , & Watling, L. (1982). Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Marine Biology, 68, 299–319. [Google Scholar]
  84. Thompson, T. E. (1976). Biology of opisthobranch Molluscs. The Ray Society; 206 pp. [Google Scholar]
  85. Thompson, T. E. (1988). Molluscs: Benthic opisthobranchs (Mollusca: Gastropoda). Synopses of the British Fauna (New Series), No. 8 (2nd ed.). E.J. Brill & Dr. W. Backhuys; 356 pp. [Google Scholar]
  86. Ukmar‐Godec, T. (2016). Mineralization of goethite in limpet radular teeth. In Faivre D. (Ed.), Iron oxides: From nature to applications (pp. 207–224). Wiley‐VCH. [Google Scholar]
  87. Ukmar‐Godec, T. , Bertinetti, L. , Dunlop, J. W. C. , Godec, A. , Grabiger, M. A. , Masic, A. , Nguyen, H. , Zlotnikov, I. , Zaslansky, P. , & Faivre, D. (2017). Materials nanoarchitecturing via cation‐mediated protein assembly: Making limpet teeth without mineral. Advanced Materials, 29(27), 1701171. [DOI] [PubMed] [Google Scholar]
  88. Ukmar‐Godec, T. , Kapun, G. , Zaslansky, P. , & Faivre, D. (2015). The giant keyhole limpet radular teeth: A naturally‐grown harvest machine. Journal of Structural Biology, 192, 392–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. van der Wal, P. (1989). Structural and material design of mature mineralized radula teeth of Patella vulgata (Gastropoda). Journal of Ultrastructure and Molecular Structure Research, 102, 147–161. [Google Scholar]
  90. van der Wal, P. , Giesen, H. J. , & Videler, J. J. (1999). Radular teeth as models for the improvement of industrial cutting devices. Materials Science and Engineering: C, 7(2), 129–142. [Google Scholar]
  91. van der Wal, P. , Videler, J. J. , Havinga, P. , & Pel, R. (1989). Architecture and chemical composition of the magnetite‐bearing layer in the radula teeth of Chiton olivaceus (Polyplacophora). In Crick R. E. (Ed.), Origin, evolution, and modern aspects of biomineralization in plants and animals (pp. 153–166). Springer. [Google Scholar]
  92. Vortsepneva, E. , Mikhlina, A. , & Kantor, Y. (2022). Main patterns of radula formation and ontogeny in Gastropoda. Journal of Morphology, 284, e21538. [DOI] [PubMed] [Google Scholar]
  93. Wang, C. , Li, Q. Y. , Wang, S. N. , Qu, S. X. , & Wang, X. X. (2014). Microstructure and self‐sharpening of the magnetite cap in chiton tooth. Materials Science and Engineering: C, 37, 1–8. [DOI] [PubMed] [Google Scholar]
  94. Wang, Q. , Nemoto, M. , Li, D. , Weaver, J. C. , Weden, B. , Stegemeier, J. , Bozhilov, K. N. , Wood, L. R. , Milliron, G. W. , Kim, C. S. , DiMasi, E. , & Kisailus, D. (2013). Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri . Advanced Functional Materials, 23, 2908–2917. [Google Scholar]
  95. Wealthall, R. J. , Brooker, L. R. , Macey, D. J. , & Griffin, B. J. (2005). Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). Journal of Morphology, 265, 165–175. [DOI] [PubMed] [Google Scholar]
  96. Weaver, J. C. , Wang, Q. , Miserez, A. , Tantuccio, A. , Stromberg, R. , Bozhilov, K. N. , Maxwell, P. , Nay, R. , Heier, S. T. , & DiMasi, E. (2010). Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Materials Today, 13(1–2), 42–52. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The 3D model can be found in Dryad: Wencke Krings, 3D model radula of Gastropteron rubrum; DOI: 10.5061/dryad.s4mw6m9bp. The data on mechanical properties and elemental analysis can be found in the Appendix 1.


Articles from Ecology and Evolution are provided here courtesy of Wiley

RESOURCES