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Abstract
This work presents the synthesis of 12 phenol and chromone derivatives, prepared by the analogs, and the possibility of con-
ducting an in silico study of its derivatives as a therapeutic alternative to combat the SARS-CoV-2, pathogen responsible for 
COVID-19 pandemic, using its S-glycoprotein as a macromolecular target. After the initial screening for the ranking of the 
products, it was chosen which structure presented the best energy bond with the target. As a result, derivative 4 was submitted 
to a molecular growth study using artificial intelligence, where 8436 initial structures were obtained that passed through the 
interaction filters and similarity to the active glycoprotein pocket through the MolAICal computational package. Thus, 557 
Hits with active configuration were generated, which is very promising compared to the BLA reference link for inhibiting 
the biological target. Molecular dynamics also simulated these compounds to verify their stability within the active protein 
site to seek new therapeutic propositions to fight against the pandemic. The Hit 48 and 250 are the most active compounds 
against SARS-CoV-2. In summary, the results show that the Hit 250 would be more active than the natural compound, which 
could be further developed for further testing against SARS-CoV-2. The study employs the de novo approach to design new 
drugs, combining artificial intelligence and molecular dynamics simulations to create efficient molecular structures. This 
research aims to contribute to the development of effective therapeutic strategies against the pandemic.
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Introduction

The worldwide outbreak of COVID-19 caused by the novel 
SARS-CoV-2 virus has generated a significant health prob-
lem (Rosa et al. 2021). The WHO declared this outbreak a 
pandemic, and China has been the most affected country. It 
is one of the most challenging problems of the twenty-first 
century and has changed the lives of people all over the 
world. SARS-CoV-2 is a novel coronavirus that is respon-
sible for the outbreak of COVID-19, a disease that resem-
bles SARS or MERS coronaviruses (Zhang et al. 2021a, 
b). It is classified as a new type of epidemic pneumonia 
with a high mortality rate (Ge et al. 2021). The disease is 
transmitted from person to person, and its symptoms are 
fever, coughing, and pneumonia (Thanh Tung et al. 2020).

In response, researchers and doctors rushed to find 
a suitable treatment for COVID-19, repurposing drugs 
like hydroxychloroquine, ivermectin, and remdesivir, to 
name a few. Many of those drugs showed no benefit and 
in some cases even harmful effects (Ferreira et al. 2021; 
Shirazi et al. 2022). Some promising drugs are natural 
molecules and their derivatives, which are generally 
cheaper and more available than synthetic drugs (Singh 
et al. 2022), like limonoids (de Oliveira et al. 2021), tan-
geretin (Da Rocha et al. 2021), resveratrol, emodin, narin-
genin (Chakravarti et al. 2021) that may interact with the 
ACE2, S protein or Mpro, the main targets for COVID-19 
treatment.

In this sense, Zhang et al. (2021a, b) found phenols and 
chromones derivated from Daldinia sp. had antiviral and 
antibacterial properties. In his work, the molecules (Fig. 2) 
and their derivatives assays showed anti-ZIKV (zika virus) 
and anti-influenza activities (Zhang et al. 2021a, b).

As the need for rapid screening of drugs and testing, 
amid a pandemic, computational tools can be an alterna-
tive to traditional drug development, as it is effective and 
cheaper. Among the diverse approaches, deep learning is 
a prevalent form of artificial intelligence that has been 
successfully applied in medical diagnostics, cell image 
analysis, organic synthesis, drug classification, and oth-
ers (Kermany et al. 2018; Miao et al. 2019; Moen et al. 
2019; Segler et al. 2018).

There are some options when looking for a drug plan-
ning tool using the deep learning model and classical 
algorithm that can perform the growth of fragments in 
the initial seed in the active pocket of receptors via the 
genetic algorithm. However, the MolAICal computational 
package is a representative, free, easy-to-install software 
for planning new drugs that can grow ligands fragment 
by fragment in the receiving bag. Another highlight is the 
Vinardo score, which MolAICal uses to evaluate the pro-
tein bag's binding affinity of growth ligands. In addition, 

MolAICal can also filter growth ligands according to syn-
thetic accessibility (SA), Lipinski’s rule of five, and Pan-
assay interference compounds (PAINS) when new drug 
design tasks are being performed.

Based on the characteristics and merits of deep learn-
ing and classical programming, the MolAICal package is 
programmed to design 3D drugs in the specific cavity of the 
protein (Bai et al. 2021). The MolAICal package contains 
two modules written in the JAVA language.

Within this perspective, the present work proposes the 
search for new molecules based on phenol and chromones 
extracted from Daldinia sp., that exhibited some in vitro 
inhibitory antiviral properties, as efficient inhibitors of 
SARS-CoV-2 through de novo design, aided by MolAI-
Cal artificial intelligence and additional study of molecu-
lar dynamics to generate new compounds that scores the 
highest binding affinity to the Spike glycoprotein and syn-
thetic accessibility, with further investigation about the 
drug behavior with an absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) to provide their feasability 
of these new molecules as therapeutic agents.

Methodology

In silico study

An overall view of this work is simplified and represented 
in Fig. 1. First, an evaluation of the binding affinity of the 
derivatives and BLA (Biliverdin IX Alpha) with the Spike 
glycoprotein, through molecular docking, is realized to rank 
and select the lowest binding affinity from the compounds. 
In the second step, the selected molecule was used in the de 
novo design, in MolAICal, obtaining some potential drugs, 
from which the lowest binding affinity and highest synthetic 
accessibility are chosen as the best potential drugs and start-
ing points to the further steps. In the sequence, study and 
evaluation of molecular docking (binding affinity, interaction 
with protein residues and MM/GBSA), molecular dynamics 
(RMSD, RMSF, H-bond, SASA), and ADMET (druglike-
ness, MCE-18, pharmacokinetic prediction, metabolism 
and oral toxicity) is performed to assess the potential to an 
in vitro and clinical trials of these molecules, using the BLA 
as a reference molecule.

Preparation of binders and proteins

The derivatives (1–12), from the work of Zhang et  al. 
(2021a, b) (Fig. 2), BLA, and the Hits 48 and 250 were 
created in Chem3D software (Ahmadi et al. 2005). The 
structures obtained in 3D were submitted subsequently to 
auto-optimization settings which was applied to the force 
field MMFF94S (Wahl et al. 2019), to generate bioactive 
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conformations by minimization of randomly generated con-
formers, with algorithm Steepest Descent algorithm (Petrova 
and Solov’Ev 1997), and Step per Update 4 (Sutton et al. 
2016) by software  AVOGADRO® (Hanwell et al. 2012). 
All files with ligands were converted to corresponding for-
mats (.mol2 and .pdbqt) with the addition of ionization and 
tautomeric states at pH 7.4 by using OpenBabel ver. 3.0.0 
software (O’Boyle et al. 2011).

Protein structural preparation

The receptor under study was the Spike glycoprotein (glyco-
protein S or E2) of SARS-CoV-2, obtained from the protein 
database repository code (PDB) ID 7B62 (Rosa et al. 2021), 
whose crystalline structure was obtained by X-ray diffrac-
tion. To validate the simulations, the redocking technique 
was performed on the co-crystallized ligand, biliverdin ix 
alpha (BLA), which was in the original file of the co-crys-
tallized protein. In addition, the interfering residues, water 
molecules, and synthetic inhibitors were removed. Polar 
hydrogens were added to binders and protein separately. 
The used software was AutoDock Tools (Morris et al. 2009).

Deep learning model and de novo drug design

MolAICal contains the deep learning generator model of 
the drug, which was trained from 21,064 FDA-approved 
drug fragments. The 90 fragments generated by MolAICal 
and another 30 primary fragments were mixed for fragment 
growth in the cavity of the Spike glycoprotein.

Fig. 1  Workflow of the de novo design in this work

Fig. 2  Initial growth structures of phenol and chromone derivatives
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Grid coordinates

The x, y, and z coordinates of the center of the cavity box of 
the glycoprotein were set to 21.404, 14.571, and − 18.006 Å, 
respectively. The cavity box lengths of the protein will be 
set to 30.0 Å along the x, y, and z directions. The fittest mol-
ecules were extracted for the subsequent evolved growth of 
10% of the generated molecular populations. The 140 best 
molecules of generated molecular populations will be devel-
oped as the mother molecules. Thus, over 60 molecules were 
randomly selected from the generated molecular populations 
to increase the diversity and novelty of growth ligands. The 
maximum population was set at 3000.

Fibonacci points, Lipinski filter, and interference

Fibonacci’s 361 points are generated for the search for frag-
ment disturbance, using the golden angle to distribute the 
points of the subsequent fragments from the initial growth 
fragment in the Spike glycoprotein pocket. Then when the 
fragments grow and form a ligand, a genetic algorithm is 
applied to optimize molecular conformation of the ligand. 
Crossover and mutation operators were set to 1.0 and 0.5, 
respectively.

According to Lipinski’s rule of five, a set of rules of the 
physico-chemical descriptors that encompasses most drugs 
used for druglikeness and ADMET, values of crystal bind-
ers in the glycoprotein, was to be defined for the values of 
XLOGP (5.0), hydrogen acceptors (10), hydrogen donors 
(5), molecular weight (500), and rotary bonds (10).

Pan-assay interference compounds (PAINS) are com-
pounds that may not have a therapeutic effect in vivo despite 
showing in silico fitting scores (Baell and Walters 2014), 
these compounds that usually are false positives, in the case 
of genetic algorithm may induce a false convergence of 
the optimal solution, were filtered out of unwanted growth 
binders.

After the genetic algorithm produced a generation, MolA-
ICal uses a Vinardo score, to select the fittest ligands for 
the next generation. For this, it considers steric interactions, 
hydrophobicity, and H-bonds to evaluate the affinity between 
ligand and protein pocket.

Accessibility of synthesis

MolAICal has the Ambit-SA library, which allows to evalu-
ate how easy a compound can be synthesize. This library uti-
lizes 4 scores: molecular, stereochemical, fused and bridged 
systems complexity, which ranges from 0 to 100 (hardest 
to easiest). The synthetic accessibility score of the growth 
ligands was saved in the statistical results file at the end of 
the simulation. A total of 30 cycle generations was carried 
out for the entire drug design process. A total of six parallel 

drug design processes were carried out at protein. The Spike 
glycoprotein of the generated binders was saved between 480 
and 785 from the molecular weight.

Processing

A total of 30 CPU multicores were executed in parallel for 
the entire molecular growth process. Drug as the whole 
design process combined with deep learning model and clas-
sical programming was carried out automatically by MolAI-
Cal’s designed package.

Molecular generation against the target protein was per-
formed using the MolAiCal computational package (Bai 
et al. 2021) on a 10th Generation  Intel®™ Core Intel CPU, 
up to 32 GB RAM, and an  NVIDIA®  GeForce® GTX 1660 
Ti GPU, with a scanning time set to 8 h. Ten clusters were 
used to generate the structures. An average of approximately 
8436 molecules were developed for the target protein during 
the experimental period.

Molecular docking and dynamics general filter

For this study, it is curious to point out that the estimated 
Gibbs free energy (ΔG) of binding is dependent on the 
semi-empirical free energy force field AMBER (Eberhardt 
et al. 2021) which composes the Autodock Vina algorithm. 
While stability analysis of ligand-receptor complex forma-
tion is possible through stability analysis using MM/GBSA 
calculations.

Molecular docking

The code used was AutoDock Vina, with its Lamarckian 
genetic algorithm (AG) in combination with grid-based 
affinity energy (Trott and Olson 2010), with the anchor 
region according to the synthetic binding found co-crys-
tallized in the protein (BLA). The Spike glycoprotein was 
obtained from the RCSB Protein Data Bank (PDB ID: 7B62) 
(Rosa et al. 2021). Its structure was archived in the Protein 
Database with a resolution of 2.16 Å, determined from X-ray 
diffraction, classified as viral protein. The Lipinski’s rule of 
five (Benet et al. 2016), RMSD of up to 2.0 Å (Hevener et al. 
2009), and affinity energy less than − 7.0 kcal/mol were used 
as an exclusion factor. The most favorable ones were repre-
sented by the lowest free binding energy (ΔG) (Gurung et al. 
2016). Discovery Studio (Biovia 2015) conducted interac-
tion 3D/2D visualization analysis studies, and Poseview was 
added (Fricker et al. 2004; Stierand et al. 2006).

Molecular dynamics

Molecular dynamics (MD) simulations were performed 
with the program NAMD (Phillips et al. 2005). The best 
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conformations obtained in molecular docking were in the 
water solvated case in the TIP3P model (Kato et al. 2021), 
and in the CHARMM36-mar2019 force field (Huang et al. 
2016). The preparation of the system was carried out in two 
steps. In the first step, the ligands were parameterized on the 
Charmm-Gui server (Jo et al. 2013) (https:// www. charmm- 
gui. org/), and then they were submitted to the CGenFF 
server for parameter identification for CHARMM36 
(Vanommeslaeghe et al. 2010). In the second step, the pro-
tein was prepared in the NAMD program. 1  Na+ ion per 
ligand was added to neutralize the total charge of the sys-
tem. The latter was subjected to energy minimization by the 
Steepest Descent method. Then the system was subjected 
to NVT and NPT equilibrations under conditions described 
by Langevin (Farago 2019). The production simulations to 
study the system were performed for 100 ns. N3 was used as 
a standard reference drug to analyze the interactions between 
the ligand and the protein.

The quality of the structures obtained in MDs was evalu-
ated using the following parameters with NAMD: potential 
energy (kcal/mol) (Diez et al. 2014); protein–ligand interac-
tion energy (kcal/mol); root mean square deviation (RMSD, 
Å) of protein, ligands, and distances between them; root 
mean square fluctuation (RMSF, Å), minimum distances 
between proteins and ligands observed in MD (Arshia et al. 
2021). Hydrogen bonds were evaluated with visual molecu-
lar dynamics (VMD) (Humphrey et al. 1996). The graphs 
will be generated using the Qtrace program (Lima et al. 
2012; Phillips et al. 2005).

MM/GBSA calculations

MM/GBSA was calculated by MolAICal (Bai et al. 2021) 
on the basis of the MD log file of NAMD software (Phillips 
et al. 2005). The MM/GBSA is estimated by Eqs. 1, 2, and 3.

where ΔEMM, ΔGsol, and TΔS represent the gas phase MM 
energy, solvation-free energy (sum of polar contribution 
ΔGGB and non-polar contribution ΔGSA), and conforma-
tional entropy, respectively. ΔEMM contains van der Waals 
energy ΔEvdw, electrostatic ΔEele, and ΔEinternal of bond, 
angle, and dihedral energies.

Molecular dynamics simulations are an effective tool 
for understanding the relationships between the structure 
and function of macromolecules. Thus, this means that the 
information obtained from the dynamic properties of macro-
molecules is detailed enough to challenge the conventional 

(1)ΔGbind = ΔH − TΔS ≈ ΔEMM + ΔGsol − TΔS

(2)ΔEMM = ΔEinternal + ΔEele + ΔEvdw

(3)ΔGsol = ΔGGB + ΔGSA,

paradigm of structural bioinformatics, which focuses on 
studying unique structures, and instead allows the analy-
sis of conformational sets. The entropic contribution can 
be assessed based on MD trajectories by performing MD 
simulations. However, this contribution is usually ignored 
and, when considered, is mostly configurational rather than 
thermal. Configurational entropy can be estimated using tra-
jectories based on the variance–covariance matrix of atomic 
positional fluctuations. A quasi-harmonic method can be 
used, in which the variance–covariance matrix is calculated 
for all atoms of the complex. In the quasi-harmonic process, 
the mass-weighted variance–covariance matrix is calculated 
from the DM trajectories using Cartesian coordinates. The 
global translations and rotations of the solute molecule are 
removed using the slightest squares adjustments of mass-
weighted coordinates.

The GB method (with a, b, and c set to 0.8, 0, and 2.91, 
respectively, and with the default modified Bondi radii) 
was used to calculate the polar solvation energy, and the 
non-polar solvation energy was calculated using the solvent 
accessible surface area, according to Eq. 4.

The non-polar component of desolvation was estimated 
using the LCPO algorithm, with γ being 11.948 kcal/mol/Å2 
and b 12.862 kcal/mol. Entropy was calculated by a standard 
mode analysis of the calculated harmonic frequencies at the 
MM level. In addition to water, to increase the accuracy, 
residues more than 8 Å of the binders were fixed to maintain 
the original geometry of the binders (Genheden and Ryde 
2010).

In the MM/GBSA calculations, the polar component 
of desolvation was calculated by the modified GB model 
 (GBOBC1, igb = 2 in Amber18) developed by Onufriev et al. 
(Onufriev et al. 2000), the exterior (solvent) dielectric con-
stant was set to 80 as default.

Statistical analysis

The results were expressed as standard error ± of each exper-
iment. After confirming the normality of distribution and 
data variance homogeneity, the groups’ differences were 
submitted to variance analysis (unidirectional ANOVA), fol-
lowed by the Tukey test (Olleveant et al. 1999). All analyses 
were performed using Origin 8.5, with a statistical signifi-
cance of 5% (p < 0.05).

In silico ADMET study

This predictive study of druglikeness properties and phar-
macokinetic descriptors of absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) was adapted from 

(4)ΔGnp = �SASA + b

https://www.charmm-gui.org/
https://www.charmm-gui.org/


 3 Biotech (2023) 13:301

1 3

301 Page 6 of 19

the methodologies of Rocha et al. (2022) and Lima et al. 
(2021), where different services available online constitute 
a consensus prediction between empirical decisions and 
numerical descriptors of in vivo and in vitro tests deposited 
in databases. Initially, the two-dimensional structural repre-
sentation of the compounds was converted into a simplified 
molecular-input line-entry system (SMILES) and submit-
ted to the ADMETlab 2.0 server (https:// admet mesh. scbdd. 
com/) for quantitative estimation of druglikeness (QED) 
(Eq. 5) and for the similarity test with compounds registered 
in patents of the Medicinal Chemistry Evolution algorithm, 
2018 (MCE-18) (Eq. 6)

where QED is defined by the sum of the physical–chemi-
cal properties (n = 8) that are within the ideality limit (di), 
which include: molecular weight (MW), partition coeffi-
cient (logP), H-bond donors (HBD), and H-bond acceptors 
(HBA), topological polar surface area (TPSA), number of 
rotatable bonds (nRot), number of aromatic rings (nAR), 
and reactive molecular fragments (Bickerton et al. 2012). 
MCE-18 relates the distribution of sp3 hybridization atoms 
between cyclic and acyclic structures, which include aro-
matic (AR) and non-aromatic (NAR) rings, chiral centers, 
and spiro-cyclic groups, where the final score expresses the 
degree of similarity of the compounds with substances reg-
istered in patents in recent years, where MCE-18 values > 45 
show a better fit in this spectrum (Ivanenkov et al. 2019). 
The results were compared to the druglikeness from the 
Pfizer rule (optimal: logP ≤ 3, and TPSA > 75 Å2) (Hughes 
et al. 2008), GSK filter (optimal: logP ≤ 4 and MW ≤ 400 g/
mol) (Gleeson 2008), and Golden Triangle rule (optimal: 
− 2 < logD ≤ 5 and 200 < MW ≤ 500 g/mol) (Johnson et al. 
2009).

And then the SMILES code of the ligands was reported to 
PreADMET (https:// pread met. qsarh ub. com/) and ADMET-
lab 2.0 (https:// admet mesh. scbdd. com/) servers for estima-
tion of passive permeability by the Madin-Darby Canine 
Kidney cells model  (Papp MDCK), P-glycoprotein substrate 
(Pgp), human intestinal absorption (HIA), volume of distri-
bution (VD), plasma protein binding (PPB), and blood–brain 
barrier permeability (BBB) as indicative of activity in the 
central nervous system (CNS). Finally, metabolism sites and 
reactive structural fragments were detected from the consen-
sual structural reading between XenoSite (https:// xenos ite. 
org/) and Stoptox (https:// stopt ox. mml. unc. edu/) servers and 
related to excretion descriptors, including intrinsic clearance 

(5)QED = exp

(

1

n

n
∑

i=1

lndi

)

(6)

MCE =

(

AR + NAR + Chiral + Spiro +
sp3 + Cyc − Acyc

1 + sp3

)

Q1
,

rate  (CLint,u) and half-life (T1/2), organ toxicity descriptors, 
which include human hepatotoxicity (H-HT) and Ames 
mutagenicity (Xu et al. 2012), as well as acute toxicity, 
such as median lethal dose  (LD50) in rats and median lethal 
concentration  (LC50) in Minnow, performed on ProTox-II 
(https:// tox- new. chari te. de/ protox_ II/) and pkCSM (https:// 
biosig. lab. uq. edu. au/ pkcsm/).

Results and discussion

In silico study

Based on the virtual screening performed by AutoDock 
Vina, it was possible to verify the affinity energies (kcal/
mol) and correlated root mean square deviation (RMSD) 
between binder receptor against the Spike glycoprotein, 
especially derivative 4, with affinity energy of − 6.8 kcal/
mol (RMSD 1.088 Å), evidencing moderate competitive-
ness, compared to the reference linker BLA with − 8.1 kcal/
mol (Tumskiy and Tumskaia 2021; Wu et al. 2022) (Table 1 
and Fig. 3).

All simulations performed (docking and redocking) pre-
sented RMSD values lower than 2 Å, highlighting the best 
pose of the BLA-glycoprotein complex, which presented 
RMSD in the order of 2.0 Å. From the best pose choices 
based on the RMSD, the binding affinity of the complexes 
for the ligands was evaluated, where again, the complex 
can be highlighted, which presented energy in the order of 
− 8.1 kcal/mol.

Thus, to assess the stability of the complex (proteins/
ligand), the binding energy was used as a parameter, 
which has ideality parameters values below − 6.0 kcal/

Table 1  Data of energy of the compounds in front of molecular dock-
ing

ID Compounds Binding affinity
AutoDock vina (kcal/mol)

1 Der 1 − 6.3
2 Der 2 − 6.4
3 Der 3 − 6.2
4 Der 4 − 6.8
5 Der 5 − 6.2
6 Der 6 − 5.2
7 Der 7 − 5.2
8 Der 8 − 5.1
9 Der 9 − 6.3
10 Der 10 − 6.2
11 Der 11 − 6.1
12 Der 12 − 6.5
13 BLA − 8.1

https://admetmesh.scbdd.com/
https://admetmesh.scbdd.com/
https://preadmet.qsarhub.com/
https://admetmesh.scbdd.com/
https://xenosite.org/
https://xenosite.org/
https://stoptox.mml.unc.edu/
https://tox-new.charite.de/protox_II/
https://biosig.lab.uq.edu.au/pkcsm/
https://biosig.lab.uq.edu.au/pkcsm/
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mol (Shityakov and Förster 2014). Then compound 4 was 
used as a starter for drug design de novo to potentiate 
binding capacity and bring new bioactive structures.

Production of Hits

After the new drug design method, using MolAICal arti-
ficial intelligence software, we obtained 557 Hits (the 
active substance in the system), from the initial phenol 
derivative growth structure (derivative 4), in Fig. 3.

Up to ten clusters were processed, all of which 
obtained structures with affinity energy variation rang-
ing from − 13.0 to − 7.0 kcal/mol, which obtained more 
favorable energies, as shown in Fig. 4.

Synthetic accessibility

In the case of a molecule projected by de novo design, the 
experimental validation of its activity requires the synthe-
sis of the compound. An approach to estimate the ease of 
synthesis of a ligand is called synthetic accessibility (SA), 
which is used to generate drug-like molecules and is nec-
essary for many areas in the drug discovery process (Jain 
and Agrawal 2004; Wang et al. 2022). The evaluation of 
the SA of a lead candidate is a task that plays a role in the 
discovery of the lead, regardless of the method by which the 
lead candidate is identified (Scotti et al. 2013). The more 
complex the synthesis of the leading candidate, the more 
time and resources are needed to explore this specific area 
of the chemical space.

When chemical structures are built during the de novo 
drug design process, it cannot be taken for granted that such 
compounds' chemical synthesis is feasible. The synthetic 
accessibility pattern of the study’s Hits presented a very 
characteristic behavior of literature, where when the best 
fits protein, the more complex synthesis becomes (Ertl and 
Schuffenhauer 2009). However, it is possible to get Hits with 
ease of 75–80%, with an energy affinity of up to − 7.29 to 
− 13.02 kcal/mol, as shown in Fig. 5.

Affinity energy

The 100 closest best results in affinity energy and RMSD 
were selected from the analogs produced, triggering the 
ligands to be grouped into clusters of similarity. The results 
of the generation experiments showed that the molecules 
obtained later had a better-fit score. The consequences for 
Spike glycoprotein demonstrate this trend well because the 
clusters generated were formed in proportion to time. Thus, 
this is possible because larger values generate more diverse 

Fig. 3.  3D interactions of derivative 4 and Spike glycoprotein resi-
dues

Fig. 4  Cluster number versus 
affinity energy
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molecules, but the convergence of mooring scores becomes 
poorer. According to the methodology, Cluster 1 initially 
presented two structures that did not interact very well with 
the protein, giving energies up to > − 7.0 kcal/mol. From 
Cluster 2 up to Cluster 10, there was an increase in affinity in 
the results, presenting energies below − 9.5 kcal/mol, where 
the most stable structure was Hit 250, with a binding energy 
of − 13.02 kcal/mol, representative of Cluster 4, taking into 
account, that the designs presented greater structural com-
plexity, which decreased their SA. Cluster 1, in particular, 
presented a model that best adapted to synthetic accessibil-
ity 80%, in this case, the Hit 48, with an affinity energy of 
− 7.29 kcal/mol. These results are presented in Fig. 6.

Interaction with protein residues

In a series of docking simulations performed by Singh et al. 
(2022) and Singh and Purohit (2023a, b), it is possible to 
observe the strong influence of compounds consisting of at 
least two rigid rings that have ether (R–O–R) and carbonyl 
(R–C=O) functional oxygenated groups, whether ester or 
ketone, on the selective modulation of Spike glycoprotein 
of SARS -CoV-2.

Hit 250 provided in molecular docking an RMSD of 
1.3 Å, with an affinity energy of − 13.02 kcal/mol, interact-
ing in the same region as the native BLA linker, as shown in 
Fig. 5a. With strong interactions, it presented four hydrogen 
bonds in the residues Ser 94 (2.74 Å), Ile 101 (2.10 Å), Tyr 
170 (2.28 Å), and Arg 190 (3.04 Å), with a strong contri-
bution from its oxygenated H-bond donor groups, accom-
panied by hydrophobic interactions pi-alkyl and alkyl with 
residues Ile 119 (3.77 Å), Phe 192 (3.94/3.78 Å), and Leu 

Fig. 5  Synthetic accessibility 
versus affinity energy

Fig. 6  3D interactions between Hit 250 (a), Hit 48 (b), and BLA (c) 
and Spike glycoprotein residues



3 Biotech (2023) 13:301 

1 3

Page 9 of 19 301

226 (3.79 Å), with a strong contribution from its benzene 
and the heterocyclic rigid rings (Fig. 6a). The luminant rep-
resented by Hit 48, in Fig. 6b, presented the polar interac-
tion represented by a strong hydrogen bond in the residue 
Asn 121 (2.51 Å), where the ether group (R–O–R) is the 
nucleophilic acceptor. In addition, a pi-Stacking interac-
tion was observed with the residue Phe 175 (3.71 Å) and 
a halogen bond between the leu 176 residue (3.96 Å) and 
the bromine atom of the ligand. The coronaviral spike is the 
dominant viral antigen and the target of neutralizing anti-
bodies. Finally, the linker used as a reference standard, the 
BLA, in the redocking study showed strongly three hydrogen 
bonds with the residues Ser 94 (2.54 Å), Asn 121 (2.29 Å), 
and Ser 205 (2.56 Å), with hydrophobic interactions in the 
residues Ile 101, Trp 104, Val 126, Phe 175, Met 177, and 
Leu 226, shown in Fig. 6c. Previous studies have shown that 
substitutions of Spike residues closely involved in ligand 
binding as His 207, Arg 190, and Asn 121, have Influenced 
in inhibition mechanism of the protein (Kim et al. 2021; 
Kumar et al. 2020; Rosa et al. 2021; Wagener et al. 2020). 
Additional data are presented in more detail in Table 2.

MM/GBSA calculations

After balancing the production dynamics, the sampling of 
the steps was performed from 5 to 5, following the sam-
pling interval of 10 ns of the methodology for estimating 
the free energy variation using multiple trajectories. MM/
GBSA calculations were performed in an implicit solvent 
field simulating a 0.15 M saline solution.

Although formally, the calculation of the free energy vari-
ation in this technique goes through the analysis of entropy 
from the normal modes of the system Eqs. 7, 8, and 9.

Calculations of normal modes are pretty time-consuming 
and computationally costly. This type ultimately makes vir-
tual screening calculations, which are the focus of this study, 
not entirely impossible. However, there is a more impor-
tant reason. It has been shown that entropy calculations 
decrease the correlation of predicted affinity values with 
experimental values when the analysis is done with a few 
microstates sampled from the trajectories (Hou et al. 2011; 
Rastelli et al. 2009). Because calculation time limitations 

(7)
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)

−
(
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are essential, including these calculations in the procedure 
is not encouraged.

MM/GBSA energies are considered a way to estimate free 
energy for in silico study of ligands in protein complexes 
(Genheden and Ryde 2015). They are typically based on MD 
simulations and bring accuracy between empirical punctua-
tion and strict alchemical disturbance (Chen et al. 2018). As 
in conformational entropy, it is tough to obtain a concurrent 
value. Mainly, if ligands do not have any binding-induced 
structural changes in MD simulations, conformational 
entropy is generally ignored to calculate by standard mode 
analysis (Wang et al. 2018). MolAICal, therefore, provided 
a quick way to evaluate bonding free energy without ligand 
entropy based on the three-trajectory approach. Where, 
once again, the native ligand BLA/S-glycoprotein complex 
proved to be the best result, which continued to be the most 
stable in the study system, based on its free energy, with 
− 28.79 kcal/mol concerning the other ligand under study, 
Hit 48, which presented a free energy − 20.91 kcal/mol, 
and Hit 250, with free energy estimative − 15.50 kcal/mol. 
Therefore, the interaction energy decomposition technique 
revealed the contribution of the ligand–receptor complex and 
its final energy in Table 3.

Table 2  Comparative table of distances between residues/ligands

HB (hydrophobic interactions: alkyl and π-alkyl), HB (hydrogen 
bond), SB (salt bridge), HaB (halogen bond), PS (π-stacking)

Residues protein 
of S-glycoprotein

Molecular docking results

Distance of ligands (Å)

BLA Hit 250 Hit 48 Der 4

Ser 94 2.54 (HB) 2.74 (HB) – 2.69 (HB)
Ile 101 3.84 (HI) 2.10 (HB) 3.54 (HI)
Gly 103 – – – 2.92 (HB)
Trp 104 3.87 (HI)

2.85 (HI)
– – 3.62 (HI)

Ile 119 – 3.77 (HI) – 3.58 (HI)
Asn 121 2.29 (HB) – 3.65 (HI)

2.51 (HB)
2.16 (HB)

Val 126 3.27 (HI) – 3.41 (HI) 3.78 (HI)
Ile 128 – – – 3.88 (HI)
Tyr 170 – 2.28 (HB) – –
Phe 175 3.79 (HI) – 3.71 (PS) ––
Leu 176 – – 3.96 (HaB) –
Met 177 3.78 (HI) – – –
Arg 190 5.05 (SB) 3.04 (HB) – 2.79 (HB)
Phe 192 – 3.94 (HI)

3.78 (HI)
3.77 (HI) 3.73 (HI)

Ile 203 – – – 3.84 (HI)
Ser 205 2.56 (HB) – – –
His 207 4.36 (SB) – – 2.73 (HB)
Leu 226 3.30 (HI) 3.79 (HI) – 3.63 (HI)
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Molecular dynamics

RMSD analysis

After the analysis of the energy values, other important 
parameters to investigate the quality of the molecular 
dynamics are root mean square deviation (RMSD) of protein 
(backbone) to Hit 250, Hit 48, and BLA. The RMSD values 
obtained by the protein backbone along the MDs show all 
values between 0.76 Å and 2.10 Å. In the MD with the Hit 
250 ligand, the profile is closer to 0.8 Å. Soon after the 
MD of Hit 48 demonstrated similar behavior to the previous 
one, but only reached a more stable configuration when it 
arrived at 82 ns, with an average RMSD of 1.0 Å. Already 
finalizing, the RMSD values of MD with the reference linker 
BLA showed a situation of suitability to the most favorable 
system during the trajectory of 100 ns, with an average value 
of 1.9 Å, as shown in Fig. 7.

RMSF analysis

The root mean square fluctuation (RMSF) is a parameter 
related to the flexibility of individual protein residues, 
serving to qualitatively assess the progression of molecu-
lar dynamics (Dong et al. 2018). Considering Fig. 8, a 
similar profile of RMSF values is observed regardless of 

the ligand in contact. However, it should be noted that 
the native leach er has obtained greater fluctuations in the 
residues Gln 52, Phe 135, and Gly 232, with values above 
2.0 Å.

H‑bonds

The number of hydrogen bonds (H-Bond) found during 
MDs, considering the maximum value of 3.3 Å, is shown in 
Fig. 9 and Table 4. About MD with reference ligand, BLA 
presents up to four hydrogen bonds per frame and several 
frames with three hydrogen bonds. The Hit 250 has only 
ten frames with three hydrogen bonds and several frames 
with two hydrogen bonds during molecular dynamics. And 
finally, MD with Hit 48 presents a smaller number of frames 
with two hydrogen bonds and several frames with one hydro-
gen bond. Therefore, it can be inferred that so much of the 
BLA as Hit 250 tend to interact more with Spike glycopro-
tein, making it a possible efficient antiviral against this virus. 
The interaction tendency between glycoprotein and Hit 250 
can be confirmed by maintaining the binding site along the 
MD, evidenced by the hydrogen bonds detected in the three 
systems.

In the residues identified with H-bonds along the molecu-
lar dynamics, in Table 2, the recurrence of residues Asn 121, 
Arg 190, and His 207 is observed, as discussed previously 
in the docking results, a ligand binding in those residues are 

Table 3  Free energy estimation 
data of Hit 48, Hit 250, and 
BLA S-glycoprotein

Complex ∆E (electro-
static) + ∆G (sol)

∆E (VDW) ∆G binding 
(Kcal/mol)

Standard deviation

BLA/S-Glycoprotein 24.01 − 52.80 − 28.79  ± 0.0262
Hit 48/S-Glycoprotein 15.51 − 36.42 − 20.91  ± 0.0180
Hit 250/S-Glycoprotein 31.20 − 45.69 − 14.50  ± 0.0260

Fig. 7  RMSD profile value obtained for S-glycoprotein with BLA 
(black line), Hit 250 (green line), and Hit 48 (red line)

Fig. 8  RMSF profile value obtained for S-glycoprotein with BLA 
(black line), MD Hit 250 (green line), and Hit 48 (red line)



3 Biotech (2023) 13:301 

1 3

Page 11 of 19 301

associated with inhibition of the protein, thus demonstrating 
an interaction potential of both Hit 48 and Hit 250, like the 
interaction between S-glycoprotein and BLA.

Solvent accessible surface area

Solvent accessible surface area (SASA) is defined as the 
surface area of a protein that interacts with its solvent mol-
ecules (Mazola et al. 2015). Average SASA values for free 
BLA, Hit 250, and Hit 48 complexes were monitored dur-
ing 100 ns MD simulations. The traces for the SASA in 
Fig. 10 show a steep increase within 10 ns indicating struc-
tural relaxation. The average SASA values for free BLA, 
Hit 250, and Hit 48 complexes were found to be 16,611 Å2, 
16,249 Å2, and 16,223 Å2, respectively. There was no major 
change observed in the SASA values due to ligand binding. 
After this time, the values fluctuate around a constant value. 
We, thus, assume that the simulation times of 100 ns were 
sufficient for sampling equilibrated systems. The highest 
SASA is found for the S-glycoprotein molecules with the 
stabilizing monovalent ions. The run without monovalent 
ions shows a large fluctuation, whereas the systems with 
higher ion concentrations have smaller areas and may be 
shrinking under the influence of the surface charge, yielding 
more compact protein structures. Further inspection of the 
data demonstrates that the fluctuation or ‘breathing’ of the 

relaxed surface is mainly due to a fluctuation of the SASA 
of the flexible C-terminal area.

In silico ADMET study

Evaluation of druglikeness

For Wager et al. (2016), low lipophilic compounds (logP < 3) 
that are larger and more polar than commercially available 
CNS active substances (TPSA > 75 Å2) reside in a phys-
icochemical space where in vivo toxicity is unlikely. Com-
pounds with high lipophilicity and low polarity tend to be 
more toxic than safe, in addition to showing unfavorable 
pharmacodynamic interactions against biological targets 
(Hughes et al. 2008).

In the druglikeness radar of Fig. 11, it is possible to notice 
that the three compounds, that is, Hit 48 (Fig. 11a), Hit 250 
(Fig. 11b), and the BLA ligand (Fig. 11c) move outside an 
ideal spectrum of mediated lipophilicity by logP, with val-
ues greater than 3.0 (Table 5). Compound Hit 48 showed 
low topological polarity (TPSA = 58.56 Å2) which, when 
combined with high lipophilicity, classified it as possibly 
CNS permeant toxicant, according to the Pfizer filter that 
combines these two attributes (Table 5).

It is curious to note that both Hit 48 and Hit 250 failed 
the GSK filter druglikeness criteria for having MW > 400 g/

Fig. 9  Number of hydrogen bonds (H-Bond) found between S-glyco-
protein with BLA (black line), Hit 48 (red line), and Hit 250 (green 
line)

Table 4  Residues of the 
S-glycoprotein that showed 
H-bond along the MDs

System H-Bond

MD with BLA Ser 94, Glu 96, Asn 99, Ile 101, Asn 121, Tyr 170, 
Ser 172, Gln 173, Asp 178, Arg 190, and His 
207

MD with Hit 250 Ser 94, Glu 96, Ile 101, Asn 121, Gln 173, and 
Arg 190

MD with Hit 48 Gly 103, Ser 205, His 207, and Leu 226

Fig. 10  Solvent accessible surface area (SASA) of the S-glycoprotein 
from the MD simulations: Hit 250 (green line), Hit 48 (red line), and 
BLA (Black line), all stabilizing monovalent ions
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Fig. 11  Relationship between structure and druglikeness of Hit 48 (a), Hit 250 (b) and BLA (c), prediction of balance between absorption and 
clearance (d) and pharmacokinetic physical–chemical space (e)
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mol, an indication that these substances may have limited 
pharmacokinetics, such attributes include solubility, absorp-
tion, and stability metabolism (Gleeson 2008). However, it 
was possible to observe that Hit 250 passed the safety and 
pharmacodynamic criteria of the Pfizer rule, as it occupies 
a physical–chemical space where compounds with TPSA 
reside within the ideality spectrum (Fig. 11b).

Evaluation of MCE‑18

In recent years, the molecules claimed for patents follow 
a physicochemical trend that deviates from the medicinal 
chemistry spectrum of the commonly used “rule of five”. 
This chemical singularity focuses on how the fraction of sp3 
hydrous carbons is distributed in aliphatic structures, chiral 
centers, and aromatic and non-aromatic cyclic structures. In 
this perspective, molecules registered in patents have been 
shown to be slightly more lipophilic and more polar than 
commercially available therapeutics (Ivanenkov et al. 2019; 
Wager et al. 2010a, b).

In this test, it was possible to observe that QED val-
ues lower than 0.5 (on a scale ranging from 0.0 to 1.0) are 
directly related to the large molecular size of the ligands 
(MW > 400  g/mol), and are reduced as that the TPSA 
increases to 171.63 Å2 (BLA), depending on the number of 
HBA atoms (Table 5). However, the structural complexity 
involving the Hit 250 and BLA ligands, especially due to 
the total of four aromatic (or heteroaromatic) rings, includ-
ing the total of nine atoms in the 2,3-dihydro-1H-isoindole-
1,3-dione of the BLA complexed ligand, which yielded the 
ligands an MCE-18 score of 54.0 and 60.0, respectively. 
This finding suggests that the ligands present an excellent 
degree of similarity with the structural complexity of the 
compounds registered in patents in recent years (Table 5).

Predicted pharmacokinetic descriptors

The oral bioavailability of a drug concerns the alignment 
between the pharmacological portion absorbed as a function 
of a low rate of hepatic clearance. Pharmacological data-
bases, such as Pfizer, Inc., estimate that a ligand exhibits 

Table 5  Physicochemical 
properties and quantitative 
estimates of druglikeness

In highlight, properties favorable to binders
a Pfizer’s rule relates logP and TPSA attributes to the physical–chemical space of the ligands: low logP and 
high TPSA (logP < 3 and TPSA > 75 Å2), low toxic risk; high logP and low TPSA (logP > 3 and TPSA < 75 
Å2), toxic risk

Property Hit 48 Hit 250 BLA

Physicochemical properties
 logP 3.84 3.98 5.46
 logD 3.14 1.24 2.08
 MW 488.94 g/mol 496.11 g/mol 582.25 g/mol
 HBA 4 9 10
 HBD 2 3 6
 TPSA 58.56 Å2 137.0 Å2 171.63 Å2

 nRot 7 9 11
 nRing 2 4 4
 MaxRing 6 9 5
 nHet 6 11 10
 fChar 0 0 0
 nRig 13 26 29
 nStereo 1 0 0

Medicinal chemistry
 Pfizer  rulea 2 Alerts; logP > 3 

and TPSA < 75 
Å2; (–)

1 alert; logP > 3; (+) 1 alert; logP > 3; (+)

 GSK filter 1 Alert; 
MW > 400 g/
mol; (−)

1 Alert; MW > 400 g/mol; (−) 2 Alerts; logP > 4 and 
MW > 400 g/mol; (−)

 Golden Triangle 0 alert; (+) 0 alert; (+) 1 alert; MW > 500 g/mol; (−)
 QED 0.468 0.305 0.202
 Fsp3 0.23 0.12 0.21
 MCE-18 26.0 54.0 60.0
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high passive permeability when its in vitro Papp MDCK 
value is greater than 10 ×  10–6 cm/s, which results in high 
oral bioavailability as its clearance rate decreases (van de 
Waterbeemd and Gifford 2003; Wager et al. 2010a, b). For 
Johnson et al. (2009), these descriptors are closely related 
to the buffer lipophilicity (logD) at pH 7.4, limited to small 
compounds that are not very lipophilic, that is, that occupy a 
physical–chemical space formed by − 2 < logD at pH 7.4 ≤ 5 
and 200 < MW ≤ 500 g/mol.

In the graph in Fig. 11d, it is possible to observe that 
the three ligands are outside the ideality spectrum for good 
intestinal permeability. This empirical decision corroborates 
the estimated Papp MDCK descriptors, where values equal to 
and less than 4.7 ×  10–8 cm/s suggest a low passive perme-
ability (Table 6). However, the substances showed low sus-
ceptibility to being Pgp substrates, as an indication of good 
intestinal absorption, with HIA values > 90% for compounds 
Hit 48 and Hit 250 (Table 6).

In addition, it is possible to note the contribution of the 
high lipophilicity in the distribution of the compounds in 
the blood plasma and in the CNS. Compounds of greater 
lipophilicity can bind strongly with serum proteins and have 
their tissue distribution affected (Dyabina et al. 2016; Pires 
et al. 2018). In this study, it was possible to observe that the 
compounds presented PPB < 90%, which allows a consider-
able distribution in biological tissues. At the same time, the 
low polarity of Hit 48 makes it more susceptible to distribu-
tion in the CNS, corroborating the permeability coefficient 
in the BBB in the order of 2.969, which represents a ratio of 
the concentration of the compound in the brain by its distri-
bution in the blood (C[Brain]/C[Blood]) (Table 6).

Metabolism and oral acute toxicity

Predicting the sites of metabolism allows us to estimate 
the effects of drug biotransformation on hepatic clearance 
and adverse effects on the human liver. Empirical analysis 
suggests that compounds with MW around 500 g/mol are 
metabolically unstable, that is, they have structural frag-
ments susceptible to biotransformation, forming secondary 

metabolites that are more water soluble and more favorable 
to excretion. However, some biotransformations can form 
chemically reactive intermediates, such as epoxidation medi-
ated by aromatic hydroxylation (Hughes et al. 2015; Johnson 
et al. 2009).

In this predictive test, the fragments are identified from a 
data library that relates the degree of sensitivity of the func-
tional groups and structural fragments to be biotransformed 
in the human liver microsome system with the degree of 
specificity of these in the molecular structure (Zheng et al. 
2009). Here, it was possible to observe, mainly, that the aro-
matic centers of the ligands do not pose a risk of hydroxyla-
tion, reducing the risk of these substances forming reactive 
secondary metabolites (Fig. 12a–c), which implies a low risk 
of human hepatotoxicity and mutagenicity (Table 6). Hit 48 
has a phase II metabolism site in its phenolic hydroxyl, sen-
sitive to conjugation reactions via UGT (UDP-glucuronosyl-
transferase), indicating that the substance is more resistant 
to phase I metabolism, with an order of  CLint,u estimated at 
1.36 mL/min/kg which may be indicative of good oral bio-
availability (Fig. 12a). However, this metabolism pathway 
seeks to optimize the excretion pathway.

A low rate of hepatic clearance implies a longer half-life 
(T1/2) for pharmacological action (van de Waterbeemd and 
Gifford 2003). This is observed when comparing the metab-
olism pathways of Hit 48 (Fig. 12a) and Hit 250 (Fig. 12b), 
where the higher incidence of metabolism sites induces a 
shorter T1/2 time to Hit 250, estimated at 0.24 h, depending 
on its highest clearance order compared to Hit 48, with an 
estimated  CLint,u value of 2.17 mL/min/kg (Fig. 12b). In the 
probability maps of Figs. 12d–f, it is possible to observe 
that the metabolism sites are within the positive contribu-
tions that reduce the acute toxicity of the Hit 48 ligands 
(Fig. 12d) and Hit 250 (Fig. 12e), where the predicted  LD50 
values of 1500 mg/kg and 1000 mg/kg indicate that they are 
compounds of toxicity class 4 (Diaza et al. 2015), which 
are compounds that require control of the administered 
oral dose. These compounds showed an order of similarity 
greater than 70% (inside the threshold) with the compounds 
deposited in the PubMed database (Borba et al. 2022).

Table 6  Predicted 
pharmacokinetic descriptors 
from consensus testing across 
PreADMET, ADMETlab, 
ProTox-II, and pkCSM 
databases

Property Hit 48 Hit 205 BLA

Papp MDCK 4.70 ×  10–8 cm/s 4.35 ×  10–9 cm/s 4.34 ×  10–9 cm/s
Pgp-sub (–) (–) (–)
HIA 95.92% 91.51% 86.78%
VD 0.76 L/kg 0.68 L/kg 0.41 L/kg
PPB 89.67% 86.55% 86.43%
BBB (C[Brain]/C[Blood]) 2.969 0.029 0.098
H-HT (–) 0.72 (–) 0.66 (–) 0.75
Mutagen (–) 0.69 (–) 0.71 (–) 0.71
LC50 Minnow 0.02 mM 0.32 mM 1.86 mM
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In addition, it is worth mentioning that Hit 250 and BLA 
binders showed the best  LC50 values for Fathead Minnow, 
where values of 0.32 mM and 1.86 mM (in logarithmic 
scale), respectively, suggest that the minimum effective dose 
does not pose a risk to a fish population tested, as an indica-
tion of the safety of oral administration in humans (Table 5).

One of the limitations of de novo drug design has been 
that they cannot identify a perfect compound for synthesis 
since some of the potential Hits generated have complex-
ity that compromises the realization of their synthesis. 

However, in return, they can identify high-quality ideas 
for future in vitro and in vivo assays. Considering the 
imperfections of automated chemical synthesis planning 
and reaction pathway design, combining AI-driven gen-
erative molecular design models with advanced synthesis 
and retrosynthesis algorithms could offer ample future 
opportunities for new molecular discoveries.

Fig. 12  Metabolism site prediction of Hit 48 (a), Hit 250 (b), and BLA (c) and fragment-based acute toxicity prediction of Hit 48 (d), Hit 250 
(e), and BLA (f)
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Conclusion

It was carried out through the innovative computer-aided 
drug design de novo, researching new drug candidates to 
treat Sars-Cov-2, more precisely, S-glycoprotein as a tar-
get. Therefore, an important role was played in develop-
ing new anti-COVID-19 drugs, which was of significant 
importance because, amid the limitation of resources, it 
accelerated the drug development process, reducing the 
time and additional costs of traditional screening. Some 
new derivatives of phenols and chromones were designed 
and studied through molecular docking, where 557 Hits 
were generated. The mode of binding of the proposed 
compounds with the target protein was evaluated, and 
the data from docking studies explained that some newly 
designed analogs had a significantly high affinity for the 
target protein compared to BLA as a reference linker.

The compound with the highest bioaffinity value was 
Hit 250, which proved to be the most potent inhibitor 
in this in silico study series with a binding energy of 
− 13.02 kcal/mol. Still, its synthetic viability was close 
to 50%, besides showing lower stability in the molecular 
dynamics analysis studies of RMSD, RMSF, and SASA. 
While another drew attention was Hit 48, with − 7.29 kcal/
mol of affinity energy, presenting better synthetic viability, 
close to 80%, and better stability in the study of molecular 
dynamics, compared to the reference drug BLA, with the 
binding affinity of − 8.1 kcal/mol. In the ADMET tests, 
Hit 250 showed greater similarity with species registered 
in patents and stands out concerning Hit 48, for occupy-
ing a physical–chemical space with a low toxic incidence 
in vivo, due to its high polarity. Therefore, it is suggested 
that these compounds can be used in clinical trials to test 
their effectiveness for social benefits as a standard for 
future projects, optimization, and research in producing 
more effective analogs.
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