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Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's 
disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins 
and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and 
progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine 
triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the 
strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent 
developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and 
compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives 
based on the genetic phenotypes.
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LOAD	� Late-onset AD
LRP-1	� Low-density lipoprotein-related protein-1
MAP2	� Microtubule-associated protein 2
MSC	� Mesenchymal stem cells
NFT	� Neurofibrillary tangles
NGF	� Nerve growth factor
NKG2D	� Natural killer group 2 member D
NMDA	� N-methyl-d-aspartate
NSC	� Neural stem cells
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gamma coactivator 1 alpha
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PSEN1	� Presenilin 1
PSEN2	� Presenilin 2
SAD	� Sporadic AD
SM	� Sphingomyelin
SORL1	� Sortilin-related receptor 1
SORLA	� Sorting-related receptor with A-type repeats
TNFα	� Tumor necrosis factor-α
TREM2	� Triggering receptor expressed on myeloid cells 

2
WES	� Whole exome sequencing
WGS	� Whole genome sequencing

Introduction

Alzheimer's disease (AD) is a neurodegenerative disease 
that is biologically defined by the presence of β-amyloid-
containing plaques and tau-containing neurofibrillary 
tangles (NFT). After years of intensive research, we have 
gained extensive knowledge of the genetic factors and their 
mechanisms in AD. Genetically, AD can be categorized as 
sporadic AD (SAD) and familial AD (FAD) based on fam-
ily history (Jia et al. 2020b). FAD accounts for 15–25% of 
total AD and has presented a useful model in studying the 
pathogenesis and trajectory of the disorder's progress (Gold-
man et al. 2011).

AD is affected by multiple genes, which can be further 
divided into pathogenic genes and risk genes. Known AD 
pathogenic genes include presenilin 1 (PSEN1), presenilin 2 
(PSEN2), and amyloid precursor protein (APP). These types 
of genes mainly cause early onset AD (EOAD), accounting 
for about 1% of all AD patients (Goate et al. 1991; Levy-
Lahad et al. 1995; Sherrington et al. 1995). Apolipoprotein E 
(APOE) ε4 is a widely confirmed risk gene for SAD, usually 
late-onset AD (LOAD), accounting for about 50% of this 
type of patients (Strittmatter et al. 1993; Coon et al. 2007). 
In SAD, an APOE ε4 allele can increase the risk of AD by 
about three times, while two APOE ε4 alleles can increase 
the risk of AD by approximately 12 times (Liu et al. 2013; 
Jia et al. 2020c). Interestingly, recent large cohort stud-
ies also found that the genetic risk effect of APOE ε4 are 

higher in FAD with unknown mutation than in SAD (Jia 
et al. 2020c).

In addition to the three major pathogenic genes and APOE 
ε4, genome-wide association studies (GWAS) have revealed 
a large number of AD susceptibility loci, while whole 
genome sequencing (WGS) and whole exome sequencing 
(WES) studies have identified many AD-associated rare 
variants. These variants are enriched in triggering recep-
tor expressed on myeloid cells 2 (TREM2), sortilin-related 
receptor 1 (SORL1), adenosine triphosphate-binding cas-
sette transporter subfamily A member 7 (ABCA7), comple-
ment receptor 1 (CR1), cluster of differentiation 33 (CD33), 
clusterin (CLU), bridging integrator 1 (BIN1), and death-
associated protein kinase 1 (DAPK1) (Li et al. 2006, 2021; 
Rogaeva et al. 2007; Beecham et al. 2009; Carrasquillo et al. 
2009; Bellenguez et al. 2022; Jack 2022). Many of them 
have been verified in FAD population. For example, the rare 
variant TREM2 G145T was present in several members of 
a family with probable AD-type dementia without the three 
known pathogenic variants (Karsak et al. 2020). Some rare 
SORL1 variants are reported in FAD pedigrees (Gomez-
Tortosa et al. 2018). In 77.3% of ABCA7 carriers' families, 
there were AD patients (Bossaerts et al. 2021).

Here, we reviewed recent advances in genetic studies 
that have contributed to the understanding of AD patho-
genesis. We summarized the genetic and molecular mech-
anisms involved such as the amyloid cascade hypothesis, 
tau-dependent pathology, synaptic dysfunction, neuro-
inflammation and oxidative stress, and lipid metabolism. We 
further compared the pathogenesis between FAD and SAD 
and reviewed preclinical and clinical studies of AD gene 
therapy. Such integration is not only helpful for understand-
ing the commonality and heterogeneity in pathogenesis, but 
also conducive to clinical diagnosis and classification, devel-
opment of gene-targeted therapies, and design of clinical 
trials based on different genetic phenotypes.

Pathogenic Genes for FAD

There are several large genetic cohort studies of FAD in the 
world (Fig. 1). FAD research is mainly concentrated in the 
United States of America (Bateman et al. 2012; Chhatwal 
et al. 2022), United Kingdom (Oxtoby et al. 2018; Weston 
et al. 2018), Colombia (Ramirez Aguilar et al. 2019; Quiroz 
et al. 2020), France (Rovelet-Lecrux et al. 2012; Zarea et al. 
2016), and China (Jia et al. 2005, 2020b; Quan et al. 2020), 
and gradually forming multi-center collaboration. The 
most representative FAD study is the Dominantly Inherited 
Alzheimer Network (DIAN) study in the United States of 
America, which found many AD genetic and diagnostic bio-
markers (Bateman et al. 2012; Chhatwal et al. 2022). The 
largest FAD cohort study is the Chinese familial Alzheimer's 



335Genetic Phenotypes of Alzheimer’s Disease: Mechanisms and Potential Therapy﻿	

1 3

Network (CFAN), aiming to recruit 40,000 subjects in FAD 
(clinicaltrials.gov registration ID: NCT03657732). From 
genetic cohort studies, three main causative genes of FAD 
including PSEN1, PSEN2, and APP, and many associated 
variants were reported. For example, PSEN1 E280A (glu-
tamic acid-to-alanine mutation at codon 280) variant was 
reported from Colombia kindred (Lopera et al. 1997), which 
further initiated the Colombia PSEN1 E280A cohort of auto-
somal dominant Alzheimer's disease (ADAD). PSEN1 V97L 
mutation was reported from Chinese families (Jia et al. 
2005), which further initiated the CFAN cohort.

APP

APP is a transmembrane protein widely expressed in the 
central nervous system and peripheral tissues. Proteolytic 
cleavage of APP generates the Aβ peptide, which aggregates 
into plaques, is one of the major hallmarks of AD (Tacken-
berg et al. 2020). Amyloid-β protein precursor (AβPP) can 
be cleaved by proteases in canonical and non-canonical path-
ways. In the canonical pathway, AβPP is cut by α-secretase, 
producing a soluble APPα peptide and α-C-terminal frag-
ment which can be further cleaved by γ-secretase, generat-
ing APP intracellular domain (AICD) and a non-pathogenic 

three kDa product (Guo et al. 2021). In non-canonical path-
way, AβPP is cut by β-secretase, producing a soluble APPβ 
peptide and β-C-terminal fragment which can be further 
cleaved by γ-secretase, generating Aβ48 or Aβ49 and AICD. 
Aβ48 or Aβ49 continued to produce Aβ45, Aβ42, Aβ38 
or Aβ46, Aβ43, and Aβ40, respectively, under the action 
of γ-secretase (Andrew et al. 2016). The anomalous pro-
cessing of APP leads to the production of Aβ40 and Aβ42 
monomers, which further oligomerize and aggregate into 
senile plaques in AD (Zou et al. 2007; Tiwari et al. 2019). 
APP V717I was the first gene mutation found to be linked 
with inherited AD, which could influence the stability of 
Aβ deposition, alter translational regulation at the mRNA 
level of this protein, or increase long Aβ secretion to foster 
amyloid deposition (Goate et al. 1991; Almqvist et al. 1993; 
Suzuki et al. 1994). Subsequent studies have identified more 
APP mutations, all of which contribute to FAD. Interest-
ingly, most of these mutations found in APP are located in 
exons 16 and 17 on chromosome 21, near the α-secretase 
cleavage site, in the central part of the Aβ peptide or near 
the γ-secretase site of the attack, giving rise to an increase 
or alteration in Aβ production (Aβ 1–42 fragment) (Theuns 
et al. 2006; Tian et al. 2010; Piaceri et al. 2013), or altera-
tion of Aβ42:40 ratio (Tian et al. 2010). The Australian APP 

Fig. 1   Major FAD cohort studies in the world. FAD research is 
mainly concentrated in the United States of America, United King-
dom, Colombia, France, and China, gradually forming a situation of 
international multicenter cooperation. DIAN: Dominantly inherited 
Alzheimer network; CFAN: Chinese familial Alzheimer's network; 

GMAJ: Genetics of Mendelian forms of young onset AD; ADAD: 
Autosomal-dominant AD. Reproduced from the map of the world, 
which was downloaded from the website (http://​bzdt.​ch.​mnr.​gov.​cn/​
index.​html), with drawing review No.: GS(2020)4401, and supervised 
by Ministry of Natural Resources of China

http://bzdt.ch.mnr.gov.cn/index.html
http://bzdt.ch.mnr.gov.cn/index.html
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L723P mutation causes local unfolding of the C-terminal 
turn of the APP transmembrane domain helix, and increases 
its accessibility to water required for cleavage of the pro-
tein backbone by γ-secretase in the ε-site, resulting in accu-
mulation of the pathogenic forms of Aβ (Bocharov et al. 
2019). The Swedish APP K670N/M671L mutation in exon 
16 occurs at the amino terminal of Aβ is proximal to the 
β-secretase cleavage site, and it increases the production of 
total Aβ through dramatically enhancing β-secretase cleav-
age of APP17 (Mullan et al. 1992; Vassar et al. 1999). Osaka 
mutation (APP E693Δ) is the deletion of codon 693 of APP 
gene, resulting in mutant Aβ lacking the 22nd glutamate, 
which accelerates Aβ oligomerization without forming amy-
loid fibrils and disrupts synaptic function to cause cognitive 
impairment in humans (Tomiyama et al. 2020).

Aβ can promote tau pathology, and its toxicity is also 
tau-dependent (Gotz et al. 2008). Aβ alone does not cause 
neurodegeneration but induces toxicity through the phos-
phorylation of wild-type tau in an N-methyl-D-aspartate 
(NMDA) receptor-dependent pathway (Tackenberg et al. 
2009). APP is involved in several neuroplasticity-signaling 
pathways, such as NMDA-protein kinase A (PKA)-cyclic 
adenosine monophosphate response element binding protein 
(CREB)-brain-derived neurotrophic factor (BDNF), reelin, 
wingless, and notch (Forero et al. 2006). Hippocampal accu-
mulation of mutant APP and Aβ is responsible for abnormal 
mitochondrial dynamics and defective biogenesis, reduced 
microtubule-associated protein 2 (MAP2), autophagy, 
mitophagy, synaptic proteins and dendritic spines, and 
changes in mitochondrial structure and function, leading 
to neuronal dysfunction and impaired hippocampal-based 
learning and memory (Manczak et al. 2018; Reddy et al. 
2018). In a novel APP knock-in mouse model (APP Swed-
ish, Arctic and Austrian), fibrillar Aβ in microglia is asso-
ciated with lipid dyshomeostasis, which is consistent with 
lysosomal dysfunction and foam cell phenotypes as well as 
profound immuno-metabolic perturbations (Xia et al. 2022). 
A rat model with three APP mutations and humanized Aβ 
sequence knocked into the rat's APP gene exhibited pathol-
ogies and disease progression resembling those in human 
patients. Specifically, Aβ plaques were deposited in relevant 
brain regions, and other mechanisms were found, including 
microglia activation and gliosis, progressive synaptic degen-
eration, tau pathology, neuronal apoptosis and necroptosis, 
brain atrophy, and AD-relevant cognitive deficits (Pang et al. 
2022).

PSEN1

PSEN1 serves as a catalytic subunit of γ-secretase complex, 
which mediates the proteolytic liberation of Aβ from AβPP. 
PSEN1 is also involved in non-proteolytic functions such 
as protein trafficking, regulation of ion channel, cholesterol 

metabolism, and homeostatic synaptic scaling (Li et al. 
2000; Pratt et al. 2011; Cho et al. 2019). PSEN1 mutation 
leads to the production of longer amyloidogenic Aβ peptides 
and increased Aβ42:40 ratio (Selkoe 2001; Fernandez et al. 
2014), causing the most aggressive form of inherited AD. 
PSEN1 mutation carriers with an earlier age of onset and 
considerable phenotypic variability show mutation-specific 
effects and a trend towards a reduced abundance of new-
born neurons, supporting a premature aging phenotype and 
altered neurogenesis (Arber et al. 2021). PSEN1 mutants 
potentiate cell cycle arrest and apoptosis, and the degree 
to which the different mutants inhibit cell cycle progres-
sion correlates with the age of onset (Janicki et al. 2000). 
PSEN1 S169del mutation altered APP processing and Aβ 
generation, and promoted senile plaque formation as well as 
learning and memory deficits in mice (Zhang et al. 2020a). 
PSEN1 V97L mutation induced self-replication of Aβ oli-
gomers (AβO) in astrocytes and triggered neuronal injury in 
mice (Wang et al. 2019).

Other pathogenic mechanisms are also reported in PSEN1 
mutation models. In the PSEN1 ΔE9 cells, the elevated cel-
lular cholesterol level contributes to the altered APP pro-
cessing by increasing APP localized in lipid rafts (Cho et al. 
2019). In primary fibroblasts from patients bearing PSEN1 
mutations, Aβ42 oligomers are recruited to lipid rafts, result-
ing in lipid peroxidation, calcium dyshomeostasis and mem-
brane permeabilization, and amyloid toxicity (Evangelisti 
et al. 2013). Primary hippocampal neurons from PSEN1 
transgenic mice exhibit increased production of Aβ peptide 
42/43 and vulnerability to excitotoxicity in a gene dosage-
dependent manner. Neurons expressing mutant PSEN1 
exhibit enhanced calcium responses to glutamate increased 
oxyradical production and mitochondrial dysfunction (Guo 
et al. 1999). PSEN1 mutations also increase oxidative stress 
and perturb calcium signaling in lymphocytes in ways that 
alter their production of inflammatory cytokines that are crit-
ical for proper immune responses (Mattson 2002; Schuessel 
et al. 2006). Inflammatory cytokines, such as tumor necrosis 
factor-α (TNFα), interleukin (IL)-1α, IL-1β, IL-1 receptor 
antagonist, and IL-6, are significantly greater in the hip-
pocampus and cerebral cortex of PSEN1 mutant mice as 
compared to wild-type mice (Lee et al. 2002).

PSEN2

PSEN2 forms the catalytic core of the γ-secretase complex, 
a function shared with its homolog PSEN1, which is ulti-
mately responsible for Aβ formation (Pizzo et al. 2020). 
Besides its enzymatic activity, PSEN2 is a multifunctional 
protein, which is specifically involved in the modulation 
of several cellular processes, such as proinflammatory 
response, mitochondrial function, ubiquilin, and autophagy 
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(Pizzo et al. 2020). AD-causing mutations shift Aβ length 
by destabilizing γ-secretase-Aβ interactions, which is funda-
mental to the disease (Szaruga et al. 2017, 2021).

PSEN2 mutations either increase Aβ production or alter 
the Aβ42/40 ratio that contributes to the development of 
AD (Loy et al. 2014; Pang et al. 2021). PSEN2 N141I muta-
tion produces an AD phenotype with a wide range of onset 
ages overlapping both EOAD and LOAD, often associated 
with seizures, rapidly progressive dementia, neurologic 
and behavioral symptoms, high penetrance and typical AD 
neuropathology (Jayadev et al. 2010; Muchnik et al. 2015). 
PSEN2 participates in maintaining the basal and cytokine-
induced expression of the innate immunity regulating 
microRNA, and its dysfunction or deficiency could result 
in disrupted innate immune homeostasis and unchecked 
proinflammatory activation (Jayadev et al. 2013; Fung et al. 
2020). AD-linked PSEN2 mutants alter multiple Ca2+ path-
ways and the functional consequences of this Ca2+ dysregu-
lation in AD pathogenesis (Greotti et al. 2019; Galla et al. 
2020). They decrease the Ca2+ content of the endoplasmic 
reticulum (ER), modulate Ca2+ shuttling between the ER 
and mitochondria, and reinforce ER-mitochondria tethering 
(Zampese et al. 2011; Rossini et al. 2021). PSEN2 knock-
out neurons show a marked reduction in ER-mitochondria 
apposition and a slight alteration in mitochondrial respira-
tion (Rossi et al. 2021). PSEN2 mutation also actions on 
autophagy, depending on its ability to partially deplete ER 
Ca2+ content and reduce cytosolic Ca2+ response upon ino-
sitol trisphosphate-linked cell stimulations (Fedeli et al. 
2019). Overexpression of PSEN2 N141I mutation causes 
cell starvation and cell death, and ubiquilin expression pro-
tects cells against starvation by modulating biogenesis and 
endoproteolysis of PSEN2 proteins (Rothenberg et al. 2010). 
PSEN2 mutation is also involved in the abnormalities of 
lipid profile, where the levels of cholesterol, low-density 
lipoprotein and triglyceride are increased, but the level of 
high-density lipoprotein is decreased (Nguyen et al. 2006).

APOE ε4 and Other Risk Genes in FAD

Over 130 AD-associated susceptibility loci have been identi-
fied by GWAS, while WGS and WES studies have identified 
AD-associated rare variants. Except for APOE, these vari-
ants are enriched in TREM2, SORL1, ABCA7, CR1, CD33, 
CLU, BIN1, and more genes, but with smaller effect size, 
lower population prevalence, or both compared with APOE 
ε4 (Li et al. 2021; Bellenguez et al. 2022; Jack 2022). Stud-
ies have identified several genes as the most plausible genes 
for FAD, including TREM2, SORL1, and ABCA7 (Campion 
et al. 2019; Scheltens et al. 2021).

APOE

APOE is a lipoprotein that is expressed in the brain, liver, 
and myeloid cells, and it is involved in cholesterol and lipid 
transportation, neuronal growth, and immune-regulation. 
Three different alleles of APOE encode three isoforms, 
including APOE ε2, APOE ε3, and APOE ε4 (Poirier et al. 
1993). Although the three isoforms differ by only two amino 
acids, the structure and function of APOE isoforms are sig-
nificantly altered (Neuner et al. 2020). The APOE ε4 allele 
is the strongest genetic risk factor for AD. One copy of the 
ε4 allele increases the risk of AD by two to six times, and 
the presence of two copies increases the risk by 7.2 to 21.8 
times (Genin et al. 2011; Jia et al. 2020c; Qin et al. 2021). It 
is widely accepted that carrying the APOE ε4 allele reduces 
the age of onset by about 12 years (Corder et al. 1993; Belloy 
et al. 2019). Since its identification, APOE ε4 allele has been 
regarded as a risk factor for SAD instead of FAD, because 
it is neither necessary nor sufficient to cause AD (Cacace 
et al. 2016), and its inheritance does not follow an autosomal 
dominant pattern such as APP, PSEN1, and PSEN2 muta-
tions (van Duijn et al. 1994; Frisoni et al. 2022). However, 
studies indicate that APOE ε4 also plays an important role 
in FAD. Actually, APOE ε4 was first identified and shown 
to be associated with the increased risk of AD in late-onset 
FAD, and then association studies in cohorts identified it as a 
major genetic risk factor for late-onset SAD (Pericak-Vance 
et al. 1991; Corder et al. 1993; Strittmatter et al. 1993). Sub-
sequently, a study demonstrated a significant association 
between APOE ε4 and EOAD which is modified by a fam-
ily history of dementia. Among patients, the APOE ε4 allele 
frequency was 1.6 times higher in those with positive family 
history than in those without (van Duijn et al. 1994). In spite 
of this, they think the APOE ε4 allele cannot fully explain 
familial aggregation of EOAD as among APOE ε4 carriers 
as well as non-carriers the risk of EOAD increased signifi-
cantly for those with a positive family history of dementia 
(van Duijn et al. 1994).

However, a recent study in a cohort of 404 Chinese pedi-
grees with FAD showed different results. They found that 
among patients without PSENs/APP mutations, 44.31% car-
ried one APOE ε4 allele, while 14.85% carried two APOE 
ε4 alleles (Jia et al. 2020b). These percentages were much 
higher than those in SAD patients. Furthermore, patients 
with two ε4 alleles are more likely to develop FAD than 
those with a single ε4 allele and other subtypes of AD, indi-
cating that increased APOE ε4 gene dosage may promote 
the development of FAD (Jia et al. 2020c). This phenom-
enon called the APOE ε4 diploid enhancement of familial 
aggregation has been reported in other studies, suggesting 
that APOE ε4 plays an important role in familial aggregation 
(Martinez et al. 1998; Huang et al. 2004). These results urge 
a reappraisal of the impact of APOE ε4 in FAD. In addition, 
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some studies in FAD suggest that APOE ε4 influences the 
age at which AD occurs, where onset age decreases in pres-
ence of the ε4 allele (Velez et al. 2016; Reyes-Dumeyer et al. 
2022). Another study showed that at the age of 85, the life-
time risk of AD without reference to APOE genotype was 
11% to 14% for male and female, respectively, while the risk 
ranged from 51% to 60% for APOE ε4/ε4 carriers, and from 
23% to 30% for APOE ε3/ε4 carriers, which is consistent 
with semi-dominant inheritance of a moderately penetrant 
gene (Genin et al. 2011).

APOE ε4 negatively impacts a plethora of biological 
processes associated with AD in human patients. Namely, 
APOE ε4 accelerates neurodegeneration and cognitive 
deficits; increases Aβ deposition by promoting its produc-
tion and fibrillization and impairing degradation/clearance 
pathways; increases the accumulation of tau pathology by 
increasing its phosphorylation and fibrillization, and acceler-
ating its spread; amplifies gliosis and inflammation by exac-
erbating neuroinflammatory response, impairing astrocytes 
ability to maintain synapses, increasing neurons phagocy-
tosis and decreasing toxic proteins removal; disrupts net-
work activity and functional connectivity within or between 
brain regions; and reduces central nervous system glucose 
metabolism (Koutsodendris et al. 2022). Other pathogenic 
mechanisms include lipid metabolism, neuronal signaling, 
mitochondrial function, and blood–brain barrier (Long 
et al. 2019; Serrano-Pozo et al. 2021; Jackson et al. 2022; 
Koutsodendris et al. 2022; Martens et al. 2022). It is pos-
sible that APOE ε4-induced detrimental effects could work 
independently or in concert with one another. Of note, the 
precise mechanism by which APOE ε4 increases AD risk 
remains inconclusive, so further investigation of the APOE 
gene is critical for developing therapeutics (Koutsodendris 
et al. 2022).

TREM2

TREM2 is a single-pass transmembrane receptor of the 
immunoglobulin superfamily that was initially identified in 
monocyte-derived dendritic cells and mouse macrophages 
(Ulland et al. 2018). TREM2 is a receptor for Aβ that medi-
ates microglial function, including proliferation, survival, 
clustering, and phagocytosis (Ulland et al. 2017; Zhao et al. 
2018). It is essential for microglia-mediated synaptic refine-
ment during the early stages of brain development (Filipello 
et al. 2018). TREM2 promotes the optimal microglial func-
tion required to attenuate AD progression, enabling micro-
glial progression to a fully mature disease-associated micro-
glia profile and ultimately sustaining the microglial response 
to Aβ plaque-induced pathology (Ulland et al. 2018).

The minor allele frequency of R47H in the TREM2 
gene was much lower while the effect size was as high 
as APOE ε4 (Guerreiro et al. 2013; Jonsson et al. 2013). 

The association of R47H with elevated LOAD risk was 
successfully replicated in European-American, Spanish, 
French-Caucasian, North American-Caucasian and African-
American populations, but failed in Han Chinese population 
(Carmona et al. 2018). In TREM2 R47H carriers, the role 
of TREM2 receptor in the microglial clearance of aggrega-
tion-prone proteins is compromised (Korvatska et al. 2015). 
TREM2 R47H mutation AD also demonstrates upregulation 
of interferon type I response and pro-inflammatory cytokines 
accompanied by induction of natural killer group 2 mem-
ber D (NKG2D) stress ligands (Korvatska et al. 2020). It 
induces and exacerbates tau-mediated spatial memory defi-
cits in female mice (Sayed et al. 2021). Furthermore, tran-
scriptomic changes from these mice had substantial over-
laps with TREM2 R47H microglia in human AD brains, 
including robust increases in proinflammatory cytokines, 
activation of AKT signaling, and elevation of a subset of 
disease-associated microglia signatures (Sayed et al. 2021). 
In a family with probable AD-type dementia without the 
three known pathogenic variants, another rare variant 
TREM2 G145T was present in severely affected, putatively 
affected, and unaffected members, suggesting incomplete 
penetrance and variable age of onset. This variant led to 
intrinsically disordered region shortening and structural 
changes of TREM2, resulting in an impairment of cellular 
responses upon receptor activation (Karsak et al. 2020). The 
absence of TREM2 resulted in repetitive behavior and altered 
sociability in mice, impaired synapse elimination, enhanced 
excitatory neurotransmission, and reduced long-range func-
tional connectivity (Filipello et al. 2018). Deleting TREM2 
exacerbated tau accumulation and spreading, and promoted 
brain atrophy only if Aβ pathology is present, indicating that 
TREM2 may slow AD progression and reduce tau-driven 
neurodegeneration by restricting the degree to which Aβ 
facilitates the spreading of pathogenic tau (Lee et al. 2021).

SORL1

The SORL1 gene is a regulator of endosomal traffic and 
recycling in human neurons. SORL1 encodes sorting-
related receptor with A-type repeats (SORLA), a key pro-
tein involved in APP processing and the secretion of Aβ 
peptide (Campion et  al. 2019). Some rare SORL1 vari-
ants are reported in FAD pedigrees, supporting the puta-
tive autosomal dominant inheritance and cause of EOAD 
(Gomez-Tortosa et al. 2018). These variants include SORL1 
T588I change, T2134 alteration, Trp848Ter, Gly1871Val, 
Glu270Lys, Gly852Ala, Arg1702Met, Asn1809Ser, 
Asp2065Val, Ala2173Thr, a splice-site variant (chromo-
some position 121,466,486 G > A), Arg1303Cys, c.3050-
2A > G, c.5195G > C, V1482fs (Pottier et al. 2012; Thon-
berg et al. 2017). Depletion of SORL1 significantly impacts 
the endosomal recycling pathway in neurons for APP 



339Genetic Phenotypes of Alzheimer’s Disease: Mechanisms and Potential Therapy﻿	

1 3

and glutamate receptor subunit α-Amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (GLUA1) at the level 
of the recycling endosome and trafficking to the cell sur-
face, conversely, increased SORL1 expression enhances 
endosomal recycling for APP and GLUA1 (Mishra et al. 
2022b). Truncating mutation of SORL1 results in mitochon-
drial dysfunction and enlarged endosomes in human neu-
rons due to SORL1 haploinsufficiency, while complete loss 
of SORL1 leads to additional defects in lysosome function 
and autophagy (Barthelson et al. 2020; Hung et al. 2021). 
A study of cortices and hippocampus of SORL1-deficient 
mice showed increased synapsin 1 and 2, however, the spe-
cific role of SORL1 in synaptic function in FAD remains 
unclear (Hartl et al. 2016; Perdigao et al. 2020). There are 
also LOAD cases with rare SORL1 variants, such as SORL1 
A528T, T947M, and A674S. Functionally, the variants 
impair SORL1 protein function and weaken its interaction 
with full-length APP, altering levels of Aβ and interfering 
with APP trafficking (Cuccaro et al. 2016; Louwersheimer 
et al. 2017).

ABCA7

There were AD patients in 77.3% of the families of ABCA7 
carriers, suggesting a positive family history of the disease 
(Bossaerts et al. 2021). In a Belgian AD cohort, 22 affected 
members carried an ABCA7 E709fs. All carriers except 
one presented with memory complaints (Van den Bossche 
et al. 2016). Two rare ABCA7 variants (rs143718918 and 
rs538591288) were identified in two independent German 
AD families, respectively. The rs143718918 variant causes 
a missense mutation, and the rs538591288 deletion causes 
a frameshift mutation of ABCA7 (May et al. 2018). ABCA7 
heterozygous variant c.3706C > T p.(Avg 1236Cys) was 
found in seven affected members in a Saudi family, which 
is likely pathogenic because of the presenting complex 
neurological disease due to decreased clearance of Aβ and 
α-synuclein (Algahtani et al. 2020). Missense variants in 
ABCA7 (P143S and A1507T) were significantly associ-
ated with FAD when compared with the East Asian con-
trols in the ExAC database (Zhang et al. 2020b). ABCA7 
rs376824416 3’-UTR splice was identified in four siblings of 
one family in a non-Hispanic White and African-American 
cohort, which was nominally associated with LOAD (Kunkle 
et al. 2017). A missense mutation in ABCA7 G1820S co-
segregated with AD in one pedigree, which induced protein 
mislocalization and resulted in a lack of functional protein 
at the plasma membrane (Bossaerts et al. 2022).

ABCA7 belongs to the “A” subfamily of the adenosine 
triphosphate-binding cassette transporters. ABCA7 defi-
ciency results in accelerated Aβ production, likely by facili-
tating endocytosis and/or processing of APP (Aikawa et al. 
2018). While ABCA7 has been shown to mediate phagocytic 

activity in macrophages, it is also involved in the microglial 
Aβ clearance pathway (Abe-Dohmae et al. 2021). ABCA7 
loss of function may contribute to AD pathogenesis by 
altering proper microglial responses to acute inflammatory 
challenges during the development of amyloid pathology 
(Aikawa et al. 2019). ABCA7 also regulates brain fatty 
acid metabolism during lipopolysaccharide-induced acute 
inflammation (Aikawa et al. 2021). ABCA7-deficient mice's 
brain had significantly lower levels of several sphingomyelin 
(SM) species with long-chain fatty acids, and anomalies in 
synaptic plasticity in the synapse of the lateral entorhinal 
cortex, that were rescued by extracellular SM supplementa-
tion (Iqbal et al. 2022).

Table 1 summarized the mechanisms of the major patho-
genic and risk genes for AD.

Other Risk Genes

The confirmed genetic risk variants from SAD showed 
enrichment in FAD as well, but the risk scores were not 
statistically significant probably due to the small sample size 
(Reyes-Dumeyer et al. 2022). Some rare protein-damaging 
variants in TREM2, SORL1 and ABCA7 do have moderate-
to-high effect, and cause FAD in an autosomal dominant 
nature, as described above, but most of them were present 
as singletons (Campion et al. 2019; Scheltens et al. 2021). 
There is disagreement about whether these loci reached 
genome-wide significance in association with AD, due 
to the differences in the criteria and number of subjects 
included, different analysis methods and research strategies 
(Campion et al. 2019; Scheltens et al. 2021; Reyes-Dumeyer 
et al. 2022). Functional annotation of these risk loci indi-
cates that, next to Aβ metabolism, the modulation of the 
immune response, cholesterol, lipid dysfunction, endocy-
tosis, and vascular factors play a role in the development of 
AD (Di Marco et al. 2015; Van Cauwenberghe et al. 2016; 
Naj et al. 2017; Bennett et al. 2018; Verheijen et al. 2018). 
The exact functional consequences of additional missense 
variants as well as corresponding levels of AD risk remain 
to be determined.

Mechanisms of FAD vs. SAD

In general, FAD and SAD share common mechanisms, such 
as toxicity of Aβ and hyperphosphorylation of tau, oxida-
tive stress, neuroinflammation, and autophagy dysfunction 
(Wang et al. 2014; Manoharan et al. 2016; Kodamullil et al. 
2017; Li et al. 2017; Moloudizargari et al. 2017; Sawikr 
et al. 2017; Tönnies et al. 2017; Wu et al. 2017; Chen 2018; 
Kaur et al. 2019; Lu et al. 2019; Paroni et al. 2019). The 
most common mechanism is about Aβ. SAD and FAD both 
exhibit abundant deposition of Aβ peptides within brain 
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cells, the extracellular space of the brain parenchyma, and 
the walls of the cerebral vasculature (Roher et al. 2016). 
Interestingly, AβPP levels in both PSEN-FAD and SAD 
remained within the limits of normal confidence estab-
lished by non-demented, age-matched individuals (Roher 
et al. 2013). A study revealed that perturbations of intraneu-
ronal signaling pathways comprise a common mechanistic 
denominator in both FAD and SAD, and such alterations 
lead to increases in AβO formation and phosphorylation of 
tau (Van Dooren et al. 2014). In addition, biomarker changes 
for FAD, in many but not all cases, appear to be similar to 
those for SAD (Lista et al. 2015).

Although sharing some common mechanisms, there are 
also differences between FAD and SAD. The familial form 
is due to mutations in pathogenic genes, while many genetic 
and environmental factors as well as unknown factors may 
contribute to determining the SAD form (Frisoni et  al. 
2022). FAD patients usually have an earlier age of onset and 
longer course than SAD patients (Armstrong 2014). FAD 
has more severe Aβ load and tau pathology, an earlier and 
quicker development of NFT, faster neuronal demise, and a 
diverse spectrum of distinctive neuropathological findings 
in the gray matter, including unusual 'cotton wool' amyloid 
plaques, Lewy bodies, Pick bodies, and ectopic neurons as 
well as white matter changes with atypical clusters of amy-
loid plaques and a variable degree of microhemorrhages 
(Gomez-Isla et al. 1999; Maarouf et al. 2008; Frisoni et al. 
2022). Other co-morbidities like cerebrovascular disease, 
argyrophilic grain disease and hippocampal sclerosis were 
present in SAD but not in FAD (Cairns et al. 2015). In FAD, 
Aβ deposits are linked to increased synthesis or overproduc-
tion of Aβ peptides, while in SAD, Aβ accumulation may 
be the result of chronic AβPP/Aβ overproduction and lim-
ited degradation/clearance (Meraz-Rios et al. 2014; Roher 
et al. 2016). GWAS in SAD population showed that most of 
the risk genes affected the production and clearance of Aβ 
(Bertram et al. 2007). Increased Aβ42/43 production does 
not occur in most SAD cases (Ray et al. 1998). A study 
revealed that Notch1, Erb-B4, neurexin, neurofilament-L, 
neurofilament-M, α-tubulin, β-tubulin, dynein, and tau were 
substantially decreased in PSEN-FAD relative to SAD, while 
glial fibrillary acidic protein and neuroligin were increased 
(Roher et al. 2013). Equating SAD and PSEN-FAD only on 
the bases of their amyloid and NFT deposits hampered a 
better understanding of their pathogenesis and pathophysi-
ology (Roher et al. 2016). Another study found that type 
I filaments were mostly in the brains of individuals with 
SAD, and type II filaments were found in individuals with 
FAD and other conditions (Yang et al. 2022). In FAD, the 
lifetime risk of dementia is very high, nearly 100% (Bate-
man et al. 2011), while in SAD, the percentage is lower, 
about 22%–95% in APOE ε4-related AD and 7%–35% in 
APOE ε4-unrelated AD (Genin et al. 2011; Reiman et al. Ta
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2020). More differentiating mechanisms should be studied 
in the future.

AD Gene Therapy

Based on different genetic phenotypes of AD, vast avenues 
for gene therapy interventions are opened, aiming to tackle 
the disease at its source, mostly a faulty DNA/gene/pro-
tein, to repair it and allow the cells to fix the problem. Gene 
therapy involves inserting new genetic material into living 
cells using viruses. A deep understanding of the neuropa-
thology of AD has also led to the development of numerous 
viral-mediated gene-transfer approaches (Khan et al. 2020; 
Mendell et al. 2021).

Preclinical Studies of AD Gene Therapy

In rodent lesion models for AD, human neural stem cells 
(NSC) were used in place of fibroblasts to deliver nerve 
growth factor (NGF), which improved cognitive function 
(Wu et al. 2008; Lee et al. 2012). NSC's BDNF basal pro-
duction and genetically modified NSC also showed efficacy 
in AD transgenic mouse models (Blurton-Jones et al. 2009; 
Wu et al. 2016). Fibroblast growth factor2 (FGF2) gene 
delivery via adeno-associated viruses serotype 2/1 hybrid 
(AAV2/1) could enhance neurogenesis and hippocampal Aβ 
clearance in AD mouse model, putting forward its usage as 
an alternative in AD therapy (Kiyota et al. 2011). Modified 
NSC-producing neprilysin led to improvement in synaptic 
density, and alleviated AD pathology in transgenic mice 
(Blurton-Jones et al. 2014). Mesenchymal stem cells (MSC) 
transplantation and miRNA-937 overexpression in MSC 
also showed efficacy on cognitive capabilities in AD mouse 
models (Tanna et al. 2014; Liu et al. 2015; Naaldijk et al. 
2017; Parambi et al. 2022). In a recent preclinical study, by 
deleting a gene called Bax in FAD mice, the survival rate of 
stem cells was increased, leading to more neurons mature in 
hippocampus, such targeted augmentation of neurogenesis 
restored new neurons number in the engram, the dendritic 
spine density and the transcription signature ultimately led 
to the rescue of memory (Mishra et al. 2022a).

In addition, one preclinical study showed that peripheral 
administration of antisense oligonucleotides (ASO) target-
ing AβPP reversed AβPP and low-density lipoprotein-related 
protein-1 (LRP-1) overexpression in the aged SAMP8 mouse 
of AD (Erickson et al. 2012). Treatment of AD mice with a 
single dose of ASO that increases exon 19 splicing corrected 
APOE receptor 2 splicing for up to six months and improved 
synaptic function and learning and memory (Hinrich et al. 
2016). Using an ASO to reduce APOE expression in the 
brains of APP/PSEN1-21 mice prior to plaque deposition 

strongly affected the initiation of Aβ pathology, while low-
ering APOE after Aβ seeding modulated plaque size and 
toxicity (Huynh et al. 2017). In another study, delivering the 
peroxisome proliferator-activated receptor gamma coactiva-
tor 1 alpha (PGC1-α) gene using a modified virus to mice 
brain cells reduced the development of AD, and the treated 
mice showed better memory, no loss of brain cells in the 
hippocampus and had very few amyloid plaques after four 
months of injection (Katsouri et al. 2016).

Clinical Trials of AD Gene Therapy

Some approaches have entered clinical trials. One approach 
is the delivery of NGF, which is hypothesized to promote 
the survival of cholinergic neurons (Fischer et al. 1987). 
Intracerebral delivery of NGF using recombinant AAV to 
the basal forebrain of patients with mild to moderate AD 
showed safety and well tolerance (Rafii et al. 2014). How-
ever, efficacy endpoints were not met in the subsequent 
phase 2 study (Rafii et al. 2018). Another study subjected 
10 patients with early AD with NGF gene ex vivo or in vivo, 
and the researchers found a positive response of neurons 
showing cell hypertrophy, axonal sprouting, and activation 
of functional markers, and the sprouting induced by NGF 
persisted for 10 years after gene transfer and appeared safe 
(Tuszynski et al. 2015). Thus, the study needs confirmation 
of precise gene targeting. In a recent breakthrough, scientists 
found a genetic snipping technique which can be used to turn 
APOE4, the gene that is responsible to cause Aβ proteins in 
the brain, into APOE3 (Khan et al. 2020). Taken together, 
gene editing and transferrin and penetratin-tagged liposomal 
nanoparticles might be the answer to solve gene format and 
dosage issue (Dos Santos Rodrigues et al. 2019; Williams 
et al. 2020).

In addition to the above clinical studies of gene therapy, 
there are more evidence showing that AD variants are used 
for therapy. For example, since PSEN1 E280A variant was 
reported from Colombia, it has been further translated 
into a phase 2 clinical trial (ClinicalTrials.gov Identifier: 
NCT01998841), examining the effectiveness and safety of 
the drug crenezumab in presymptomatic participants carry-
ing this variant in autosomal-dominant AD (ADAD) popula-
tion (Tariot et al. 2018). Lecanemab, E2801, Gantenerumab 
and Solanezumab are used in phase 2/3 clinical trials in indi-
viduals with mutations causing dominantly inherited AD 
from the DIAN population (NCT01760005, NCT05269394, 
NCT05552157). LX1001, a serotype rh.10 AAV gene trans-
fer vector expressing the cDNA coding for human APOE2 is 
used in a phase 1/2 clinical trial in individuals with APOE4 
homozygote AD (NCT03634007).
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Future Perspective of AD Gene Therapy

Gene therapy is the recent addition as therapeutic agents for 
AD, however, they are yet to be clinically approved. Because 
different genetic subtypes of AD show different symptoms 
or disease courses, whether there is overlap and conversion 
between different subtypes requires further research. For 
example, the synaptic loss is more obvious in EOAD, which 
can affect acetylcholine, norepinephrine γ-aminobutyric acid 
and humoral protein levels (Bigio et al. 2002). Therefore, the 
clinical trials of gene therapy for EOAD should intervene 
earlier than the usual prototype disease, and considering the 
polygenic nature of most AD cases, the combined treatment 
of multiple neurotransmitters as well as multiple genes may 
be more effective in improving symptoms than the single-
target cholinergic drugs. Attention should be paid to genetic 
phenotypes when conducting clinical trials of AD gene ther-
apy, which can enable researchers to design experiments 
more accurately, select appropriate subjects, and obtain reli-
able efficacy and safety results.

In addition to genetic phenotypes, AD gene therapy 
should also consider gene-environment interactions, since 
various environmental factors contribute to the complex 
etiology of AD. Studies in both animal models and humans 
have shown that environmental AD risk factors, such as diet, 
lifestyle, alcohol, smoking and pollutants, can induce epige-
netic modifications of key AD-related genes and pathways 
namely oxidative stress (Migliore et al. 2022). Furthermore, 
among the environmental risk factors, many are preventable, 
such as depression, social isolation, low educational levels, 
hearing impairment, physical inactivity, smoking, obesity, 
hypertension, diabetes, alcohol abuse, and air pollution (Jia 
et al. 2020a; Livingston et al. 2020). As a result, the environ-
mental risk factors should also be taken into account when 
conducting gene therapy clinical trials, especially for LOAD 
patients and patients from different environmental settings. 
For example, selecting patients with similar environmental 
factors, or setting environmental factors as covariates when 
conducting multi-center gene therapy clinical trials.

Conclusions

Several genes contributed to the genetic pathogenesis and 
high risk of FAD. Different pathogenic genes showed vari-
ous phenotypes and underling molecular mechanisms, some 
of which are shared with SAD, while some are unique to 
specific mutations. Future gene therapy for AD should pay 
more attention to the genetic phenotypes and adopt more 
precise and individualized treatment strategies in designing 
clinical trials.
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