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Cellular profiling of a recently-evolved social
behavior in cichlid fishes

ZacharyV. Johnson 1,2,3,4,5 , BriannaE.Hegarty1,2,5,GeorgeW.Gruenhagen1,2,5,
Tucker J. Lancaster1,2, Patrick T. McGrath1,2 & Jeffrey T. Streelman 1,2

Social behaviors are diverse in nature, but it is unclear how conserved genes,
brain regions, and cell populations generate this diversity. Here we investigate
bower-building, a recently-evolved social behavior in cichlid fishes. We use
single nucleus RNA-sequencing in 38 individuals to show signatures of recent
behavior in specific neuronal populations, and building-associated rebalan-
cing of neuronal proportions in the putative homolog of the hippocampal
formation. Using comparative genomics across 27 species, we trace bower-
associated genome evolution to a subpopulation of glia lining the dorsal tel-
encephalon. We show evidence that building-associated neural activity and
a departure from quiescence in this glial subpopulation together regulate
hippocampal-like neuronal rebalancing. Our work links behavior-associated
genomic variation to specific brain cell types and their functions, and suggests
a social behavior has evolved through changes in glia.

Social behaviors vary within and among species, and they are dis-
rupted in heritable human brain diseases1,2. Much progress in
understanding the biological mechanisms of social behaviors has
been made through work in diverse and non-traditional model
systems, in part becausemany social behaviors are not expressed in
traditional laboratory models3. These advances have been made
through largely independent experimental traditions spanning
genomics4, endocrinology5, and circuit neuroscience6,7. However,
we still have a poor understanding of how variation in the genome
changes specific cell populations in the brain to generate variation
in social behavior.

In this study, we investigate the neural and genomic substrates of
bower-building behavior, a recently-evolved (estimated <500 ka)
social behavior in LakeMalawi cichlid (Cichlidae) fishes8. Cichlids are a
large group of behaviorally and eco-morphologically diverse teleost
fishes that share homologous genes and brain cell populations with
other vertebrates, including cell populations in the telencephalon
that regulate social behaviors across vertebrate lineages9,10. Within
Lake Malawi, cichlids have radiated into ~800 behaviorally diverse11–13

but genetically similar species8,14. In ~200 species, males express

bower construction behaviors during the breeding season. During
bower construction, males repetitively manipulate sand with their
mouths, ultimately giving rise to a species-specific geometric struc-
ture. These structures serve as social territories that males aggres-
sively defend against intruders, as well as mating sites for courtship
and spawning with females15. Many species dig crater-like “pits” while
others build elevated “castles” Pit-digging versus castle-building
behavioral differences are associated with genomic divergence in a
~19 Mbp chromosomal region enriched for human disease-associated
genes and genes that exhibit cis-regulated behavior-associated
expression in the brain16.

Here we integrate single nucleus RNA-sequencing (snRNA-seq),
comparative genomics, spatial transcriptomics, and automated beha-
vior analysis to systematically profile the telencephalon during castle-
building behavior in Mchenga conophoros. We use natural genetic
variation to link single nuclei back to 38 paired behaving/control test
subjects, enabling analysis of building-associated signals while con-
trolling for additional biological variables that vary among individuals,
such as quivering, a courtship “dance” behavior, and relative gonadal
mass. We map the cellular diversity of the telencephalon and profile
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signatures of neuronal excitation, neurogenesis, and glial function, as
well as genomic signatures of behavioral evolution across cell popu-
lations. Our work shows how snRNA-seq profiling can link natural
behavior-associated genome variation to specific brain cell popula-
tions and their behavior-associated functions in uncharted species.

Results
Castle-building is associated with increased quivering behavior
and gonadal physiology
Bowers (Fig. 1A, B) are constructed intermittently over many days. We
used an automated behavior analysis system to monitor reproductive
adult Mchenga conophoros males as they freely interacted with four
reproductive adult females and sand (Fig. 1C). The system uses depth
sensing to measure structural sand change and action recognition to
identify building and quivering behaviors from video data15,17. We dis-
sected telencephala (Fig. 1D) simultaneously from pairs of males in
which one male was actively castle-building (n = 19) and the other was
not (control, n = 19; Fig. 1E, F), and analyzed building and quivering
behavior over the 100-min period preceding collection. We also
tracked the gonadal somatic index (GSI), ameasure of relative gonadal
mass that is correlated with gonadal steroid hormone levels and social
behaviors in cichlids18,19 (Supplementary Data File 1). The volume of
structural change was positively correlated with the number of

building events predicted from video data (t36 = 10.78, R =0.87,
p = 8.15 × 10−13; Fig. S1), and we combined these measures into a single
Bower Activity Index (BAI). Building males had greater BAIs (Fig. 1G;
t18 = 9.02, p = 4.24 × 10−8, two-tailed paired t-test), quivered more
(Fig. 1H; t18 = 6.10, p = 9.18 × 10−6), and had greater GSIs (Fig. 1I;
t18 = 2.72, p = 0.0142) compared to controls, but quivering and GSI
were not predicted to mediate or moderate BAI (Supplementary
Results). These results are consistent with castle-building, like many
social behaviors in nature, being embedded within a suite of physio-
logical and behavioral changes linked to reproduction.

Telencephalic nuclei reflect major neuronal and non-neuronal
cell classes
Dissected telencephala (n = 38) were combined into ten pools (n = 5
behave, n = 5 control, 3–4 telencephala/pool) for snRNA-seq (Fig. S2).
>3 billion RNA reads were sequenced and aligned to the Lake Malawi
cichlid Maylandia zebra reference genome20. 33,674 nuclei passed
quality controlfilters andwerematched to test subjects using genomic
DNA. Clustering grouped nuclei into 15 primary (1°) and 53 secondary
(2°) clusters (ranging from 57–1905 nuclei, Fig. 2A). Cluster composi-
tion was balanced across individuals (Fig. S3 and Supplementary Data
File 3), and established marker genes revealed the presence of
expected neuronal and non-neuronal cell types (Fig. 2B–D), including
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Fig. 1 | Behavioral paradigm. AMchenga conophorosmale (blue head) and female
(silver) above a castle bower in Lake Malawi (photo credit Ad Konings). BMchenga
conophoros male (blue head) and female (silver) above a castle bower in a labora-
tory aquarium. C Schematic of the behavioral assay, 19 pairs of building (bottom)
and control (top) males were sampled. D Simplified schematic of wetlab pipeline
for snRNA-seq. E Action recognition (each trial is represented by a row; each tick
mark indicates a behavioral event predicted by action recognition; pairedmales are
matched by row at top and bottom) and F depth sensing (each square represents
total depth change for one trial, with pairs matched by row and column between
top and bottom panels) show behavioral differences between building and control
males. Compared to controls, building males exhibited greaterG BAIs,H quivering

behaviors, and I GSIs (gray lines link paired building/control males); n = 38 biolo-
gically independent animals (n = 19 building males, n = 19 control males). In all box
plots, the center line indicates the median, the bounds of the box indicate the
upper and lower quartiles, and the whiskers indicate 1.5x interquartile range.
Asterisks indicate significance at α =0.05. Source data are provided as a Source
Data file, and additional related data can be found in Supplementary Data 1. Fish
artwork in panelsC,D,G, I is reprinted from iScience, Vol 23 / Issue 10, Lijiang Long,
Zachary V. Johnson, Junyu Li, Tucker J. Lancaster, Vineeth Aljapur, Jeffrey T.
Streelman, Patrick T. McGrath, Automatic Classification of Cichlid Behaviors Using
3D Convolutional Residual Networks, 2020, with permission from Elsevier.
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excitatory neurons (map2+, slc17a6+), inhibitory neurons (map2+,
gad2+), radial glia (gfap+, fabp7+), oligodendrocytes (olig2+, mpz+),
oligodendrocyte precursor cells (OPCs, olig2+, olig1+), microglia (e.g.,
apoeb+, mrc1+), pericytes (rgs5a+, pdgfrb+), and hematopoietic stem
cells (runx1+, spi1+). Unbiased analyses identified genes exhibiting
nearly cluster-exclusive expression (Fig. 2E, top rows; Fig. S4). Genes
encoding transcription factors (TFs) and neuromodulatory signaling
molecules that show conserved brain region-specific expression pat-
terns in teleosts were also preferentially expressed in distinct clusters
(examples in Fig. 2F–I and Supplementary Data File 2). Marker genes
for each 1° and 2° cluster were independently enriched (q <0.05) for
eight GO categories related to cell morphology, connectivity, con-
ductance, and signal transduction (Supplementary Data File 4), sup-
porting these as central axes distinguishing clusters in this study.
Clustermarker genes weremore strongly enriched for genes encoding
conserved neurodevelopment/neuroanatomy-associated TFs (nTFs,
n = 43) and ligands (n = 35) compared to neuromodulatory receptors
(n = 108, Supplementary Data File 5; Fig. S5; and Supplementary
Results), supporting more labile expression of receptor genes across
cell types and consistent with recent single-cell RNA-seq (scRNA-seq)
analyses of the mouse hypothalamus21.

Building, quivering, and gonadal physiology are associated with
signatures of neuronal excitation in distinct cell populations
To identify cell populations thatmay regulate castle-building behavior,
we first investigated transcriptional signatures of neuronal excitation.
Neuronal excitation induces transcription of conserved immediate
early genes (IEGs) that typically peak in expression ~60–90min later22.
IEGs have thus become widely-used tools for identifying neuronal
populations excited in response to specific stimuli or behavioral
contexts23. However, IEG transcripts are recovered at relatively low
levels in sc/snRNA-seq data24. To better track IEG signals, we identified
genes thatwere selectively co-expressedwith eachof three established
IEGs (c-fos, egr1, npas4) independently across 2° clusters (see Meth-
ods). In total, we identified 25 IEG-like genes (Supplementary Data
File 6), most of which were known IEGs (n = 17), but eight of which had
not been previously described (predicted homologs of humanDNAJB5,
ADGRB1, GPR12, ITM2C, IRS2, RTN4RL2, andRRAD; Fig. 3A).We assigned
each nucleus an “IEG score” equal to the total number of IEG-like genes
expressed. To disentangle building-associated signals from quivering-
and GSI-associated signals, we fit a sequence of models in which BAI
over the previous 100min (Fig. 1G), quivering over the previous
100min (Fig. 1H), and GSI (Fig. 1I) competed in different combinations
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Fig. 2 | Cellular diversity of the cichlid telencephalon. A Nuclei cluster into 1°
(n = 15) and 2° (n = 53) clusters. B–D Knownmarker genes reveal distinct clusters of
B excitatory neurons (slc17a6+), C inhibitory neurons (gad2+), and D radial glia
(fabp7+), as well as other less abundant cell types (see Supplementary Data File 2).
EClusters are distinguished by genes exhibiting nearly cluster-exclusive expression
(top rows) as well as established cell type marker genes (bottom rows). F–I Genes

encoding conserved F, G nTFs and H, I ligands (or ligand-related proteins) that
exhibit conserved neuroanatomical expression profiles in teleost fishes (schematic
representations of conserved expression patterns shown in panels F, H show dis-
tinct cluster-specific expression profiles). Anatomical figures adapted with per-
mission from Dr. Karen Maruska. Data related to this figure can be found in
Supplementary Data 2, 3.
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to explain IEG score across clusters (see Methods). We considered
effects significant if the raw p value was <0.05 in all models, and if the
FDR-adjusted harmonic mean p value across models was significant
(hmpadj <0.05)

25.
We identified distinct sets of cell populations that showed build-

ing-, quivering-, or GSI- associated IEG induction (Fig. 3B and Supple-
mentary Data File 6). Building was associated with increased IEG score
in 9_Glut (“build-IEG+”, the effect of building versus control,
βbuild = 0.11 ± 0.046; hmpadj = 0.0016), a cluster exhibiting gene
expression patterns reflective of the dorsal pallium (Supplementary
Data File 2), but not in any other 1° or 2° cluster. We also reasoned that
some behaviorally-relevant cell populations may not align 1:1 with
clusters. Some may span multiple clusters—for example, neuropep-
tides can diffuse to modulate distributed cell populations expressing
their target receptors1—ormay be best described as distinct functional
subsets of cellswithin a cluster. Therefore, we extended our analysis to
populations defined by nTF, ligand, and receptor genes, as well as a
small set of additional genes of interest (n = 17, “Other”, Supplemen-
tary Data File 5), both within clusters and regardless of cluster
assignment (seeMethods). This revealed a suite of additional build-IEG
+ populations, including three populations defined regardless of
cluster (elavl4+, cckbr+, ntrk2+), and 4_GABA htr1d+, 4_GABA vipr2+,
15_GABA/Glut tacr2+, 11_Glut cckbr+, and 11.1_Glut npr2+ nuclei (Fig. 3C
and Supplementary Data File 6), consistent with a role for these
molecular systems in the neural coordination of building. In contrast,
quivering-associated IEG signals suggested the involvement of dopa-
minergic olfactory populations (Supplementary Results). As further
reinforcement of the behavioral relevance of these signals, we tem-
porally binned behavioral measures and found that both building- and
quivering-associated IEG signals were most strongly associated with

behavior expressed ~60min before flash freezing of the telencephalon
(Fig. 3D), consistentwith knownnuclearRNA timecourses26. Follow-up
mediation analyses identified five build-IEG+ populations as potential
mediators of BAI, including 9_Glut, 4_GABA htr1d+, 4_GABA vipr2+,
11.1_Glut npr2+, and ntrk2+ (Supplementary Results).

Excitatory neuronal populations drive building-associated gene
expression
We also used unbiased analyses of behavior-associated differentially
expressed genes (DEGs) to identify candidate cell populations under-
lying castle-building. Indeed, social behaviors havebeen linked to large
changes in brain gene expression in diverse lineages16,27,28, but the roles
of specific cell populations in driving these effects are not well
understood. We found that DEGs associated with building (build-
DEGs), quivering (quiver-DEGs), and GSI (gonad-DEGs) were over-
represented in largely non-overlapping sets of neuronal clusters
(Fig. 4A). Three excitatory neuronal clusters accounted for a dis-
proportionate number of build-DEGs (Fig. 4A, top). A minority of
neuronal clusters also accounted for disproportionate numbers of
quiver-DEGs (Fig. 4A, middle) and gonad-DEGs (Fig. 4A, bottom; Sup-
plementary Results, Supplementary Data File 7). Despite these non-
overlapping patterns, a large set of build-DEGs, quiver-DEGs, and
gonad-DEGs were the same genes (n = 81; Fig. 4B), consistent with
behavior- and gonadal-associated recruitment of common transcrip-
tional programs in distinct neuronal populations. Unexpectedly, build-
and quiver-DEGs exhibited a strong direction bias, and were pre-
dominantly upregulated in both 1° and 2° clusters (Fig. 4C, four left-
most bars). In contrast, gonad-DEGs tended more modestly toward
upregulation in 1° clusters and were not directionally biased in 2°
clusters (Fig. 4C, two rightmost bars). Upregulated build-DEGs, quiver-
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nuclei showed both quivering- and GSI-associated IEG expression). D IEG expres-
sion was most strongly associated with the amount of temporally binned building

(top, 30min bins, n = 22 neuronal populations exhibiting significant or trending
building-associated IEG expression) and quivering (bottom, 30min bins, n = 71
neuronal populations exhibiting significant or trending quiver-associated IEG
expression) behavior performed approximately 60min prior to tissue freezing
(peak bins represent behavior performed 45–75min prior to freezing the tele-
ncephalon). Data were presented as mean values ± SEM (represented by colored
bands). Source data are provided as a Source Data file, and additional related data
can be found in Supplementary Data 6. Fish artwork in panel B is reprinted from
iScience, Vol 23 / Issue 10, Lijiang Long, Zachary V. Johnson, Junyu Li, Tucker J.
Lancaster, Vineeth Aljapur, Jeffrey T. Streelman, Patrick T. McGrath, Automatic
Classification of Cichlid Behaviors Using 3D Convolutional Residual Networks,
2020, with permission from Elsevier.
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DEGs, and gonad-DEGs were enriched (q <0.05) for a large number of
the same GO terms (468 Biological Processes, 132 Cellular Compo-
nents, 107 Molecular Functions; Supplementary Data File 8), the
strongest of which were related to synaptic transmission, synaptic
plasticity, and neurogenesis/neuronal differentiation (Fig. 4D). These
results are consistent with building-, quivering-, and gonadal-
associated gene expression reflecting, in part, changes in synaptic
structure/function and neuronal differentiation.

Based inparton theseenrichmentpatterns,wedirectly investigated
estrogen as a possible regulator of behavior- and gonadal-associated
geneexpression. Estrogen is a steroidhormone that regulates vertebrate
social behaviors29, neuronal excitability30, neurogenesis31, and gene
expression (by binding to estrogen receptors and forming a TF complex
that binds to estrogen response element sequences in DNA)32. Build-
DEGs, quiver-DEGs, and gonad-DEGs were independently enriched for
estrogen response elements (Fig. 4E, F; Supplementary Results; genes
containing estrogen response elements in Supplementary Data File 9),
consistent with a role for estrogen in regulating male behavior- and
gonadal-associated gene expression. Build-DEGs that contained estro-
gen response elements (n= 22 genes) were most strongly enriched for

GOterms including “modulationof chemical synaptic transmission” (top
GO Biological Process, q=2.30 × 10−4) and “Schaffer collateral-CA1
synapse” (top Cellular Component, q= 2.22 × 10−5), consistent with a
role for estrogen in shaping building-associated changes in synaptic
function.

Castle-building is associated with neuronal rebalancing in the
putative homolog of the hippocampal formation
We next investigated building-associated differences in cluster pro-
portions, reasoning that differences could be caused by building-
associated neurogenesis (e.g., changing rates of new neuronal influx
into specific populations), or by building-associated gene expression
(changing how nuclei are assigned to clusters). We identified two 2°
clusters showing building-associated changes in proportions: 8.4_Glut
(βbuild = 0.37 ± 0.11, q =0.013) and 8.1_Glut (βbuild = -0.44 ±0.10,
q = 7.67 × 10−4; Fig. 5A–C). These clusters were not immediate neigh-
bors in UMAP space, and thus the pattern was not simply explained by
building-associated shifts in gene expression. The relative proportions
of 8.4_Glut versus 8.1_Glut were negatively correlated across subjects
(t1,36 = −3.51, R = −0.50, p =0.0012; Fig. S6), and mediation analyses
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Fig. 4 | Building, quivering, andGSI are associatedwith distinct patterns of cell
type-specific gene expression. A Build-DEGs (top row), quiver-DEGs (middle row),
and gonad-DEGs (bottom row) were overrepresented in distinct sets of 1° and 2°
clusters (FET, two-sided, asterisks indicate significance after adjustment for 5% false
discovery rate).BMany of the same genes show building-, quivering-, and gonadal-
associated expression (n = 81, top Venn diagram, overlap is considered regardless
of the cluster in which the DEG effect was observed), but in distinct patterns across
clusters (1° cluster DEGs, middle Venn diagram; 2° cluster DEGs, bottom Venn
diagram; overlap considers the cluster in which the DEG effect was observed; low
overlap among build-DEGs, yellow; quiver-DEGs, purple; gonad-DEGs, green).
C Behavior-associated gene expression is driven by upregulation (first four bars; 1°
build-DEGs, 342/358, X2(1,N = 358) = 184.96, p = 4.01 × 10−42; 2° build-DEGs, 537/593,
X2(1, N = 593) = 231.54, p = 2.75 × 10−51; 1° quiver-DEGs, 184/224, X2(1,
N = 224) = 50.19, p = 1.39 × 10−12; 2° quiver-DEGs, 524/583, X2(1, N = 583),
p = 1.81 × 10−49; Pearson’s Chi-squared test with Yates’ continuity correction, two-
sided), whereas gonadal-associated gene expression is driven by a balance of up-
and downregulation (last two bars, 1° gonad-DEGs, 242/368, X2(1, N = 368) = 18.1,
p = 2.09 × 10−5; 2° gonad-DEGs, 576/1,145, X2(1, N = 1145) = 0.011, p =0.92; Pearson’s
Chi-squared test with Yates’ continuity correction, two-sided). D Build-DEGs, qui-
ver-DEGs, and gonad-DEGs are enriched for many of the same GO terms related to

synaptic structure, function, and plasticity; neurotransmission; and neurogenesis
(Hypergeometric test, one-sided, Bonferroni corrected; GO terms followed by
asterisks are abbreviated). E build-DEGs, quiver-DEGs, and gonad-DEGs are enri-
ched for estrogen response elements compared to other genes throughout the
genome (left barplot; build-DEGs, yellow, odds ratio = 7.33, CI95 = [4.42,11.60],
p = 7.26 × 10−12; quiver-DEGs, purple, odds ratio = 3.53, CI95 = [1.65,6.72],
p = 9.23 × 10−4; gonad-DEGs, green, odds ratio = 5.63, CI95 = [3.57,8.57],
p = 1.42 × 10−13; FET, two-sided). F Violin plots show example effects for build-DEGs
containing estrogen response elements in four different clusters (gray lines link
paired building/controlmales, blue labeling belowviolin plots highlights clusters in
which each effect was observed); n = 38 biologically independent animals (n = 19
building males, n = 19 control males). In all box plots, the center line indicates the
median, the bounds of the box indicate the upper and lower quartiles, and the
whiskers indicate 1.5x interquartile range. Asterisks indicate significance after
adjustment for a 5% false discovery rate. Source data are provided as a Source Data
file, and additional related data can be found in Supplementary Data 7–9. Fish
artwork in panelsA and C is reprinted from iScience, Vol 23 / Issue 10, Lijiang Long,
Zachary V. Johnson, Junyu Li, Tucker J. Lancaster, Vineeth Aljapur, Jeffrey T.
Streelman, Patrick T. McGrath, Automatic Classification of Cichlid Behaviors Using
3D Convolutional Residual Networks, 2020, with permission from Elsevier.
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supported these proportion changes as possiblemediators of bothBAI
and build-IEG+ signals (including 9_Glut, 4_GABA htr1d+, 4_GABA
vipr2+, and ntrk2+; Supplementary Results). The encompassing 1°
cluster, 8_Glut, was distinguished by markers of the lateral region of
the dorsal telencephalon (Dl; Supplementary Data File 2), a region that
regulates spatial learning in other fish species33 and that is putatively
homologous to themammalian hippocampal formationbasedongene
expression, cell morphology, connectivity, anatomy, and behavioral
evidence9,34,35. Together these data suggest that building-associated
reorganization of hippocampal-like cell populationsmay be important
for building behavior.

To further investigate signatures of building-associated neuro-
genesis, we analyzed the expression of 87 genes with the GO annota-
tion “positive regulation of neurogenesis” in both zebrafish and mice

(“proneurogenic” genes, Supplementary Data File 10). Building, in
contrast to quivering and GSI, was associated with widespread
increases in proneurogenic gene expression across clusters (Fig. S7).
Building-associated expression of proneurogenic genes was dis-
proportionately strong in populations expressing estrogen receptors
(Normalized Enrichment Score, NES = 2.00, q =0.034; Fig. S7, Sup-
plementary Results), consistent with a role for estrogen signaling in
building-associated neurogenesis. Notably, 8.4_Glut showed building-
associated proneurogenic gene expression (βbuild = 0.08 ± 0.033,
hmpadj = 0.028), and expression of proneurogenic genes in this cluster
was positively correlated with its relative proportion (t1,36 = 2.12,
R = 0.33, p = 0.041). These results support the idea that building-
associated changes in neurogenesis underlie building-associated
increases in 8.4_Glut proportion.

-2

2 C

U
M

A
P2

2 5UMAP1

B

2 5UMAP1C

B

−10

0

10

−10 10

A

U
M

A
P2

UMAP1
0

8_Glut

0.04

0.16

C B

*

8.
4_

G
lu

t
pr

op
or

tio
n

0.10

0.25 *

C B

8.
1_

G
lu

t
pr

op
or

tio
n

B
7 10

-6

-3

C

U
M

A
P2

7 10UMAP1 UMAP1

8UMAP1
-7.5

5

0

8.4_Glut

8.1_Glut

U
M

A
P2
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8.4_Glut nuclei in control, “C,” versus building “B,”males, pooled across individuals;
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adjusted for 5% false discovery rate, q =0.013), n = 38 biologically independent
animals (n = 19 building males, n = 19 control males). C 8.1_Glut exhibits a building-
associated decrease in its relative proportion within 8_Glut (two right panels show

8.1_Glut nuclei in control versus building males, pooled across individuals; linear
mixed-effects regression assuming a binomial distribution, two-sided, adjusted for
5% false discovery rate, q = 7.67 × 10−4), n = 38 biologically independent animals
(n = 19 building males, n = 19 control males). Gray lines link paired building/control
males. In all box plots, the center line indicates the median, the bounds of the box
indicate the upper and lower quartiles, and the whiskers indicate 1.5x interquartile
range. Asterisks indicate significance at α =0.05 after adjusting for a 5% false dis-
covery rate. Source data are provided as a Source Data file, and additional related
data can be found in Supplementary Data 3.
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Building behavior is associated with changes in glial cell biology
Radial glia are the primary source of new neurons in adult teleosts36,
and can occupy distinct functional states, including quiescence,
cycling, and neuronal differentiation37. Therefore, we reasoned that if
building is associated with changes in neurogenesis, then building
might also be associated with changes in radial glial biology. To
investigate building-associated changes in radial glial biology, we first
analyzed building-associated gene expression within radial glia (1.1_RG
and 1.2_RG pooled) and identified 25 build-DEGs that were collectively
enriched for “neuron development” (top GO Biological Process,
q = 8.18 × 10-4) and “astrocytic glutamate-glutamine uptake and meta-
bolism” (top Pathway, q = 0.0010). Build-DEGs in radial glia included
cyp19a1 (upregulated; Fig. S7 and Supplementary Data File 10), the
gene encoding aromatase, an enzyme that converts testosterone into
brain-derived estrogen. Aromatase is thought to be exclusively
expressed in radial glia in the teleost telencephalon, and has been
linked to radial glial functional states as well as neurogenesis38. These
data support building-associated changes in radial glial biology that
may shape building-associated neurogenesis.

To investigate building-associated changes in radial glia at
higher resolution, we re-clustered radial glia into 11 subclusters
(RG0-RG10; Fig. 6A). Building-associated increases in cyp19a1
expression were driven most strongly by RG3 (βbuild = 1.44 ± 0.42,
hmpadj = 0.018; Fig. 6B), a subpopulation distinguished by lhx5 and
gli3, both nTFs that regulate neurogenesis in mammals39,40. A sec-
ond subpopulation, RG2, exhibited ~3x more build-DEGs than any
other subcluster (Supplementary Data File 11; 18/19 effects reflected
building-associated downregulation). To further investigate radial
glial subclusters, we assigned each radial glial nucleus a quiescence,
cycling, and neuronal differentiation score based on marker genes
for these functional states (Supplementary Data File 12). Building
was associated with decreased quiescence score in RG2

(βbuild = 0.29 ± 0.11, hmpadj = 0.010; Fig. 6C), but was not associated
with quiescent, cycling, or neuronal differentiation score in any
other subcluster. Lastly, we reasoned that building-associated
changes in radial glial gene expression and/or functional states
may result in changes in radial glial subcluster proportions. Analysis
of subcluster proportions revealed an increase in the relative pro-
portion of RG4 (βbuild = 0.73 ± 0.19, q = 0.0017; Fig. 6D), which was
positioned in UMAP space between subclusters expressing markers
of quiescence (RG1, RG2) and those expressing markers of cycling
and differentiation (RG0; Supplementary Data File 13). Follow-up
mediation analyses supported RG3 cyp19a1 expression as a possible
mediator of building, and RG2 quiescence, RG3 cyp19a1 expression,
and RG4 proportion as possible mediators of rebalancing (Supple-
mentary Results). Together these data demonstrate building-
associated changes in specific subpopulations of radial glia, and

highlight RG2, RG3, and RG4 as candidate regulators of building-
associated neurogenesis and rebalancing.

Genes that diverged in castle-building species show behavior-
and gonadal-associated upregulation
We next investigated if genome divergence associated with behavioral
evolution may reveal additional candidate cell populations underlying
building. The evolution of bower-building behavior has previously
been linked to a ~19 Mbp region on Linkage Group 11 (LG11), within
which genetic variants have diverged between closely-related castle-
building and pit-digging lineages16. We performed follow-up com-
parative genomics analyses across 27 total Lake Malawi species (Sup-
plementary Data File 14) and identified 165/756 genes in this region
that additionally showed signatures of divergence between castle-
building lineages andmore distantly related rock-dwelling species that
do not build bowers (“castle-divergent” genes, CDGs; Fig. 7A; Supple-
mentary Data File 15). Thus, CDGs bear strong genomic signatures of
castle-building evolution across Lake Malawi species. CDGs were
expressed at higher levels in the telencephalon compared to neigh-
boring genes in the same 19Mbp region and compared to other genes
throughout the genome (Fig. 7B). CDGs were also overrepresented
among 1° and 2° cluster markers (Fig. 7C, D), and among upregulated
build-DEGs (Fig. 7E), quiver-DEGs (Fig. 7F), and gonad-DEGs (Fig. 7G).
These data support the behavioral significance of CDGs in the tele-
ncephalon, and suggest that castle-building has evolved in part
through variation in genes that are upregulated during reproductive
contexts.

A subpopulation of pallial glia links genome evolution to
hippocampal-like neuronal rebalancing
We next tested if CDGs were enriched in specific cell populations.
CDGs were most strongly enriched in non-neuronal clusters (1.1_RG,
1.2_RG, 2.1_OPC), followed by neuronal clusters (4.3_GABA and
4.4_GABA) and gene-defined cell populations (5.2_GABA th+, and
9_Glut hrh3+; Supplementary Results, Fig. S8 and Supplementary Data
File 16). We hypothesized that these enrichment patterns were driven
by subsets of CDGs that were co-expressed together in specific cell
populations. Indeed, a weighted gene correlation network analysis
(WGCNA)41 across nuclei revealed a module of 12 CDGs (“CDG mod-
ule”) that were strongly co-expressed compared to other CDGs
(stronger correlation coefficients, Welch t-test, p = 8.83 × 10−14; stron-
ger silhouette widths, Welch t-test, p = 0.016; Fig. 8A). Across clusters,
theCDGmodulewasmost strongly enriched in 1.2_RG (compared to all
other nuclei; Cohen’sd = 4.22, CI95 = [4.14,4.30],pperm =0), followedby
1.1_RG (Cohen’s d = 2.86, CI95 = [2.79,2.92], pperm =0; Fig. 8B and Sup-
plementary Data File 17), suggesting both enrichment in radial glia as
well as differences in expression among radial glial subpopulations.
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Fig. 6 | Building-associated changes in radial glial biology. A Re-clustered radial
glial subpopulations show building-associated B cyp19a1 expression (RG3),
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n = 38 biologically independent animals (n = 19 building males, n = 19 control
males). Gray lines link paired building/control males. UMAP plots in the right three
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pooled across individuals. In all box plots, the center line indicates the median, the
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1.5x interquartile range. Asterisks indicate significance at α =0.05 after adjusting
for a 5% false discovery rate. Source data are provided as a Source Data file, and
additional related data can be found in Supplementary Data 7–9.
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Within radial glia, CDG module score was positively correlated with
quiescent score (Fig. 8C–E;R =0.61, CI95 = [0.58,0.63],p = 8.65 × 10−191);
CDG module score was negatively correlated with cycling score
(R = −0.11, CI95 = [−0.15,−0.06], p = 3.14 × 10−6); and CDG module score
was not correlated with neuronal differentiation score (R = −0.036,
CI95 = [−0.08,0.0090], p = 0.12). Analysis of TFs (n = 999) additionally
revealed npas3 as the most strongly co-expressed TF with the CDG
module (Fig. 8F and Supplementary Data File 18). npas3 suppresses
proliferation in human glioma, is strongly expressed in quiescent
neural stem cells, and is downregulated during hippocampal neuro-
genesis in mice42,43. Among radial glial subclusters, the CDG module
was selectively enriched in RG1 (compared to other radial glia; Cohen’s
d =0.68, CI95 = [0.55,0.82], pperm =0.0196) and RG2 (Cohen’s d =0.32,
CI95 = [0.19,0.45], pperm =0.046; Fig. 8G and Supplementary Data
File 17), both of which also strongly expressed markers of glial quies-
cence. Together these data support that the CDG module may be
related to radial glial quiescence.

Building was associated with a decrease in CDG module score in
RG2 (βbuild = -0.26 ±0.11, hmpadj = 0.027; Fig. 8H), and an increase in
CDG module score in RG8 (βbuild = 0.61 ±0.24, hmpadj = 0.0097). The
only CDGmodule gene exhibiting strict building-associated expression
was wdr73, which was downregulated in RG1 (βbuild = −0.08 ±0.0044,
hmpadj = 4.54 × 10−89) and RG2 (βbuild = 0.71 ± 0.0070, hmpadj = 2.47 ×
10−90; RG2 effect in Fig. 8I). Notably, one study in human epithelial cells
found that suppressedwdr73 expression was most strongly associated
with increased expression of ccnd144, a marker of neural stem cell
proliferation45. Indeed, within radial glia, wdr73 expression was nega-
tively correlated with ccnd1 expression (R = −0.07, 95% CI,
CI95 = [−0.12,−0.029], p =0.0013). We hypothesized that a building-
associated downregulation of the CDGmodule in RG2may promote an
exit fromquiescence and contribute to building-associated proportion
changes in 8.1_Glut and 8.4_Glut. Consistent with this, the difference in
relative proportion of 8.4_Glut and 8.1_Glut was explained by RG2 CDG
module score (R = −0.53, 95% CI, CI95 = [−0.72,−0.25], p = 6.71 × 10−4;
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genes within the 19 Mbp region on LG11 (odds ratio = 4.50, CI95 = [1.82,11.33],
p = 4.23 × 10−4, FET, two-sided) and compared to other genes throughout the gen-
ome (odds ratio = 2.63, CI95 = [1.37,4.67], p =0.0024, FET, two-sided). Source data
are provided as a Source Data file, and additional related data can be found in
Supplementary Data 14, 15. Fish artwork in panelsA, E,G is reprinted from iScience,
Vol 23 / Issue 10, Lijiang Long, Zachary V. Johnson, Junyu Li, Tucker J. Lancaster,
Vineeth Aljapur, Jeffrey T. Streelman, Patrick T. McGrath, Automatic Classification
of Cichlid Behaviors Using 3D Convolutional Residual Networks, 2020, with per-
mission from Elsevier. Drawings of pit-digging and rock-dwelling cichlids were
adapted from original artwork published previously15,74.
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Fig. S9), wdr73 expression (R = −0.59, CI95 = [−0.76,−0.33],
p = 1.14 × 10−4; Fig. S9), quiescent score (R = −0.35, CI95 = [−0.76,−0.33],
p =0.029), and npas3 expression (R = −0.37, CI95 = [−0.62,−0.06],
p = 8.20 × 10−4). Most of these relationships were evident within build-
ing males only (difference in 8.4_Glut and 8.1_Glut proportion versus
RG2 CDGmodule score, R = −0.57, CI95 = [−0.81,−0.15], p =0.011; versus
RG2 wdr73 expression, R = −0.62, CI95 = [−0.84,−0.23], p =0.0049;
versus RG2 quiescent score, R = −0.32, CI95 = [−0.68,0.15], p =0.18;
versusnpas3 expressionR = −0.52, CI95 = [−0.79,−0.085],p =0.023) but
not within controls (p ≥0.24 for all). In contrast, these relationships
were not evident in RG1 (across all subjects, p ≥0.17 for all; within
buildingmales, p ≥0.12 for all). These data are consistentwith a role for
CDG module expression in RG2 in the rebalancing of 8.1_Glut and
8.4_Glut. In further support of this, mediation analyses identified both
RG2 wdr73 expression and RG2 CDG module score as candidate med-
iators of rebalancing (Supplementary Results).

In teleost fishes, anatomically distinct radial glial subpopulations
supply new neurons to distinct brain regions (Fig. 9A). We used spatial
transcriptomic profiling to investigate if the anatomical relationships
among RG2, 8.4_Glut, and 8.1_Glut were consistent with RG2 supplying
new neurons to 8.4_Glut and 8.1_Glut. 8.1_Glut mapped to ventral Dl-g,
and 8.4_Glut mapped to ventral Dl-v (Fig. 9B–D), pallial subregions
within Dl that receive new neurons from radial glia lining the pallial
ventricular zone. RG2 was anatomically positioned along the pallial but
not subpallial ventricular zone (Fig. 9B–D), consistent with a potential
to supply new neurons to Dl and other pallial regions. These data are
further consistent with a relationship between RG2 and neuronal
rebalancing in 8.4_Glut and 8.1_Glut.

Directional interaction among multiple neuronal and glial
populations explain building
In the mammalian hippocampus, the activity of incoming axonal pro-
jections and local circuits is thought to regulate the differentiation of
neural precursor cells into new neurons46. We hypothesized that
building-associated neural activity may be causally related to building-
associated changes in RG2 and neuronal rebalancing. We first used
CellChat to investigate the molecular potential for directional com-
munication (cell–cell communication analysis) among build-IEG+
populations, RG2, 8.1_Glut, and 8.4_Glut. For comparison, we also
analyzed all other 1° and 2° clusters, radial glial subclusters, as well as
randomized size-matched cell populations. Briefly, cell–cell commu-
nication analysis uses gene expression to estimate the molecular
potential for communication between cell populations (measured in
“connection weight” between a sender population and a receiver
population) using known cell–cell adhesion and ligand-receptor
binding proteins. Unlike most other tools, CellChat increases robust-
ness by additionally accounting for heteromeric complexes and
interaction mediator proteins47. CellChat revealed a strong molecular
potential for directional communication from build-IEG+ populations
to 8.4_Glut (Fig. S10; Supplementary Data File 19; Supplementary
Results), consistentwith neuronal populations thatfireduringbuilding
synapsing onto 8.4_Glut neurons. Because neuronal firing can
strengthen synaptic connections, we next investigated if build-IEG+
populations also showed building-associated increases in connection
weights with 8.4_Glut. Only ~2% (94/4,096) of all connection weights
analyzed exhibited building-associated changes (q <0.05, 91/94 were
increases, Supplementary Data File 20), and these were enriched for
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build-IEG+ senders (27/94, odds ratio = 2.23, CI95 = [1.36,3.56],
p =0.0013, Fisher’s exact test, FET; Fig. 9E, left) and 8.4_Glut as a
receiver (8/94, odds ratio = 6.55, CI95 = [2.61,14.38], p = 8.78 × 10−5;
Fig. 9E, right; and interestingly 2.1_OPC as a receiver, see Supplemen-
tary Results, Supplementary Data File 20). Specifically, four build-IEG+
senders showed increased connectionweights with 8.4_Glut, including
9_Glut (βbuild = 0.47 ± 0.13, hmpadj = 0.0030; Fig. 9F), 4_GABA
htr1d+ (βbuild = 0.76 ±0.25, hmpadj = 0.0082; Fig. 9G), 4_GABA
vipr2 + (βbuild = 0.82 ±0.23, hmpadj = 0.0020; Fig. 9H), and
ntrk2+ (βbuild = 0.82 ± 0.28, hmpadj = 0.012), all of which were pre-
viously identified as possible mediators of BAI (Supplementary
Results). Spatial integration (see Methods) anatomically mapped
9_Glut to the dorsal region of the dorsal telencephalon (Dd) and
4_GABA to the dorsal/supracommissural regions of the ventral tele-
ncephalon (Vd/Vs; Fig. 9B–D), both of which send axonal projections
to Dl-v in other teleosts9,48.

Lastly, we performed follow-up mediation analyses to refine can-
didate directional relationships among build-IEG+ populations,
radial glia, and neuronal rebalancing. These analyses converged on
excitation in three build-IEG+ populations (9_Glut, 4_GABA htr1d+, and
4_GABA vipr2+) as well as aromatase expression in RG3, as possible
mediators of CDG module downregulation in RG2 and neuronal reba-
lancing (Fig. 9I; Supplementary Results, Supplementary Data File 21).We
identified twoplausible ligand-receptorpathwayspositioned to facilitate

these interactions and support radial glial (RG2) to neuronal (8.4_Glut)
differentiation, including NRG2/NRG3 (putatively secreted from build-
IEG+ populations) to ERBB4 (preferentially expressed in RG2 and
8.4_Glut), and estrogen (putatively synthesized by aromatase in RG3) to
ESR2 (preferentially expressed in RG2; see Supplementary Results, Fig.
S11, S12). In summary, cell–cell communication, spatial transcriptomics,
previous tracing experiments, mediation analyses, and gene expression
together supported a testable circuit model in which projections from
9_Glut, 4_GABA htr1d+, 4_GABA vipr2+ to Dl-v regulate functional chan-
ges in subpopulations of radial glia, hippocampal-like neuronal reba-
lancing, and building behavior. The hypothesized model is that
behavior-associated excitation in three neuronal populations, together
with behavior-associated aromatase expression in RG3, promotes the
downregulation of the CDG module and a corresponding exit from
quiescence in RG2. This exit from quiescence promotes 8.1_Glut and
8.4_Glut neuronal rebalancing, a cellular reorganization that, in turn,
facilities building behavior (Fig. 9J and Fig. S13).

Discussion
Behaviors evolve through genomic variation and are executed through
the activity and interactions of many heterogeneous cell populations.
Historically, the inability to profile many cell populations simulta-
neously has constrained progress in identifying which populations
coordinate specific behaviors and understanding how genetic
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Elsevier.
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variation shapes their function. These goals have been advanced lar-
gely through the concerted efforts of many laboratories focusing on
specific behaviors in the samemodel species over decades. Sn/scRNA-
seq technologies disrupt this landscape by enabling (1) simultaneous
functional profiling of many cell populations and (2) rapid tracing of
behavior-associated genetic variation to specific cell populations in
any species. We combined these approaches to show evidence that
genome divergence associated with social behavioral evolution has
altered a subpopulation of glia, changing neuron-glia interactions,
downstream hippocampal-like cellular organization, and function of
neural circuits underlying active castle-building behavior.

Our work builds on three proof-of-principle studies demonstrat-
ing the promise of sn/scRNA-seq technologies for profiling neuronal
signatures of behavior21,24,26. However, these studieswere conducted in
C57BL6/J inbredmice (hinderingmatchingof pooled cells to individual
subjects), and functional profiling was focused on IEGs. Here we
investigated a natural species and used individual genetic variation to
match single nuclei to 38 test subjects, their recent behavioral his-
tories, and their relative gonadalmasses. This improved our power for
analyzing behavior-associated IEG signals as well as behavior-
associated changes in gene expression, cell type proportions, glial
functional states, and predicted directional communication among
cell populations. Converging evidence supported the involvement of
three build-IEG+ populations (9_Glut, 4_GABA htr1d+, 4_GABA vipr2+)
in building behavior. These populations showed building-associated
expression of proneurogenic genes as well as signatures of directional
and building-associated communication with 8.4_Glut, which in turn
showed building-associated increases in relative proportion. Using
spatial transcriptomics, we mapped these build-IEG+ populations to
brain regions that send axonal projections to Dl-v (where 8.4_Glut
mapped) in other teleost species. Notably, 9_Glut mapped to Dd, a
dorsal pallial region that innervates Dl in a many-to-one fashion in
other fish, mirroring a conserved hippocampal circuit that regulates
pattern separation in mammals49. 9_Glut also accounted for a dis-
proportionate number of build-DEGs andwas identified as a candidate
mediator of both building behavior and neuronal rebalancing. Thus,
the combination of functional profiling, cell–cell communication, and
spatial transcriptomic analyses converged on candidate cell popula-
tions, brain regions, and circuit projections underlying building.

Analyses of behavior-associated gene expression, proneurogenic
gene expression, cluster proportion changes, radial glial functional
states, and genome divergence also converged on an unanticipated
role for neurogenesis in the evolution and expression of castle-
building behavior. Brain region-specific cell proliferation and/or neu-
rogenesis during species-specific social contexts occurs in diverse
taxa50,51. In cichlids, changes in the social environment causechanges in
cell proliferation within three hours, supporting relatively rapid
behavior-associated changes in neurogenesis52. Multiple lines of evi-
dence supported building-associated neurogenesis in 8.4_Glut, a
cluster that mapped to a subregion of the putative hippocampal for-
mation homolog that is associated with spatial learning in other fish34.
In the wild, bowers are constructed through thousands of spatial sand
manipulation decisions that give rise to a species-specific structure. It
has been reported in several species that in response to damage or
destruction during storms, males will repair or reconstruct their
bowers to match their original size, geometry, and spatial location53,54,
suggesting spatial information is central to bower behavior. After the
breeding season, bowers are abandoned. It is intriguing to speculate
that building-associated neurogenesis in Dl-v is related to spatial
representations of the bower that are maintained during the breeding
season. Interestingly, seasonal changes in neurogenesis occur in
songbirds that repeat their song within a breeding season but change
their song between seasons. These birds show increased cell pro-
liferation in vocal learning circuits during the breeding season that
declines when the season is over55,56.

Together our data led to a testable model linking behavioral and
genome evolution to glia, hippocampal-like rebalancing, neuronal
excitation, and active building behavior. We propose that castle-
building behavior has evolved through divergence in a gene module
that is selectively expressed in specific subpopulations of quiescent
radial glia. In one subpopulation, the divergent gene module shows
building-associated downregulation, and this downregulation corre-
sponds to signatures of reduced glial quiescence and downstream
cellular reorganization in the putative homolog of the hippocampus.
We find further evidence that building-associated excitation in specific
neuronal populations and aromatase expression in another glial sub-
population are important in coordinating these events. Notably, glia
may represent a recurring cellular target for vertebrate brain and
behavioral evolution, as genes regulated by human accelerated
regions and gained enhancer regions are also enriched in this cell
type.57. Ultimately, our work provides an example of how specific
genes, brain regions, and cell populationsmay have given rise to a new
form of social behavior.

Interestingly, theCDGmodule resides in a 19Mbpgenomic region
that exhibits signatures of chromosomal inversions58–60. Inversions can
facilitate rapid evolution by protecting large-scale and adaptive cis-
regulatory landscapes and multi-allele haplotypes (supergenes) from
recombination61,62. Recent work in ruff and white-throated sparrows
support roles for inversions in social behavioral evolution63,64. In our
data, four CDG module genes, including wdr73, are immediately
proximate to one end of the 19Mbp region. It is intriguing to speculate
that a divergent cis-regulatory architecture surrounding this putative
inversion breakpoint has changed CDG regulation in glia to facilitate
behavioral evolution.

Methods
Subjects
All cichlids (species Mchenga conophoros) used in this study were
fertilized and raised into adulthood (>180 days) in the Engineered
Biosystems Building cichlid aquaculture facilities at the Georgia
Institute of Technology in Atlanta, GA, in accordance with the
Institutional Animal Care and Use Committee guidelines (IACUC
protocol number A100029). This colonywas originally derived from
wild-caught populations collected in Lake Malawi. All experimental
animals were collected as fry at ~14 days post-fertilization from
mouthbrooding females and were raised with broodmates on a
ZebTec Active Blue Stand Alone system. At ~60 days post-fertiliza-
tion, animals were transferred to 190-L (92 cm long × 46 cm wide ×
42 cm tall) glass aquaria and were housed in social communities
(20–30 mixed-sex individuals) into adulthood. Environmental con-
ditions of aquaria were similar to those of the Lake Malawi envir-
onment; subjects were maintained on a 12-h:12-h light:dark cycle
with full lights on between 8 a.m. and 6 p.m. Eastern Standard Time
(EST) and dim lights on for 60min between light-dark transition
(7 a.m.–8 a.m. and 6 p.m.–7 p.m. EST) in pH = 8.2, 26.7 °C water and
fed twice daily (Spirulina Flake; Pentair Aquatic Ecosystems,
Apopka, FL, USA). All tanks were maintained on a central recircu-
lating system. Reproductive adult subject males (age 6–14 months
post-fertilization, n = 38) were visually identified from home tanks
based on nuptial coloration and expression of classic courtship
behaviors (i.e., chasing/leading, quivering). Reproductive adult sti-
mulus females were visually identified from home tanks based on
distension of the abdomen (caused by ovary growth) and/or buccal
cavity (caused by mouthbrooding).

Behavior tanks
Behavior tanks were equipped with LED strip lighting synced with
external room lighting to minimize large shadows and maximize
consistency in video data used for action recognition (10-h:14-h
light:dark cycle). Sand (Sahara Sand, 00254, Carib Sea Inc.; ACS00222)
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was contained within a 38.1 cm long × 45.6 cm wide section of each
tank and separated from the rest of the aquarium by a custom 45.6 cm
wide × 17.8 cm tall × 0.6 cm thick transparent acrylic barrier secured
with plastic coated magnets (1.25 cm wide × 2.5 cm tall × 0.6 cm thick;
BX084PC-BLK, K&J Magnetics, Inc.). This design ensured that all fish
could freely enter and leave the enclosed sand tray region throughout
the trial. At the start of the trial, the smoothed sand surface lay
~29.5 cm directly below a custom-designed transparent acrylic tank
cover (38.1 cm long × 38.1 cmwide × 3.8 cmtall) that directly contacted
thewater surface to eliminate rippling for top-downdepth sensing and
video recordings.

Behavior assays
Subject males were introduced to behavioral tanks containing sand
and four reproductive adult age- and size-matched stimulus females
of the same species. Broods were collected from all mouthbrooding
females prior to the introduction of subject males to behavior tanks.
Following the introduction, eachmalewas allowed to acclimate to the
novel behavior tank setup and to initiate castle-building to minimize
potential confounding effects of novelty on brain gene expression
that may be caused by introduction to a novel environment and/or a
novel experience (i.e., the first experience building). After building
was confirmed during this initial pre-trial and acclimation period, the
sand surface in each behavioral tank was reset (i.e., the sand surface
was smoothed) shortly before lights off, and behavioral trials were
initiated in whichmale activity was recorded and remotelymonitored
over subsequent days using an automated depth sensing and video
recording system as previously described in ref. 15. Briefly, the system
uses a Raspberry Pi 3 mini-computer (Raspberry Pi Foundation), a
Microsoft XBox Kinect Depth sensor to track the developing bower
structure (snapshots captured every 5min), and a Raspberry Pi v2
camera to record 10 h of high-definition video data daily. The system
regularly uploads depth change updates to a Google Documents
spreadsheet, enabling real-time, remote monitoring of bower con-
struction activity for every male. Pairs of males (one building, one
control) were collected on the same day at the same time (immedi-
ately back to back), as described in more detail in the “Tissue Sam-
pling” section below. Following each trial, a trained 3D Residual
Network17 was used to predict male building and quivering behaviors
from video data in the 100min preceding collection, and depth data
were analyzed as an additional measure of building behavior in the
same period.

Tissue sampling
Actively constructing males (n = 19) were identified through remote
depth change updates and were collected between 11 a.m. and 2 p.m.
EST (3–5 h after full lights-on and feeding, and >12 h after the most
recent sand reset) to control for potential effects of circadian rhythm,
experimenter activity, feeding, hunger, and anticipation of food on
brain gene expression. At the same time, a neighboring male that was
not constructing a bower (nor had initiated construction following
reset) but could also freely interact with four females and sand, was
also collected (control, n = 19). Immediately following collection,
subjects were rapidly anesthetized with tricaine for rapid brain
extraction, measured for standard length (SL, distancemeasured from
snout to caudal peduncle) and body mass (BM), and rapidly decapi-
tated for brain extraction. Telencephala (including olfactory bulbs)
were dissected under a dissectionmicroscope (Zeiss Stemi DV4 Stereo
Microscope 8x - 32x, 000000-1018-455), in Hibernate AB Complete
nutrient medium (HAB; with 2% B27 and 0.5mM Glutamax; BrainBits)
containing 0.2 U/μl RNase Inhibitor (Sigma). Immediately following
dissection telencephala were rapidly frozen on powdered dry ice and
stored at −80 °C. Testes were then surgically extracted andweighed to
calculate gonadosomatic index (GSI = gonad mass/BM× 100) for each
subject (subject information available in Supplementary Data File 1).

Nuclei isolation
Nuclei were isolated following a protocol adapted from ref. 65 and
optimized for cichlid telencephala. Immediately prior to single nuclei
isolation, frozen telencephala were pooled into five biological repli-
cates (n = 3–4 subjects/pool) per behavioral condition (building versus
control). Pools were organized such that individuals within a pool had
nearly identical telencephalic mass with the aim of equalizing the
relative mass of tissue and the relative number of nuclei sampled from
each subjectwithin each pool. Additionally, paired constructing versus
control pools were organized such that males in both pools were
matched as closely aspossible in relative age, bodymass, and sampling
dates. Frozen telencephalon tissue sample pools were transferred into
chilled lysis buffer containing 10mM Tris-HCL (Sigma), 10mM NaCl
(Sigma), 3mM MgCl2 (Sigma), 0.1% Nonidet P40 Substitute (Sigma),
and Nuclease-free H2O. The tissue was incubated on ice and lysed for
30min with gentle rotation. Following lysis, 1.0mL HAB medium was
added and the tissue was rapidly triturated 20 rounds using silanized
glass Pasteur pipettes (BrainBits) with a 500μm internal diameter to
complete tissue dissociation. Dissociated tissue were centrifuged
(600×g, 5min, 4 °C) and resuspended in 2.0ml chilled wash and
resuspension buffer containing 2% BSA (Sigma) and 0.2 U/μl RNase
Inhibitor (Sigma, as described above “Tissue Collection”) in 1X PBS
(Thermo Fisher). The nuclei suspensions were filtered through 40μm
Flowmi® cell strainers (Sigma) and 30μm MACS® SmartStrainers
(Milltenyi) to remove large debris and aggregations of nuclei prior to
fluorescence-activated cell sorting (FACS).

Fluorescence-activated cell sorting
Pilot experiments revealed that multiplets (clumps of multiple nuclei
adhered together) passed through both passive filtration steps, and
therefore we further improved the quality and purity of our sample
using FACS (BD FACSAriaTM Fusion Cell Sorter, BD Biosciences) and
FACSDiva software (v8.0.1, BD Biosciences). Sizing beads (6μm; BD
Biosciences) and 1.0μg/ml DAPI (Sigma) were used to set gating
parameters, enabling the selection of singlet nuclei based on size
(forward scatter), shape (side scatter), and DNA content (DAPI fluor-
escence. Thus, this step efficiently filtered out multiplets and irregu-
larly shaped nuclei (characteristic of unhealthy or deadnuclei). At least
300,000 nuclei/pool were collected into 1mL wash and resuspension
buffer for downstream sequencing. FACS collection data was visua-
lized using FlowJo v10.6.0.

snRNA-seq
Suspensions of isolated nuclei were loaded onto the 10x Genomics
Chromium Controller (10x Genomics) at concentrations ranging from
400-500 nuclei/ul with a target range of 3,000–4,000 nuclei per
sample. Downstream cDNA synthesis and library preparation using
Single Cell 3’ GEM, Library and Gel Bead Kit v3.1, and Chromium i7
Multiplex Kit were performed according to manufacturer instructions
(Chromium Single Cell 3’ Reagent Kits User Guide v3.1 Chemistry, 10X
Genomics). Sample quality was assessed using high-sensitivity DNA
analysis on the Bioanalyzer 2100 system (Agilent) and libraries were
quantified using a Qubit 2.0 (Invitrogen). Barcoded cDNA libraries
were pooled and sequenced on the NovaSeq 6000 platform (Illumina)
on a single flow cell using the 300-cycle S4 Reagent kit (2x150 bp
paired-end reads; Illumina).

DNA sequencing
Genomic DNA was isolated from diencephalic tissue sampled from
each test subject using a DNeasy Blood and Tissue Kit pipeline with a
60min lysis time and without RNase A. The 260/280 nm absorbance
ratio ranged from 1.91–2.10 across subjects. Libraries were prepared
following a NEBNext Ultra II FS DNA Library Prep Kit for Illumina
protocol. Libraries were sequenced on two NovaSeq 6000 lanes using
300-cycle SP Reagent Kits (2x150 bp paired-end reads; Illumina).
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Spatial transcriptomics
Telencephala were microdissected from two size-matched build-con-
trol pairs ofMchenga conophorosmales (n = 4 males total), embedded
in cryomolds,flash-frozen ondry ice, and stored at −80 °C until further
processing. Tissue was cryo-sectioned coronally at 10-μm thickness at
−20 °C (Cryostar NX70) and mounted onto pre-chilled Visium Spatial
Gene Expression slides (10X Genomics). RNA quality (RIN >7) was
confirmed on a Bioanalyzer 2100 system using an RNA 6000 Nano Kit
(Agilent). Spatial gene expression slides were processed following
manufacturer instructions (Visium Spatial Gene Expression Reagent
Kits User Guide, 10X Genomics). Barcoded cDNA libraries were
sequenced on the NovaSeq 6000 platform (Illumina) using the 150-
cycle SP Reagent Kit.

Quantification and statistical analysis
Behavioral analysis. For all trials, 3D ResNet-predicted behaviors and
structural change across the sand surface was analyzed over the
100min preceding collection following the same general approach
described previously in ref. 17. Briefly, a smoothing algorithm was
applied to remove depth change attributable to technical noise, and
small regions of missing data were recovered by spatial interpolation.
Bowersweredefined as any regionwithinwhich one thousand ormore
contiguous pixels (equivalent to ~10 cm2) changed in elevation by
more than 0.2 cm in the same direction (~2 cm3 volume change total)
based on previous analysis of depth change caused by non-building
home tank activity15. Depth change values were adjusted based on the
cubed standard length of each subject male, to create a standardized
measure of building activity (larger males have larger mouths and can
scoop and spit a larger volume of sand). Action recognition was used
to track the number, location, and timepoints of predicted bower
construction behaviors (scoops, spits, and multiple events) and qui-
vering behaviors over the same 100min period. The number of qui-
vering events was log-normalized due to a single outlier (building)
male with 257 predicted quivering events (~5.9 standard deviations
above the mean). Feeding behaviors were not analyzed because they
can be performed by both males and females and we are not able to
reliably attribute individual feeding events to the subject male.

We generated a single Bower Activity Index (BAI) metric to reflect
overall building activity by first calculating the regression line between
depth change and building events for each trial (n = 38, R2 = 0.76). We
then projected each male’s depth change and bower behavior values
onto that line, with the lowest value (0 predicted building events, 0
above threshold depth change) being set to 0. BAI was calculated as
the Euclidean distance along the regression line from the lowest value.
BAI was used as a continuous measure of castle-building behavior
throughout this study.

Differences in building, quivering, and GSI between groups were
analyzed using a paired t-test in which behave and control subjects
collected at the same time were treated as pairs.

snRNA-seq pre-processing and quality control
FASTQ files were processed with Cell Ranger v3.1.0 (10X Genomics).
Reads were aligned to the Maylandia zebra Lake Malawi cichlid gen-
ome assembly20 using a splice-aware alignment algorithm (STAR)
within Cell Ranger, and gene annotationswere obtained from the same
assembly (NCBI RefSeq assembly accession: GCF_000238955.4,
M_zebra_UMD2a). Because nuclear RNA contains intronic sequences,
introns were included in the cellranger count step. Cell Ranger filtered
out UMIs that were homopolymers, contained N, or contained any
base with a quality score of less than 10. Following these steps, Cell
Ranger generated ten filtered feature-barcodematrices (one per pool)
containing expression data for a total of 32,471 features (correspond-
ing to annotated genes) and a total of 33,895 barcodes (corresponding
to droplets and putative nuclei) that were used passed through addi-
tional quality control steps in the ‘Seurat’ package in R. Examination of

total transcripts, total genes, and proportion of mitochondrial tran-
scripts were similar across all ten pools, and therefore the samecriteria
were used to remove potentially dead or dying nuclei from all pools.
Barcodes associated with fewer than 300 total genes, fewer than 500
total transcripts, or greater than 5% (of total transcripts) of mito-
chondrial genes were excluded from downstream analysis on this
basis. This step filtered out a total of 20 (0.059%) barcodes. To reduce
the risk of doublets or multiplets, barcodes associated with more than
3000 total genes or 8000 total transcripts were also excluded. This
step filtered out a total of 201 barcodes (0.59%). In total, 33,674 bar-
codes (99.34%) passed all quality control filters and were included in
downstream analyses.

Dimensionality reduction
In order to perform dimensionality reduction, we first identified 4000
genes that exhibited the most variable expression patterns across
nuclei using the FindVariableFeatures function in Seurat with the
mean.var.plot selection method, which aims to identify variable fea-
tures while controlling for the strong relationship between variability
and average expression, and otherwise default parameters. Gene-level
data were then scaled using the ScaleData function in Seurat with
default parameters. To examine dimensionality, we first performed a
linear dimensional reduction using the RunPCA command with the
maximum possible number of dimensions (“dim” set to 50). We then
used Seurat’s JackStraw, ScoreJackStraw, and JackStrawPlot functions
to estimate and visualize the significance of the first 50 principal
components (PCs), and the Elbow plot function to visualize the var-
iance explained by the first 50 PCs. Because all 50 PCs were highly
statistically significant, and no drop off was observed in variance
explained across PCs, we used all 50 PCs for non-linear dimensional
reduction (Uniform Manifold Approximation and Projection, UMAP)
using the RunUMAP function in Seurat. For RunUMAP, “min.dist” was
set to 0.5, “n.neighbors” was set to 50, and “metric” was set to
“euclidean”.

Clustering
Prior to clustering, nuclei were embedded into a K-nearest neighbor
(KNN) graph based on euclidean distance in UMAP space, with edge
weights based on local Jaccard similarity, using the FindNeighbors
function in Seurat (k.param= 50, dims = 1:2, prune.SNN=0). Cluster-
ing was then performed using Seurat’s FindClusters function using the
Louvain algorithmwithmultilevel refinement (algorithm= 2). Thisfinal
stepwasperformed twice using twodifferent resolution parameters to
generate both coarse- and fine-grained structural descriptions of the
underlying data, facilitating the investigation of both major cell types
as well as smaller subpopulations. More coarse-grained clustering
(resolution =0.01) identified 15 1° clusters and fine-grained clustering
(resolution = 1.3) identified 53 2° clusters.

Cluster marker gene analysis
The biological identities of specific clusters were investigated
using a multi-pronged approach that incorporated unbiased ana-
lysis of cluster-specific marker genes as well as a supervised
examination of previously established marker genes. Cluster-
specific marker genes were identified using the FindAllMarkers
function in Seurat. Briefly, this function compares gene expression
within each cluster to gene expression across all other clusters and
calculates Bonferroni-adjusted p values using a Wilcoxon rank-
sum test. Functional enrichment analysis of GO categories among
cluster-specific marker genes was investigated by first converting
cichlid gene names to their human orthologs and then performing
functional enrichment analysis using ToppGene Suite with default
parameters. Enrichment results that survived FDR-adjustment
(q < 0.05) were considered statistically significant. Established
cell type-specific and neuroanatomical marker genes were
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identified from the literature (Supplementary Data File 2) and were
intersected with the output from FindAllMarkers to generate fur-
ther insight into the biological identity of clusters.

Assignment of nuclei to test subjects
To match individual nuclei to individual test subjects, we used
Demuxlet to match variants identified in snRNA-seq reads to var-
iants identified from the genomic sequence of each subject66. First,
genomic DNA from every test subject was collected and sequenced.
In total, 276.7 Gbp of sequenced reads were assigned quality scores
≥30 (91.4% of all reads). The corresponding FASTQ files were filtered
and aligned to the Maylandia zebra Lake Malawi cichlid genome
assembly (NCBI RefSeq assembly accession: GCF_000238955.4,
M_zebra_UMD2a). The resulting bam file was sorted, duplicates
removed, read groups added, and indexed using Picard tools
v2.23.3. Variants were then called using GATK v4.1.8.1 Haplotype-
Caller using the M. zebra umd2a reference genome. For each sam-
pling pool, individual vcf files were merged, resulting in ten files
(one for each pool). These files were then filtered to retain only
variants that varied among individuals within a pool. For each pool,
only single nucleotide polymorphisms (SNPs) for which (1) at least
one individual from the pool had a different genotype from the
other individuals and (2) no individuals had missing data, were used
as input to Demuxlet. The number of SNPs used ranged from 112,385
to 357,177, with a mean of 241,780 ± 22,369 per pool.

Next, variants were called from snRNA-seq reads following a
similar pipeline. Reads from Cell Ranger’s output bam file were fil-
tered for those that passed the quality control metrics described
above using samtools v1.11. The resulting bam file was sorted,
duplicates removed, read groups added, and indexed using Picard
tools. Variants were then called using GATK HaplotypeCaller using
the M. zebra umd2a reference genome and without the Mapping-
QualityAvailableReadFilter to retain reads that were confidently
mapped by Cell Ranger (MAPQ score of 255). The SNPs from the
snRNA-seq reads and the genomic DNA were used as input to
Demuxlet, which computed a likelihood estimation that each
nucleus belonged to each individual in the pool. Nuclei were
assigned to the individual test subject with the greatest probability
estimated by Demuxlet.

Identification of IEG-like genes
Three canonical IEGs (c-fos, egr1, npas4) were used to identify addi-
tional genes exhibiting IEG-like expression across clusters. For each of
these three IEGs, nuclei were split into IEG-positive versus IEG-negative
nuclei within eachof the 53 2º clusters. Within each cluster, differential
gene expression was analyzed between IEG-positive versus IEG-
negative nuclei using the FindMarkers function in Seurat, with
“logfc.threshold” set to 0, and “min.pct” set to 1/57 (57 was selected as
this was the number of nuclei in the smallest cluster). Within each
cluster, any genes that did not meet this criterion were excluded and
were assigned a p value of 1. Because FindMarkers requires at least
three nuclei to be present in both comparison groups, clusters that
contained less than three IEG-positive nuclei were excluded. Genes
that were detected in the majority of clusters, and that were sig-
nificantly (p <0.05) upregulated in IEG-positive nuclei in the majority
of those clusters were considered to be significantly co-expressedwith
each individual IEG. Genes that were significantly co-expressed with all
three IEGs were used as IEG-like markers for downstream analyses of
IEG-like expression.

Differential IEG expression
Building-, quivering-, and gonadal-associated IEG expression was ana-
lyzed in 1° and 2° clusters, gene-defined populations within 1° and 2°
clusters, and gene-defined populations regardless of cluster. To do
this, we calculated an IEG score for each nucleus, equal to the number

of unique IEG-like genes (n = 25) expressed. Building-, quivering-, and
gonadal-associated differences in IEG score were analyzed using a
beta-binomial model in which the number of IEG-like genes observed
as well as the number of the IEG-like genes not observed were tracked
as indicators of recent neuronal excitation. This analysis was per-
formed using the ‘PROreg’ v1.2 package in R (“BBmm” function,
m= 25)67. Because castle-building, quivering, and GSI were correlated
with one another, we analyzed expression using a sequence of beta-
binomial mixed-effects models in which different pairwise combina-
tions of predictor variables (building, quivering, and GSI) competed to
explain variance in IEG score. These models also included nested
random terms to account for variance explained by individual varia-
tion, pair, pool, and RNA isolation/cDNA library generation batch.
Within this framework, we ran the following seven models, which
allowed building (analyzed as either a binary or a continuous variable),
quivering, and GSI to compete in all possible combinations to explain
variance in IEG score:
(1) IEG score ~ BAI + log(quivering events)+ (subject/pool/batch) +

(subject/pair)
(2) IEG score ~ BAI +GSI + (subject/pool/batch) + (subject/pair)
(3) IEG score ~ BAI + log(quivering events)+GSI + (subject/pool/

batch) + (subject/pair)
(4) IEG score ~ Condition + log(quivering events) + (subject/pool/

batch) + (subject/pair)
(5) IEG score ~ Condition +GSI + (subject/pool/batch) + (subject/pair)
(6) IEG score ~ Condition + log(quivering events) +GSI + (subject/

pool/batch) + (subject/pair)
(7) IEG score ~ log(quivering events)+GSI + (subject/pool/batch) +

(subject/pair)

We defined significant building-, quivering-, and gonadal-
associated IEG effects as those in which (1) the raw p value for the
corresponding fixed effect (for building, BAI and condition; for qui-
vering, log-normalized quivering; for gonadal, GSI) was significant
(p < 0.05) in every model and (2) the harmonic mean p value across
models was significant after adjusting for multiple comparisons for all
genes and populations analyzed (hmpadj <0.05). To calculate the har-
monicmean p value, we used the “harmonicmeanp” v3.0 package in R.
Thus, building-associated IEG effects were considered significant if the
rawp value for the effect of condition andBAI <0.05 inmodels 1–6, and
if the harmonic mean p value across models 1–6 was significant after
adjusting formultiple comparisons across all cell populations (5% false
discovery rate).

Building-, quivering-, and gonadal-associated gene expression
Building-, quivering-, and gonadal-associated gene expression was
analyzed within 1° and 2° clusters using a multiple linearmixed-effects
regression approach with the “glmmSeq” v0.5.5 package for R68.
Because castle-building, quivering, and GSI were correlated with one
another, we analyzed expression using a sequence of linear mixed-
effects regression models in which different pairwise combinations of
predictor variables (building, quivering, and GSI) competed to explain
variance in gene expression. These models also included nested ran-
dom terms to account for variance explained by individual variation,
pair, sample pool, and 10X Chromium run. Thus, the sample size was
equal to the number of individuals (n = 38), with many repeated
observations being recorded from each individual (equal to the num-
ber of nuclei sampled from that individual as assigned to the cluster
being analyzed). Building was analyzed both as a continuous variable
(BAI) and as a binary categorical variable (behave versus control).

We defined build-DEGS, quiver-DEGs, and gonad-DEGs as genes
(within clusters) in which expression was significantly (raw p < 0.05)
associated with the corresponding fixed effect (for build-DEGs, BAI
and condition; for quiver-DEGs, log-normalized quivering; for gonad-
DEGs, GSI) in every model, and additionally in which the harmonic
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meanp value acrossmodels was significant after adjusting formultiple
comparisons for all genes and all clusters (5% false discovery rate). For
each model, the dispersion was estimated for each gene using the
“DESeq2” v1.38.3 package for R69, using parameters recommended for
single-cell datasets (fitType = “glmGamPoi”, minmu= 1e-06). Size fac-
tors for each gene were calculated using the “scran” v1.26.2 package in
R70, using default parameters, except that max.cluster.size was set to
the number of nuclei assigned to the cluster being analyzed. Genes
that were not observed in 19/19 pairs were excluded from analysis.

Estrogen response element detection
Estrogen receptors are hormone-dependent transcription factors
capable of regulating target gene expression by binding to specific
DNA sequences called estrogen response elements. Estrogen response
elements can be easily identified by their prototypicmotif of AGGTCA
separated by a 3-base spacer71. Genes within 25 kb of an estrogen
response element motif were identified and the location of the estro-
gen response element relative to the gene was recorded as either
intragenic (estrogen response element within the start site to the 3’
polyA tail), promoter (estrogen response element ≤5 kb upstream of
the gene), or distal (all other locations less than 25 kb away from the
gene). We identified the gene closest to each estrogen response ele-
ment using the closest command in bedtools v2.29.1.

Building-, quivering-, and gonadal-associated proneurogenic
gene expression
Building-, quivering-, and gonadal-associated proneurogenic gene
expression was analyzed in 1° and 2° clusters, gene-defined popula-
tions within 1° and 2° clusters, and gene-defined populations regard-
less of cluster using the same general approach described for IEG
expression, except that building-associated effects were defined as
those that were significantly associated with a condition (building or
control) in all models. Because we did not expect neurogenesis or
associated cellular processes to proceed over <100min timescales, we
did not additionally require effects to be significantly associated with
BAI in all models.

Building-associated changes in cell proportions
Behavior-associated differences in cell type-specific proportions were
analyzed for 1° and 2° clusterswith abinomialmixed-effects regression
model using the “glmer” function within the “lme4” v1.1-31 package in
R72. The model included condition, GSI, and quivering as fixed effects,
and included a random term for individual variation. 1° cluster pro-
portions were calculated as the proportion of all nuclei assigned to
each 1° cluster, and 2° cluster proportions were calculated as the
proportion of 1° parent cluster nuclei assigned to each 2° daughter
cluster. Thus, each nucleus was treated as an observation with a binary
outcome (either an instance of the target cluster or not) from an
individual that could be explained by condition, quivering, or GSI. p
values were estimated using the ‘lmerTest’ v3.1-3 package in R73, and
qvalues were calculated using the “qvalue” v2.30.0 package in R74.
Building-associated effects were defined as those that were significant
after accounting for multiple comparisons across all clusters with a
false discovery rate of 5% (q <0.05).

Cluster-specific enrichment of gene sets
To test if genes associated with the evolution of bower construction
behavior (CDGs and CDG module genes identified through compara-
tive genomics) were enriched in specific cell populations, we first cal-
culated a gene set score for each nucleus, equal to the total number of
unique behavioral evolution genes expressed. Because the gene set
score couldbe impactedby the total volumeof sequencedata sampled
from each nucleus, we divided the gene set score by the total number
of unique genes expressed in each nucleus. To quantify enrichment, a
Z-test was then used to compare normalized gene set scores for all

nuclei within a cluster compared to all other nuclei. The distribution of
the normalized values was assumed to be normal according to the
central limit theorem and population standard deviation was
approximated using sample standard deviation.

Secondly, the effect size, as measured by Cohen’s d, of the results
were compared to those of random gene lists. To prevent differences
in the overall amount of expression between random genes and genes
of interest from skewing results, we identified random genes that had
approximately equal number of UMIs expressed as a whole com-
pared to the genes of interest. Thiswas achieved by first ranking all the
genes from the highest number of UMIs expressed to the lowest. Next,
for each gene of interest, we generated a pool of 100 random genes
that (1) ranked most closely to the gene of interest and (2) were not
genes of interest themselves. Lastly, randomgene lists were created by
choosing one gene at random from each pool. The enrichment test
described above compared effect sizes for the genes of interest versus
effect sizes for 10,000 random gene lists. Clusters that were (1) sig-
nificantly enriched compared to other nuclei according to the process
above and (2) had greater effect sizes for the genes of interest than 95%
of randomly permuted gene lists were considered to be significantly
enriched.

RG subclustering
RG subclusters were determined using the same general procedure
used for clustering 1° and 2° clusters but restricted to only those nuclei
assigned to 1.1_RG and 1.2_RG.

Analysis of castle-associated genomic divergence
In order to identify potential behavior-associated genomic variants,
comparative genomic analyses were performed using genomic
sequencedata collected from27 LakeMalawi cichlid species75. Fixation
indices (FST) were calculated for polymorphic variants in two separate
analyses using vcftools v0.1.17. The first analysis compared pit-digging
(N = 11) versus castle-building (N = 9) species, and the second com-
pared rock-dwelling (N = 7) versus castle-building (N = 9) species. Var-
iants forwhich sequencedatawasmissing from50%ormoreof species
in either group were excluded from analysis. FST analyses were per-
formed separatelyusing the --weir-fst-pop and --fst-window-size 10000
flag to calculate FST across 10 kb bins in vcftools. Then, bins where FST
was greater than 0.20 in the pit-castle comparison and 0.20 in the
rock-castle comparison were kept. Only 8.9% of FDR-adjusted sig-
nificant (hmpadj<0.05) bins met these thresholds, indicating that the
selected bins were extremely divergent between castle-building and
non-castle-building species. Finally, genes located within 25 kb of bins
that passed these thresholds were identified using bcftools v1.11 with
the closest command and theM. zebra genome as ref. 20. Genes within
25 kb of highly divergent pit-castle and rock-castle bins are referred to
here as CDGs.

CDG co-expression and module analysis
Modules of co-expressed CDGs were analyzed using weighted gene
correlation network analysis (WGCNA) using the “WGCNA” v1.70-3
package in R. CDGs that were not observed in any nucleus were
excluded from the analysis. The normalized gene expression data for
CDGs was used as the input gene expression matrix and the function
pickSoftThreshold was used to determine the optimal soft-
thresholding power. We determined the optimal soft-thresholding
power to be 1 because it was the lowest power for which the scale-free
topologyfit index reached0.90. Then an adjacencymatrix was created
from the input gene expression matrix using the adjacency function
with power = 1, type = “signed” and otherwise default parameters. The
adjacency matrix was used as the topological overlap matrix (TOM)
and the dissimilarity matrix was calculated as 1 – TOM. To detect
modules, k-means clustering was performed using all possible values
of k and the results were compared to determine the optimal k. First, a
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distance matrix was constructed from the dissimilarity matrix pro-
duced byWGNCA using the dist function in R. Next, the function pam
from the R package “cluster” v2.1.0 was used to cluster the distance
matrix with diss = T, otherwise default parameters, and k set to the
value that produced the highest average silhouette width for all genes.
Briefly, silhouette width is a measure of the similarity of an element
(here a gene) to its own cluster (here a gene module) versus other
clusters. We found that k = 2, resulted in the greatest average silhou-
ettewidth. The strength of the CDGmodulewas evaluated using a two-
sampled Welch t-test comparing the silhouette width and gene-gene
correlations for CDGswithin the CDGmodule versus CDGs outside the
CDG module. To analyze the relationship between the CDG module
and signatures of RG quiescence, the correlation coefficient was cal-
culated based on the number of genes in theCDGmodule expressed in
each nucleus versus the number of quiescent markers expressed in
each nucleus. We compared the correlation coefficient against a per-
muted null distribution that was generated by randomly shuffling the
expression values of each gene in the CDG module across
nuclei 10,000 times.

Spatial transcriptomic pre-processing and quality control
Base Call files were demultiplexed into FASTQ files and processedwith
Space Ranger v1.3.1 (10X Genomics). Reads were aligned to the M.
zebra umd2a reference assembly as described above for snRNA-seq.
Following these steps, Space Ranger generated three filtered feature-
barcode matrices containing expression data for a total of 32,471 fea-
tures (corresponding to annotated genes). Spots with 0 UMIs were
removed, resulting in 6707 spots used in downstream analysis.

Spatial integration of snRNA-seq clusters
To predict locations of specific snRNA-seq identified clusters in spatial
transcriptomics data, an “anchor”-based integration workflow in
Seurat was used. First, both the snRNA-seq and spatial data were
normalized using the SCTransform function in Seurat. Next, anchors
were identified between the reference snRNA-seq and the query spatial
data using FindTransferAnchors in Seurat, and a matrix of prediction
scores was generated for each cluster in every spot using the Trans-
ferData function in Seurat. The maximum prediction score across
clusterswas not uniform; therefore, we normalized the values between
0 and 1 in order to enable meaningful comparisons across cell types.

Cell-cell communication analysis
To assess potential directional communication between cell popula-
tions, cell–cell communication analysis was performed using the R
package CellChat v1.5.0. Briefly, CellChat estimates the strength of the
potential ommunication between populations (measured as "connec-
tion weight") from a gene expression matrix based on a database of
human ligand-receptor interactions. In order to find the connection
weights between 1º and 2º clusters, two copies of the gene expression
matrix were generated, and the cells in the first copy were assigned 1°
cluster labels and the cells in the second copy were assigned 2° cluster
labels. We also sought to analyze connection weights among addi-
tional gene-defined populations that demonstrated behavior-
associated IEG expression. To achieve this, the gene expression
matrices for cells from these populations were duplicated again.
Before connection strengths were evaluated, the human orthologs of
the M.zebra gene names in the gene expression matrix were found.
Since the gene expression matrix does not allow for duplicate gene
names, e.g., many-to-one orthologs, values for the many-to-one
ortholog with the greatest number of normalized counts were kept
and others were excluded from analysis. Next, a CellChat object was
created using the createCellChat function. Over-expressed genes and
over-expressed interactions were found using the identifyOver-
ExpressedGenes and identifyOverExpressedInteractions functions,
respectively. Next, connection weights were calculated using the

computeCommunProb function with the method for computing the
average gene expression per cell group set to truncatedMean, trim set
to 0.1, and population.size set to FALSE. Then, the cellular commu-
nication network was inferred and aggregated using the filterCom-
munication and aggregateNet functions. The receptor-ligand and the
signaling pathway weights were saved using subsetCommunication
with the slot.name parameter set to “net” and netP respectively.

Mediation analyses
Mediation analysis tests if the relationship between a predictor and
outcome variable is influenced by possible mediator variables.
Analyses of quivering and GSI as possible mediators of bower
activity were performed using the R package BruceR v0.8.9 (https://
psychbruce.github.io/bruceR/). In these analyses, the groupwas the
predictor (categorical, build or control), bower activity index was
the continuous outcome, and quivering (log-normalized) and GSI
were investigated as possible independent mediators or as possible
serial mediators (in both possible orders), in all cases with nsim set
to 1000. For all downstream analyses, which included larger sets of
multiple possible mediators, multivariate outcomes in some cases,
and missing observations for some individuals in some cases (RG8

and RG1 nuclei were only sampled from 32/38 and 37/38 males,
respectively), we performed regularized multiple mediation analy-
sis using the R package mmabig v3.1.076–78. Briefly, this analysis uses
a regularization approach to identify candidate mediators and to
estimate their collective and individual indirect effects on the
relationship between the predictor variable (i.e., group) and out-
come (i.e., building activity, rebalancing, build-IEG+ score, and RG
biology). We used this approach to investigate possible upstream
and downstream mediation effects for building activity, build-IEG+
excitation, neuronal rebalancing, RG biology, and RG CDG expres-
sion. Candidate mediators were identified using the data.org.big
function with alpha set to 0.2 (where 1 indicates a LASSO penaliza-
tion and 0 indicates a ridge penalization), alpha1 set to 0.05,
alpha2 set to 0.05, and lambda set to “exp(seq(log(0.001), log(5),
length.out = 10,000))”. Estimation of indirect effects was per-
formed using the mma.big function with alpha set to 0.2, alpha1 set
to 0.05, alpha2 set to 0.05, n2 set to 1000, and lambda set to
“exp(seq(log(0.001), log(5), length.out = 1000))”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The snRNA-seq and spatial transcriptomics data generated in this
study are deposited and publicly available in the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)
under accession code GSE217619 (spatial transcriptomics data are
deposited as a SubSeries). The DNA data generated in this study are
deposited and publicly available in the NCBI BioProject databank
under accession code PRJNA867404. The reference genome used in
this study was the Maylandia zebra UMD2a RefSeq assembly, depos-
ited and publicly available in the NCBI BioProject databank under
accession code GCF_000238955.4. Source data are provided with
this paper.

Code availability
Code use for core analyses is publicly available at https://github.com/
streelmanlab/cichlid_sn/, https://doi.org/10.5281/zenodo.8030021.
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