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Blocking μ-opioid receptors attenuates reinstatement of
responding to an alcohol-predictive conditioned stimulus
through actions in the ventral hippocampus
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The µ-opioid system is involved in the reinstatement of responding that is immediately evoked by alcohol-predictive cues. The
extent of its involvement in reinstatement observed in a new model that evaluates the delayed effects of re-exposure to alcohol,
however, is unclear. The current study investigated the role of µ-opioid receptors (MORs) in the delayed reinstatement of an
extinguished, Pavlovian conditioned response that was evoked 24 h after alcohol re-exposure. Female and male Long-Evans rats
received Pavlovian conditioning in which a conditioned stimulus (CS) was paired with the delivery of an appetitive unconditioned
stimulus (US; Experiments 1, 2, 4: 15% v/v alcohol; Experiment 3: 10% w/v sucrose) that was delivered into a fluid port for oral intake.
During subsequent extinction sessions, the CS was presented as before but without the US. Next, the US was delivered but without
the CS. A reinstatement test was conducted 24 h later, during which the CS was presented in the absence of the US. Silencing MORs
via systemic naltrexone (0.3 or 1.0 mg/kg) attenuated reinstatement of port entries elicited by an alcohol-CS, but not those elicited
by a sucrose-CS. Finally, blocking MORs in the ventral hippocampus via bilateral microinfusion of D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-
Thr-NH2 (CTAP; 2.5 or 5.0 µg/hemisphere) prevented reinstatement of port alcohol-CS port entries. These data show that MORs are
involved in the delayed reinstatement of a Pavlovian conditioned response in an alcohol-specific manner. Importantly, these data
illustrate, for the first time, that MORs in the ventral hippocampus are necessary for responding to an alcohol-predictive cue.
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INTRODUCTION
An established theory in the research on alcohol use disorders is
that environmental stimuli which accompany alcohol intake can
become cues that predict alcohol availability. Consequently,
exposure to alcohol-predictive cues can influence human beha-
viour, such as precipitating craving and relapse [1–3]. Similarly in
animal studies, exposure to alcohol-predictive contexts [4, 5],
discrete cues [6, 7], discriminative stimuli [8], and alcohol-primes
[9, 10] prompts the reinstatement of extinguished, conditioned
responding for alcohol. These reinstatement models are valuable
tools that provide insight into how maladaptive behaviours in
response to cues contribute to relapse [1]. As such, it is essential to
understand the neural mechanisms that drive reinstatement of
responding to alcohol-predictive cues.
There is considerable evidence supporting the involvement of

the opioid system in conditioned responding evoked by alcohol-
predictive cues. One of the few pharmacotherapies approved for
treating alcohol use disorders is the µ-opioid receptor (MOR)
antagonist naltrexone, which reduces alcohol intake and probability
of relapse [11, 12]. It is posited that naltrexone’s efficacy is in part
due to a reduction in cue-evoked craving for alcohol [13, 14].
Similarly, in animal models, systemic MOR antagonist treatment
attenuates reinstatement of operant alcohol-seeking evoked by an
alcohol-predictive context [15–17], discrete cue [18], discriminative

stimulus [19–21], and alcohol-prime [22–24]. Blocking MORs does
not affect other motivated behaviour such as alcohol-seeking
reinstated by stressful stimuli [18, 22] or reinstatement of sucrose-
seeking [25], thereby demonstrating that the involvement of MORs
in reinstatement is alcohol-specific.
While the systemic effects of MOR antagonists on cue-

evoked alcohol-seeking are well documented, the neural loci of
this effect are less understood. The strongest evidence implicates
substrates of the reward neurocircuitry, like the nucleus accumbens
[26, 27], basolateral amygdala [16, 28], and ventral pallidum [29, 30].
The extent to which MORs in other brain regions contribute to
reinstatement of responding, however, remains largely unknown
despite there being promising options. The ventral subregion of the
hippocampus is a likely target as it is an integral part of the reward
neurocircuitry [30], has rich expression of MORs [31, 32], and
inactivation of this region attenuates reinstatement of drug-seeking
evoked by drug-predictive cues and contexts [33–37]. Despite this
evidence, the role of ventral hippocampal MORs in responding to
alcohol-predictive cues has not yet been investigated.
The involvement of MORs in responding to alcohol-predictive

cues has, overwhelmingly, been studied using traditional rein-
statement models. While these models provide insight into how
reinstating stimuli immediately precipitate relapse-like behaviour,
they do not address the delayed impact that these stimuli have on
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behaviour. A novel reinstatement model addresses this delayed
effect. Following the acquisition and extinction of conditioned
responding to an alcohol-predictive conditioned stimulus (CS), rats
are re-exposed to alcohol. When tested 24 h later, responding to the
CS is significantly reinstated [38, 39]. This novel model has great
translational value, as it illustrates how a lapse in alcohol use can
influence relapse at a future point in time. Indeed, momentary
lapses in drug use are powerful predictors of relapse months in the
future [40]. The delayed reinstatement model captures this distinct
aspect of human addiction that traditional models do not.
Interestingly, this model is also driven by a psychological process,
specifically a context-alcohol association [39], which is distinct from
the processes proposed to drive traditional reinstatement [41].
These methodological and mechanistic differences highlight the
novelty of the delayed reinstatement model, which also brings into
question if different neural processes may govern this distinct
behaviour. Investigating these potential differences would help
develop a greater understanding of the complex phenomenon that
is relapse.
To better understand the neural mechanisms underlying the

delayed reinstatement model, we assessed the role of MORs in this
behaviour. The effects of systemic naltrexone administration on
reinstatement of responding to an alcohol-CS were tested in male
(Experiment 1) and female rats (Experiment 2). A separate
experiment tested the effects of naltrexone on reinstatement of
responding to a sucrose-predictive CS (Experiment 3). Then, to
determine the role of ventral hippocampal MORs in delayed
reinstatement of responding for alcohol, the effects of administer-
ing the MOR antagonist, CTAP, into the vHipp on the reinstatement
were tested (Experiment 4).

METHODOLOGY
Subjects
Female and male Long-Evans rats (Envigo, Indianapolis, IN; 8 weeks
on arrival) were same-sex, pair-housed upon arrival then single-
housed three days later. Cages containing unrestricted access to
chow (Purina Agribrands, Charles River), water, and environmental
enrichment (see Supplementary Materials), were held in a colony
room following a 12 h light/dark cycle (0700 h lights on;
experiments conducted during the light phase). All procedures
followed the Canadian Council on Animal Care guidelines and
were approved by the Concordia University Animal Research
Ethics Committee.

Apparatus
Behavioural procedures were conducted in 12 conditioning
chambers (ENV-009A; Med Associates Inc., St-Albans, VT) that are
described in the Supplementary Materials.

Drugs and solutions
Alcohol solutions (5%, 10%, 15%; v/v) were prepared by diluting
95% ethanol in tap water. A 10% (w/v) sucrose solution was
prepared by dissolving sucrose (500070, Bioshop) in tap water.
Naltrexone solutions were prepared on the day of use by
dissolving naltrexone hydrochloride (Sigma Aldrich) in sterile
saline (0.9%) to obtain a 0.3 or 1.0 mg/ml concentration that was
administered at a volume of 1 ml/kg. D-Phe-Cys-Tyr-D-Trp-Arg-
Thr-Pen-Thr-NH2 (CTAP; Tocris) was dissolved in sterile saline
(0.9%) to obtain a 2.5 or 5.0 µg/0.3 µl concentration which was
administered at a volume of 0.3 µl/hemisphere. Aliquots were
stored at −20 °C until use.

Surgery
After 12 intermittent alcohol access sessions, rats underwent
stereotaxic surgery using standard procedures [42] to bilaterally
implant stainless steel cannulae (26 gauge; Plastics One C235G-
1.2-SPC) into the ventral hippocampus (vHipp). Coordinates used

were −5.5 mm anterior-posterior, ±5.4 mm medial-lateral, and
−3.0 ventral from the skull surface [43, 44]. During intracranial
drug microinfusions, the injector tip (Plastics One C235I-SPC)
protruded 3.0 mm below the cannula base, resulting in a final
ventral coordinate of −6.0 mm. Guide cannulae were occluded
with 7.5 mm dummy canulae. Postsurgical pain was managed with
buprenorphine (Buprenex; 0.1 mg/kg, subcutaneous). Three addi-
tional intermittent alcohol access sessions were conducted 1 week
after surgery.

Intracranial microinfusions
Bilateral microinfusions were conducted using standard proce-
dures [42]. Microinfusions were administered with a 33 gauge
injector attached to polyethylene tubing (PE20, VWR, CA-63 018-
645) connected to a 10 µL Hamilton syringe (Hamilton, 1701N).
Microinfusions were delivered by syringe pump (Pump 11 Elite,
Harvard Apparatus, 704 501) at a rate of 0.3 µl/min; injectors
remained in place for 2 min to ensure proper drug diffusion.

Behavioural procedures
Intermittent alcohol access and sucrose habituation. Fifteen
intermittent alcohol access sessions (see Supplementary Materials)
were conducted. In Experiment 3, rats received 48 h access to 10%
(w/v) sucrose in the home-cage to familiarise them with sucrose.

Pavlovian conditioning. Sessions began with the house lights
illuminating, followed by eight trials of a 20 s continuous white-
noise conditioned stimulus (CS) paired with 10 s activation of the
fluid pump which delivered 0.3 ml of the US into the fluid port
which co-terminated with the CS (Experiments 1, 2, 4: alcohol;
Experiment 3: sucrose). Trials were presented on a variable time
240 s schedule. Fluid ports were checked at the end of each session
to verify that the US was ingested. The number of Pavlovian
conditioning sessions conducted for each experiment are detailed
in the Supplementary Materials.

Extinction. Sessions were identical to Pavlovian conditioning
parameters except that CS presentations were paired with the
activation of empty syringe pumps (i.e. US was not delivered). The
number of extinction sessions conducted for each experiment are
detailed in the Supplementary Materials.

US Re-exposure. During this session, 2.4 ml of the US (Experi-
ments 1, 2, 4: alcohol; Experiment 3: sucrose) was delivered into
the fluid port according to the same delivery schedule as
Pavlovian conditioning; however, the CS was not presented.

Reinstatement test. Reinstatement tests were conducted 24 h
after the US re-exposure session, during which the CS was
presented under extinction conditions.

Experiment 1: Effects of systemic naltrexone on reinstatement
of responding to an alcohol-CS
The effects of systemic naltrexone administration on the
reinstatement of responding to an alcohol-CS were tested. After
intermittent alcohol access, naïve male rats (n= 15) received
Pavlovian conditioning with an alcohol-US, extinction, alcohol-US
re-exposure, then a test for reinstatement 24 h later. Naltrexone (0,
0.3, 1.0 mg/kg; counterbalanced across tests) was subcutaneously
injected 10–15min before test [15, 18, 20]. Rats were habituated
with saline injections before the second-last extinction session
and the alcohol-US re-exposure sessions. The experimental
procedure is illustrated in Fig. 1A.

Experiment 2: Effects of systemic naltrexone on reinstatement
of responding to an alcohol-CS in female and male rats
The effects of systemic naltrexone on reinstatement of responding
to an alcohol-CS was replicated in female and male rats. A group
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of naïve rats (n= 18 females, n= 18 males) underwent the
identical reinstatement and pharmacological manipulations
described in Experiment 1.

Experiment 3: Effects of systemic naltrexone on reinstatement
of responding to a sucrose-CS
The capacity for naltrexone to attenuate reinstatement in an
alcohol-specific manner was examined by testing the effects of
systemic naltrexone administration on reinstatement of respond-
ing to a sucrose-CS. After sucrose habituation, naïve rats (n= 12
females, n= 12 males) received Pavlovian conditioning with a
sucrose-US, extinction, sucrose-US re-exposure, then a test for
reinstatement 24 h later. Naltrexone (0, 0.3, 1.0 mg/kg; counter-
balanced across tests) was subcutaneously injected 15min before
the reinstatement test. Rats were habituated to saline injections
before the second-last extinction session and the sucrose-US re-
exposure session. The experimental procedure is illustrated in
Fig. 3A.

Experiment 4: Effects of intra-ventral hippocampal CTAP on
reinstatement of responding to an alcohol-CS
The role of ventral hippocampal MORs in the reinstatement of
responding to an alcohol-CS was tested via intra-ventral
hippocampal administration of the MOR antagonist CTAP. CTAP
was used to specifically target MORs and not delta or kappa opioid
receptors [45]. After stereotaxic surgery and intermittent alcohol
access, naïve rats (n= 13 females, n= 13 males) received
Pavlovian conditioning with an alcohol-US, extinction, alcohol-US
re-exposure, followed 24 h later with a test for reinstatement.
CTAP (0, 2.5, 5.0 µg/hemisphere; counterbalanced across tests)
was bilaterally microinfused into the ventral hippocampus 5min
before the reinstatement test [26, 29, 46, 47]. Rats were habituated
to intracranial microinfusions of saline (0.3 µl/hemisphere) before
the second-last extinction session and the US re-exposure session.
The experimental procedure is illustrated in Fig. 4A.

Histology
Coronal sections (40 µm) were collected from paraformaldehyde-
fixed brains using a cryostat (−20 °C) for Nissl staining using a
standard protocol [42]. Ventral placements of injector tips were
identified using light microscopy and the Paxinos and Watson rat
brain atlas [48].

Data management
Exclusion criteria. Rats were excluded if they did not learn the
Pavlovian task, did not have extinguished conditioned respond-
ing, had a difference score of ≤0 ΔCS port entries (reinstatement
test minus last extinction session) under saline treatment as these
rats were deemed to not reinstate under control conditions,
detached headcaps, obstructed cannulae, or injury (see Supple-
mentary Table 1 for sample sizes).

Variables. ΔCS port entries (CS port entries minus pre-CS port
entries) and intertrial interval port entries (port entries outside of
the CS interval) were analysed. Responding at reinstatement test
was compared to a baseline, which was average responding
during the last two extinction sessions.

Statistical analyses
All experiments used within-subjects designs and were analysed
using analysis of variance (ANOVA). Analyses included the Phase
and Drug within-subjects’ factors and the Sex between-subjects
factor. Experiment 4 data were not analysed with a Sex factor
because of the limited number of females, and the lack of sex
differences observed in Experiment 2.
Huynh-Feldt corrections were applied when Mauchly’s test of

sphericity was violated. Post-hoc analyses were corrected for
multiple comparisons with Scheffe’s method. Statistical analyses

were conducted with RStudio (Version 2021.9.0.351, R Foundation
for Statistical Computing) and evaluated using a statistical
significance level of p < 0.05. Non-significant statistics are pro-
vided in the Supplementary Materials. Graphs were created with
Graphpad Prism (Version 8; La Jolla, CA).

RESULTS
Acquisition and extinction of conditioned responding
Alcohol intake increased, or remained elevated, across intermit-
tent alcohol access sessions (Supplementary Fig. 1). Rats learned
to associate the CS with the US as ΔCS port entries increased
across Pavlovian conditioning sessions, whereas ΔCS port entries
decreased across extinction sessions (Supplementary Fig. 2).

Experiment 1. Naltrexone reduced reinstatement of
responding to an alcohol-CS
Relative to extinction, ΔCS port entries (Fig. 1B) significantly
increased at test [Phase: F(1,10)= 49.249, p < 0.001]; however, this
increase differed by naltrexone dose [Phase × Dose: F(2,20)= 10.959,
p < 0.001; Dose: F(2,20)= 3.673, p= 0.044]. Post-hoc analyses
revealed that reinstatement of ΔCS port entries occurred following
saline (p < 0.001) and 0.3 mg/kg of naltrexone (p= 0.002), whereas
reinstatement was prevented by 1.0 mg/kg of naltrexone
(p= 0.166). Moreover, relative to saline, ΔCS port entries at test
were reduced by 0.3 mg/kg (p= 0.005) and 1.0 mg/kg (p= 0.002) of
naltrexone.
CS port entry as a function of trial was analysed to examine the

effects of naltrexone on the pattern of responding at test. During the
test session, ΔCS port entries (Fig. 1C) significantly decreased across
CS trials due to within-session extinction [Trial: F(7,70)= 16.757,
p < 0.001]; however, this responding differed by naltrexone dose
[Trial × Dose: F(14,140)= 4.887, p < 0.001; Dose: F(2,20)= 7.546,
p= 0.004]. Post-hoc analyses revealed that, relative to saline,
0.3mg/kg (p < 0.001) and 1.0 mg/kg (p < 0.001) of naltrexone
reduced ΔCS port entries during the first CS trial. ITI port entries
(Fig. 1D) were unaffected by naltrexone [Phase, Phase x Dose, Dose:
p > 0.05].

Experiment 2. Naltrexone reduced reinstatement of
responding to an alcohol-CS in female and male rats
Collapsed across Sex and relative to extinction, ΔCS port entries
(Fig. 2A) significantly increased at test [Phase: F(1,22)= 65.994,
p < 0.001]; however, this differed by naltrexone dose [Phase ×
Dose: F(2,44)= 7.552, p= 0.002; Dose: F(2,44)= 12.887, p < 0.001].
ΔCS port entries reinstated following administration of saline
(p < 0.001), 0.3 mg/kg (p < 0.001) and 1.0 mg/kg (p= 0.001) of
naltrexone. However, relative to saline, reinstatement of ΔCS port
entries was reduced by 0.3 mg/kg (p= 0.016) and 1.0 mg/kg
(p < 0.001) of naltrexone. This effect did not differ between sex
[Sex, Sex × Phase, Sex × Dose, Sex × Dose × Phase: p > 0.05].
ΔCS port entries (Fig. 2B) significantly decreased across CS trials

[Trial: F(5.717,125.770)= 12.141, p < 0.001]; however, this again
differed by naltrexone dose [Trial × Dose: F(8.991,197.809)= 3.543,
p < 0.001; Dose: F(2,20)= 12.838, p < 0.001]. Relative to saline,
0.3 mg/kg (p < 0.001) and 1.0 mg/kg (p < 0.001) of naltrexone
reduced ΔCS port entries during the first CS trial. This effect did
not differ by sex [Sex, Sex × Trial, Sex × Dose, Sex × Dose × Trial:
p > 0.05]. ITI port entries (Fig. 2C) were unaffected by naltrexone in
female and male rats [Phase, Phase x Dose, Dose, Sex, Sex x Dose,
Sex x Phase, Sex x Dose x Phase: p > 0.05].

Experiment 3. Naltrexone did not affect reinstatement of
responding to a sucrose-CS
Relative to extinction, ΔCS port entries (Fig. 3B) significantly
increased at test [Phase: F(1,17)= 143.912, p < 0.001] similarly
across naltrexone doses [Dose, Phase × Dose: p > 0.05]. Reinstate-
ment did, however, significantly differ between sex groups
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[Phase x Sex: F(1,17)= 6.518, p= 0.021; Sex: F(1,17)= 11.771,
p= 0.003], regardless of dose [Sex × Dose, Sex × Dose × Phase,
p > 0.05]. Both female (p < 0.001) and males (p < 0.001) reinstated
port entries during the test; however, ΔCS port entries were higher
in females compared to males (p < 0.001).
ΔCS port entries (Fig. 3C) decreased across CS trials [Trial:

F(7,119)= 20.050, p < 0.001], similarly across doses [Dose, Trial × Dose:
p> 0.05]. Again, ΔCS port entries significantly differed between sex
[Sex: F(1,17)= 9.453, p= 0.007], regardless of CS trial or dose
[Sex × Trial, Sex × Dose, Sex × Dose × Trial: p > 0.05], where females
made significantly more ΔCS port compared to males (p < 0.001).

Experiment 4. Intra-ventral hippocampal CTAP prevented
reinstatement of responding to an alcohol-CS
Relative to extinction, ΔCS port entries (Fig. 4B) significantly
increased at test [Phase: F(1,9)= 5.668, p= 0.041]; however, this
differed by CTAP dose [Phase × Dose: F(2,18)= 4.455, p= 0.027;
Dose: p > 0.05]. Reinstatement of ΔCS port entries occurred
following microinfusions of saline (p= 0.002), however, reinstate-
ment was prevented by 2.5 µg (p= 0.970) and 5.0 µg (p= 0.970)

of CTAP. Moreover, relative to saline, reinstatement was reduced
by 2.5 µg (p= 0.037) and 5.0 µg (p= 0.016) of CTAP.
ΔCS port entries (Fig. 4C) decreased across CS trials at test [Trial:

F(7,63)= 5.402, p < 0.001], however, this differed across CTAP dose
[Trial × Dose: F(14,126)= 2.430, p= 0.005; Dose: p > 0.05]. Relative to
saline, 2.5 µg (p < 0.001) and 5.0 µg (p < 0.001) of CTAP reduced
ΔCS port entries during the first CS trial. ITI port entries (Fig. 4D)
remained unaffected by intra-ventral hippocampal administration
of CTAP [Phase, Phase x Dose, Dose: p > 0.05].

DISCUSSION
Our findings demonstrate that blocking µ-opioid receptors (MORs)
with the antagonist naltrexone attenuates reinstatement of
responding to an alcohol-CS regardless of sex. This is an
alcohol-specific effect as responding to a sucrose-CS is unaffected.
Importantly, we show that blocking MORs in the vHipp prevents
reinstatement of responding to an alcohol-CS, thus demonstrating
for the first time that MORs located in the vHipp are necessary for
responding to an alcohol-CS.

Fig. 2 Systemic naltrexone attenuated reinstatement of responding to an alcohol-CS in both female and male rats. Data are from rats that
received 0mg/kg, 0.3 mg/kg, or 1.0 mg/kg of naltrexone before reinstatement tests. A Mean (±SEM) ΔCS port entries made during extinction
and test. BMean (±SEM) ΔCS port entries across CS trials at test. CMean (±SEM) intertrial interval port entries made during extinction and test.
Herein, open triangles depict individual data of female rats, and open circles depict individual data of male rats. *p < 0.05, Phase post hoc
(Extinction < Test) † p < 0.05, Phase × Dose post-hoc (0.3 mg/kg and 1.0 mg/kg < 0mg/kg at Test) ‡ p < 0.05, Trial x Dose post-hoc (0.3 mg/kg
and 1.0 mg/kg < 0mg/kg on CS trial 1).

Fig. 1 Systemic naltrexone attenuated reinstatement of responding to an alcohol-CS. A Schematic representation of the behavioural
design. Data are from rats that received 0mg/kg, 0.3 mg/kg, or 1.0 mg/kg of naltrexone. B Mean (±SEM) ΔCS port entries made during
extinction and test. C Mean (±SEM) ΔCS port entries across CS trials during test. D Mean (±SEM) intertrial interval port entries made during
extinction and test. Herein, open circles depict individual data of male rats. *p < 0.05, Phase post-hoc (Extinction < Test) †p < 0.05, Phase × Dose
post-hoc (0.3 mg/kg and 1.0 mg/kg < 0mg/kg at Test) ‡p < 0.05, Trial × Dose post-hoc (0.3 mg/kg and 1.0 mg/kg < 0mg/kg on CS trial 1).
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Systemic naltrexone attenuated reinstatement of port entries
evoked by an alcohol-CS, even at the lower 0.3 mg/kg dose, in
female and male rats. These findings complement previous
research showing that similar doses reduced reinstatement of
operant alcohol-seeking evoked by various alcohol-predictive
stimuli [16, 18–20, 22, 25]. They do, however, contrast a report that
the MOR antagonist, CTOP, does not affect cue-induced reinstate-
ment of operant alcohol-seeking [17]. This is likely due to CTOP
being selective to non-opioid receptors [49]. Thus, MORs are an
integral neural mechanism that mediates reinstatement of
responding to an alcohol-CS in this distinct delayed reinstatement
model, a finding which provides new mechanistic insight into a
relapse model which has not yet been reported.
It is unlikely that the reduction in reinstatement is attributable to

naltrexone producing non-specific behavioural effects that impact
the ability to make a port entry, as supported by naltrexone not
affecting port entries made during the intertrial interval at test, by
naltrexone minimally impacting responding to a reinforced alcohol-
CS (Supplementary Fig. 3), and by previous studies [16, 20, 50].
Systemic naltrexone did not impact reinstatement of port

entries evoked by a sucrose-CS in either female or male rats
(Supplementary Fig. 4), as previously reported [25]. Thus,
naltrexone selectively attenuates reinstatement of responding to
an alcohol-CS, but not a CS associated with a natural reward,
which illustrates the specificity of naltrexone to reduce responding
to alcohol-predictive cues. This finding also strengthens the claim
that naltrexone did not reduce reinstatement of responding to an
alcohol-CS through non-specific effects on behaviour.
An important methodological consideration is that naltrexone is

a preferential MOR antagonist. As such, it also binds to δ-opioid
receptors (DORs) and κ-opioid receptors (KORs), and so the
reduction in reinstatement in this study could be due to actions
on DORs and KORs. We reason that the observed behavioural
effects are likely driven by blocking MORs, as naltrexone has
substantially higher binding affinity and potency to this receptor
over DORs and KORs [45, 51, 52]. Further support for this
reasoning stems from evidence that selective blockade of MORs
with the antagonist naloxonazine attenuates reinstatement of
alcohol-seeking evoked by discriminative stimuli [19].

The current study also demonstrates that the vHipp is neural
locus in which MORS mediate responding to alcohol cues, as
administration of the MOR antagonist CTAP into the vHipp
prevented reinstatement of port entries evoked by an alcohol-CS.
Given that the vHipp is involved in cue processing [53], it is
possible that MORs in the vHipp are also involved in responding to
natural rewards. Future research should assess the generalisability
of this neural mechanisms in responding to natural rewards and
other drugs of abuse. Still, this set of data reveals, for the first time,
that MORs in the vHipp are required for the reinstatement of
responding to an alcohol-CS – or responding to any appetitive-
cue. Ventral hippocampal MORs have been greatly implicated in
epileptic- and anxiety-related behaviours [54, 55]; our findings
suggest further that these receptors are involved in a diverse
range behaviours.
Blocking MORs in the vHipp may reduce delayed reinstatement

of responding by mediating GABAergic neuronal activity. Hippo-
campal MORs are predominantly localised on inhibitory GABergic
interneurons [56, 57], and activating these inhibitory MORs
reduces inhibitory GABAergic neurotransmission [58, 59]. Intra-
ventral hippocampal administration of the antagonist CTAP may
block MORs on GABAergic neurons, thus removing the inhibitory
influence on GABA transmission. Such facilitation of inhibitory
activity could lead to a reduction in hippocampal activity and
consequently the attenuated reinstatement. This hypothesis is
consistent with pharmacological inactivation of ventral hippo-
campal structures reducing reinstatement of drug-seeking evoked
by discrete and contextual cues [34–37].
Our findings are in stark contrast to prior work in which

localised administration of a MOR antagonist in the dorsal
hippocampus did not affect reinstatement of operant alcohol-
seeking evoked by an alcohol-context [28]. This difference is not
entirely surprising given the growing evidence that the ventral
and dorsal subregions of the hippocampus are functionally
separate structures [53, 60]. We posit that MORs in the dorsal
versus ventral hippocampus may have separable roles in the
reinstatement of responding to alcohol-predictive cues; how-
ever, future studies must conduct a systematic comparison to
confirm these roles.

Fig. 3 Systemic naltrexone did not affect reinstatement of responding to a sucrose-CS. A Schematic representation of the behavioural
design. Data are from rats that received 0 mg/kg, 0.3 mg/kg, or 1.0 mg/kg of naltrexone before reinstatement tests. B Mean (±SEM) ΔCS port
entriesmade during extinction and test for female (hatched bars) andmale (filled bars) rats. CMean (±SEM)ΔCS port entries across CS trials at test
for female (triangles) and male (circles) rats. *p < 0.05, Phase × Sex post-hoc (Female >Male at Test). †p < 0.05, Sex post-hoc (Female >Male).
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A unique aspect of the present study is the inclusion of female
rats. Several differences have been reported between women and
men living with alcohol use disorder. Relative to men, women are
more sensitive to the pharmacological effects of alcohol and
progress from recreational use to dependence quicker [61].
Female subjects must be included in preclinical research to
capture these differences observed in clinical populations. Under
saline conditions, reinstatement of port entries made during an
alcohol-CS occurred similarly in female and male rats thus
demonstrating a lack of sex differences in this model. Further,
comparing the effects of naltrexone on reinstatement in female
and male rats revealed attenuated reinstatement independent of
sex. Interestingly, 1.0 mg/kg of naltrexone prevented reinstate-
ment in the sample of males (Experiment 1), whereas the same

dose only reduced reinstatement in a sample of females and
males (Experiment 2). Although not statistically significant, this
persistent reinstatement may be driven by greater responding at
test relative to extinction in females (M Extinction= 2.29, Test=
9.08) compared to males (M Extinction= 3.00, Test= 6.58). This
hypothesis is consistent with the pattern of responding observed
in Experiment 3, where females showed greater reinstatement of
responding to the sucrose-CS. Due to the limited number of
female rats in Experiment 4, the presence or absence of sex
differences in how MORs in the vHipp impact reinstatement could
not be determined. Future research should pursue this question to
determine if reinstatement is maintained by different structural
mechanisms in females and males. Together, these findings add to
the burgeoning body of literature reporting sex differences—or

Fig. 4 Bilateral microinfusions of CTAP into the vHipp prevented reinstatement of responding to an alcohol-CS. A Schematic
representation of the behavioural design. Data are from rats that received 0 µg, 2.5 µg, or 5.0 µg of CTAP before reinstatement tests. B Mean
(±SEM)ΔCS port entries made during extinction and test. CMean (±SEM)ΔCS port entries across CS trials at test.DMean (±SEM) intertrial interval
port entries made during extinction and test. E Representation of injector tip placements in the ventral hippocampus. Numbers indicate AP
coordinates from bregma. *p < 0.05, Phase post-hoc (Extinction < Test) ‡p < 0.05, Trial × Dose post-hoc (2.5 µg and 5.0 µg < 0 µg on CS trial 1).
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lack thereof—in responding to appetitive cues, which remains
relatively variable [62–67], and highlights the need to continue
examining responding to appetitive cues with female samples.
In conclusion, silencing MORs attenuates reinstatement of

Pavlovian conditioned responding to a CS in an alcohol-specific
manner, and independent of sex. For the first time, we provide
evidence that MORs in the vHipp are necessary for the delayed
reinstatement of responding to an alcohol-CS. These findings
build upon existing research that has predominantly studied on
the role of MORs in traditional reinstatement models. Ultimately,
these findings provide the basis for future studies to further
investigate the role of ventral hippocampal MORs and their
projections in the reinstatement of responding to alcohol-
predictive cues.
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