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Summary
Background When sepsis is detected, organ damage may have progressed to irreversible stages, leading to poor
prognosis. The use of machine learning for predicting sepsis early has shown promise, however international vali-
dations are missing.

Methods This was a retrospective, observational, multi-centre cohort study. We developed and externally validated a
deep learning system for the prediction of sepsis in the intensive care unit (ICU). Our analysis represents the first
international, multi-centre in-ICU cohort study for sepsis prediction using deep learning to our knowledge. Our
dataset contains 136,478 unique ICU admissions, representing a refined and harmonised subset of four large
ICU databases comprising data collected from ICUs in the US, the Netherlands, and Switzerland between 2001
and 2016. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis annotations,
amounting to 25,694 (18.8%) patient stays with sepsis. We compared our approach to clinical baselines as well as
machine learning baselines and performed an extensive internal and external statistical validation within and
across databases, reporting area under the receiver-operating-characteristic curve (AUC).

Findings Averaged over sites, our model was able to predict sepsis with an AUC of 0.846 (95% confidence interval [CI],
0.841–0.852) on a held-out validation cohort internal to each site, and an AUC of 0.761 (95% CI, 0.746–0.770) when
validating externally across sites. Given access to a small fine-tuning set (10% per site), the transfer to target sites was
improved to an AUC of 0.807 (95% CI, 0.801–0.813). Our model raised 1.4 false alerts per true alert and detected 80%
of the septic patients 3.7 h (95% CI, 3.0–4.3) prior to the onset of sepsis, opening a vital window for intervention.

Interpretation By monitoring clinical and laboratory measurements in a retrospective simulation of a real-time
prediction scenario, a deep learning system for the detection of sepsis generalised to previously unseen ICU
cohorts, internationally.

Funding This study was funded by the Personalized Health and Related Technologies (PHRT) strategic focus area of
the ETH domain.
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Introduction
Sepsis remains a major public health issue associated
with high mortality, morbidity, and related health costs.1–3

From sepsis onset, each hour of delay before an effective
antimicrobial therapy is initiated increases mortality.4–6

However, identifying bacterial species in the blood can
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take up to 48 h after blood sampling.7 Meanwhile, an
abundance of clinical and laboratory data is being
routinely collected, the richest set of which is accumu-
lated in the intensive care unit (ICU). While it has
become harder for intensivists to manually process the
increasing quantities of patient information,8 machine
and Systems Biology, Max Planck Institute of Biochemistry, Am Klop-
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Research in context

Evidence before this study
We searched PubMed with no language restrictions for
research articles published up to July 22, 2022. We used the
terms “sepsis” and “machine learning” and “external
validation”.
We found no international, multi-centre study that externally
validated prediction models for the early detection of sepsis
using machine learning. While the early diagnosis and timely
management of sepsis could improve prognosis, there is
evidence that currently-deployed proprietary models (a) lead
to alarm fatigue, and (b) exhibit poor discrimination for
predicting sepsis onset when subjected to external validation.

Added value of this study
We report the first multi-national, multi-centre study for the
prediction of sepsis in the intensive care unit using machine
learning. Our cohort features 136,478 ICU admissions
corresponding to 708 patient years of closely monitored

patients in ICUs from the US, the Netherlands, and
Switzerland. We developed a deep learning system to detect
sepsis onset and performed an extensive internal and external
validation to assess model transferability across sites and even
continents. Our model raised 1.4 false alerts per true alert and
detected 80% of the septic patients 3.7 h (95% CI, 3.0–4.3)
prior to the onset of sepsis, providing a time window for
intervention.

Implications of all the available evidence
To our knowledge, this study represents the first successful
attempt to validate accurate sepsis prediction with deep
learning across hospitals in countries and continents different
from the training sites. By creating the largest public and
harmonised international ICU dataset, this work facilitates
further statistical validations of the early prediction of sepsis
and other clinical complications.
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learning (ML) systems have been developed to leverage
these data to raise early warnings of imminent
complications.9,10

Currently, there is no clinical gold standard for the
early identification of sepsis. Furthermore, when
compared to other endpoints such as mortality or length
of stay, sepsis is a hard-to-define outcome, which has
resulted in the development of a diverse set of strategies
to define sepsis onset. These range from consensus
definitions (Sepsis-2,11 Sepsis-312) to more ad-hoc ap-
proaches combining international classification of dis-
ease (ICD) billing codes with clinical and laboratory
signs of infection and inflammation.13 The use of
different definitions in the literature complicates the
task of comparing quantitative results concerning the
early predictability of sepsis. There is a general lack of
systematically annotated, multi-centre data and inter-
national external validations of predictive models for
sepsis.13,14 In fact, a widely adopted proprietary sepsis
prediction model was recently found to perform sur-
prisingly poorly when externally validated.15

The goal of this study therefore was to address these
challenges by unifying ICU data from multiple sources
to build an open-access platform for developing and
externally validating sepsis prediction approaches. After
harmonising, cleaning, and filtering these data, we
implemented sepsis annotations based on Sepsis-312 and
developed sepsis early warning systems using state-of-
the-art machine learning (ML) algorithms. We further
devised an evaluation strategy that accounts for the
inherent trade-off between accurate and early alarms for
sepsis while keeping false alarms (and therefore alarm
fatigue) at bay. Finally, our unique disposition, with
harmonised ICU data from four international data
sources, enabled us to perform an extensive external
validation to assess transferability of models between
hospitals, countries, and even continents.
Methods
Study design
This was a retrospective, observational, multi-centre
cohort study. The study involved the creation of a
harmonised multi-centre annotated ICU cohort, as
well as the development, internal validation, and
external testing of a sepsis early warning system. The
study cohort was constructed using four large elec-
tronic health record databases representing clinical
and laboratory ICU data that was routinely collected
between 2001 and 2016 in three nations and two
continents: HiRID9 from Switzerland, AUMC16 from
the Netherlands, as well as MIMIC-III,17 and eICU18

from the US. In all datasets, the Sepsis-3 definition
was implemented.12 Fig. 1 gives an overview of data
processing pipeline. More details regarding the co-
horts as well as a list of inclusion and exclusion
criteria are provided in the Supplementary Appendix
(Supplementary Section S1a–S1c).

Our system was designed to monitor a comprehen-
sive set of vital, laboratory, and static patient variables
that were i) potentially relevant for sepsis, while ii)
consistently measured and iii) not reliant on waiting for
clinicians to treat suspected sepsis, which can lead to
spurious modelling outcomes. To account for the last
point, we excluded therapeutic variables such as antibi-
otics, intravenous fluids or vasopressors from the set of
input data used for making predictions. To ensure
interoperability, we resampled all datasets to an hourly
resolution, reporting the median value per hour and
patient for each variable. Table 1 lists all input variables
www.thelancet.com Vol 62 August, 2023
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A

Fig. 1: Overview of the preprocessing pipeline. Data from four ICU EHR databases are collected, cleaned and harmonised (Panel A). In Panel B,
we illustrate how data are extracted for sepsis label annotation (left) as well as feature extraction (right) resulting in labels and features that are
used for training the machine learning model.
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and indicates their availability per dataset. Unit syn-
chronisation and filtering of values outside of clinically
valid ranges (determined by an experienced ICU clini-
cian) were applied (Supplementary Table S5). Further-
more, we manually inspected the distributions of
biomarkers to assert that they were visually similar
across all datasets, confirming that the units of
www.thelancet.com Vol 62 August, 2023
measurement were properly harmonised. Statistical
non-discernability of the biomarkers between the data-
sets cannot be expected due to slight shifts and varia-
tions in the underlying data distributions. It would not
even be desirable for a credible simulation of model
deployments in different countries. We plotted the
density of all biomarkers, stratified by dataset. An
3
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Variable MIMIC-III eICU HiRID AUMC

Cohort size (n) 36,591 56,765 27,278 15,844

Sepsis-3 prevalence (n (%)) 9541 (26) 4708 (8) 10,170 (37) 1275 (8)

Age, years (Median (IQR)) 65 (52–77) 65 (53–76) 65 (55–75) 65 (55–75)

In-hospital mortality (n (%)) 2829 (8) 3962 (7) 1399 (5) 745 (5)

ICU LOS, days (Median (IQR)) 1.99 (1.15–3.63) 1.71 (0.95–3.01) 0.97 (0.8–1.95) 0.97 (0.81–1.82)

Hospital LOS, days (Median (IQR)) 6.43 (3.82–11.14) 5.53 (2.99–9.89) – –

Sex, female (n (%)) 15,944 (44) 25,740 (45) 9977 (37) 5350 (35)

Sex, male (n (%)) 20,647 (56) 31,011 (55) 17,301 (63) 10,089 (65)

Ventilated patients (n (%)) 16,499 (45) 24,534 (43) 14,021 (51) 10,469 (66)

Patients on vasopressors (n (%)) 9669 (26) 6769 (12) 7721 (28) 7980 (50)

Patients on antibiotics (n (%)) 21,598 (59) 21,847 (38) 17,152 (63) 11,165 (70)

Patients with suspected infection (n (%)) 16,349 (45) 9739 (17) 15,160 (56) 1639 (10)

Initial SOFA (Median (IQR)) 3 (1–4) 3 (1–5) 5 (3–8) 6 (3–7)

SOFA components (Median (IQR))

Respiratory 1 (0–2) 1 (0–2) 3 (2–4) 2 (1–3)

Coagulation 0 (0–1) 0 (0–1) 0 (0–1) 0 (0–1)

Hepatic 0 (0–1) 0 (0–0) 0 (0–1) 0 (0–0)

Cardiovascular 1 (1–1) 1 (0–1) 1 (1–4) 2 (1–4)

CNS 0 (0–1) 0 (0–2) 0 (0–1) 0 (0–1)

Renal 0 (0–1) 0 (0–1) 0 (0–0) 0 (0–1)

Admission type (n (%))

Surgical 13,836 (38) 9865 (19) – 11,905 (80)

Medical 22,346 (61) 41,674 (79) – 2172 (15)

Other 408 (1) 1346 (3) – 786 (5)

CNS, central nervous system; LOS, length of stay.

Table 1: Demographic and patient characteristics of our multi-center ICU cohort.
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example of such a plot, for some vital and laboratory
parameters, is given in Supplementary Fig. S2A.

Outcome and prediction problem
We considered the onset of sepsis as determined by the
Sepsis-3 definition12 as the primary outcome in this
study. To fulfill this definition, a co-occurrence of sus-
pected infection and a SOFA score increase of two or
more points are required. A detailed account of the label
implementation, including the treatment of missing
values of SOFA components, is provided in the
Supplementary Appendix (Supplementary Section S1b).
Our model was designed to continuously monitor 59
vital and laboratory parameters in hourly intervals
together with 4 static variables in order to raise an alarm
when sepsis is about to occur (the list of variables is
provided in Supplementary Table S1). Our intended use
group are ICU patients within the first seven days of
their ICU stay (Supplementary Section S1c,
Supplementary Fig. S12). We incentivised our model to
recognise if sepsis will start within the next 6 h
(Supplementary Fig. S12). The employed Sepsis-3 defi-
nition subsumes the SOFA score, which captures addi-
tional treatment information (e.g., vasopressors) that the
models were not intended to rely upon. Still, since the
clinical baseline scores encode valuable domain
knowledge, our model was provided partial scores by
only including laboratory and vital parameters that
belong to our list of readily measured, non-therapeutic
63 input variables (Supplementary Section S1f).

Prediction methods
To improve upon clinical baselines, we devised a deep
learning-based early warning system, specifically a deep
self-attention model (attn).19 For comparison, we further
investigated a range of state-of-the-art machine learning
approaches. These included further deep learning ap-
proaches, i.e., machine learning algorithms that use deep
neural networks, as well as classical machine learning
approaches based on statistical learning concepts. For
additional deep learning models, we considered recurrent
neural networks employing Gated Recurrent Units
(gru).20 Both these methods are intrinsically capable of
leveraging sequential data. Next, we included LightGBM
(lgbm)21 and a LASSO-regularised Logistic regression
(lr).22 In order to make temporal dynamics governing the
data accessible to these two methods, they were supplied
with a total of 1269 features that incorporated statistical
moments and temporal trends as extracted from the 63
input variables. Further details about the construction
and standardisation of these features are provided in
Supplementary Section S1f. As for clinical baselines, we
www.thelancet.com Vol 62 August, 2023
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investigated how well sepsis could be predicted with a
range of early-warning scores, including NEWS,23

MEWS,24 SIRS,25 SOFA,26 and qSOFA.12 Further details
regarding missing data handling (Supplementary Section
S1f) and model development (Supplementary Section
S1e) are provided in the Supplementary Appendix.

Statistical analysis
We first trained our deep learning system and all base-
lines on the development split of each individual data-
base, resulting in a model for each prediction method
and dataset. For an internal validation, we evaluate the
performance on the held-out test split of the same
database that the model was trained on, respectively. For
the external validations, for a given testing dataset and
prediction method we apply the models that were fitted
individually on the remaining datasets to the testing
dataset and take the maximal prediction score at each
point in time (i.e., the earliest alarm among these
models), and refer to this setting as pooled prediction (see
Fig. 2). As an ablation, we also report the performance
for training and testing across pairs of datasets, i.e., pair-
wise prediction. To assess performance characteristics,
we calculated the area under the receiver-operating-
characteristic (ROC) curve (AUC). Next, for a fixed
80% sensitivity threshold, we reported the positive pre-
dictive value (PPV) as well as the median number of
hours the alarm preceded sepsis onset (median earli-
ness). All measures were computed on the patient level.
All results are presented with 95% confidence intervals
(CI) when appropriate (Supplementary Section S1i).
Details about significance tests are provided in
Supplementary Section S1i. We devised an evaluation
strategy in which repeated alarms are not permissible to
prevent alarm fatigue (Supplementary Section S1i).
While this made the task to recognise sepsis cases more
challenging, it also guaranteed that at most a single false
alarm could be raised in a control stay. To ensure
comparability between internal and external evaluations,
identical test splits are used in both settings. In order to
make performance metrics comparable across datasets,
upon testing time we harmonised the prevalence of
sepsis cases to the across-dataset average of 18.8% via
repeated subsampling upon testing time
(Supplementary Section S1h). To further assess the
transferability of our model across sites, we simulated a
fine-tuning scenario where a small portion (10%) of the
target cohort is made available for fine-tuning a pre-
trained model before testing on the held-out split of
the target cohort (Fig. 3). Doing this across 4 cohorts is
more extensive than previous fine-tuning experiments
where typically a fixed development and fine-tuning
cohort is used.27,28

Next, to explain our model’s predictions, we
calculated Shapley values,29 which provide a measure
of the contribution and importance of individual var-
iables to the overall prediction (Supplementary Section
www.thelancet.com Vol 62 August, 2023
S1g). In an auxiliary analysis (Supplementary Section
S2a), we investigated whether the more effortful
approach, to pool the actual datasets for training,
would be superior to combining only predictors (in a
federated way). Finally, we detail an ablation analysis
of our model and assess model calibration in
Supplementary Sections S1i and S2b. Analyses were
performed with R software, version 4.1, and Python
software, version 3.7.4.

Ethics approval
Ethics approval to conduct a machine learning-based
study on the early prediction of sepsis was obtained
from the “Ethikkommission Nordwest-und Zen-
tralschweiz EKNZ” (BASEC ID 2019-01088). We ob-
tained deidentified data from the critical care research
databases AUMC, MIMIC-III, eICU, and HiRID to
conduct a retrospective secondary analysis.

Role of funding source
The funders of this study had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript. All authors had access to
the data, and jointly decided to publish the study
findings.
Results
After cleaning, filtering and processing, our fully inter-
operable cohort comprised a total of 136,478 unique
ICU stays (amounting to 708 ICU admission years) of
which 25,694 (18.8%) developed sepsis. A summary of
the cohort statistics is provided in Table 1 (more detailed
in Supplementary Table S4).

First, we consider the internal validation, where all
models were trained on all datasets separately in order
to assess performance on a held-out test split of the
training dataset, respectively. Our deep learning model
(attn) achieved an average test AUC of 0.846 (95% CI,
0.841–0.852) when internally validating on the four core
datasets that were harmonised to the list of 63 variables
(Supplementary Table S1). At 80% sensitivity and a
harmonised sepsis prevalence of 18.8% (for further
details see Supplementary Section S1h), our model
detected septic patients with 42.0% (95% CI, 40.5–44.1)
PPV and a median lead time to sepsis onset of 3.7 (95%
CI, 3.0–4.3) hours in advance. This corresponds to
raising 1.4 false alerts (95% CI, 1.3–1.5) per true alert.
The results for our deep attention model (attn) are
shown in Fig. 3, whereas the full set of comparison
methods and datasets is displayed in Supplementary
Figs. S4–S7.

Next, we consider our external validation, where
models previously trained on one database were applied
to independent test databases. The pair-wise predictions
(transfer from one database to another one using the
harmonised variable set), are displayed for our deep
5
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Fig. 2: Illustration of the deep learning model and the pooling strategy. In Panel A, the deep self-attention model (attn) is shown. The input
stream of data is fed through an initial dense layer. This is followed by two attention modules, each comprising a causal self-attention layer and
a Multilayer perceptron (MLP). A final dense layer maps to a sequence of prediction scores. In Panel B, the pooling strategy is illustrated. We
combined information from n-1 (training) datasets to predict on the n-th (test) dataset. For n = 4, we developed n-1 models, each optimised on
a different training dataset. Second, we applied all these models to the test dataset, resulting in n-1 prediction scores (i.e., a predicted
probability for sepsis) for each hour of the patients in the test dataset. We aggregated these n-1 predictions into a single risk score by taking the
maximal value at each point in time. Hence, we raise the most pessimistic alarm as soon as the first model would raise an alarm (dark green bell
with red frame). This strategy was referred to as pooled predictions.
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attention model in Fig. 3A. Fig. 3A depicts a heatmap of
AUC values, with rows corresponding to the training
database and columns corresponding to the testing
database. The pooled predictions are displayed in the last
row of the heatmap in Fig. 3A. Using this pooling
strategy in our external validation (Supplementary
Figs. S4–S7), we achieve an average AUC of 0.761
(95% CI, 0.746–0.770). When fixing the prediction
threshold at 80% sensitivity, on average this resulted in
a PPV of 31.8% (95% CI, 30.3–34.0) with a lead time to
sepsis onset of 1.71 (95% CI, 0.75–2.69) hours
(Supplementary Figs. S4–S7).
www.thelancet.com Vol 62 August, 2023
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Fig. 3: Performance of the deep learning system for the prediction of sepsis. In Panel A, heatmaps of the performance of our deep learning
system are shown for AUC as well as PPV and median Earliness, whereas the latter two metrics are displayed at 80% Sensitivity. For a given
heatmap, the rows indicate the training dataset, the columns refer to the testing dataset. In the last row, the externally pooled predictions are
shown. Averaged across datasets, we observe an internally validated AUC of 0.846 (95% CI, 0.841–0.852), PPV of 42.0% (95% CI, 40.5–44.1),
and median lead time to sepsis onset of 3.7 (95% CI, 3.0–4.3) hours. In the bottom row of the heatmaps, we observed an average externally
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Overall, Fig. 3A shows that applying the pooling
strategy for a given testing database achieves better or
equivalent performance as compared to the best-
performing model that was trained on a single data-
base that could only be determined post hoc (P = 0.087
for HiRID and P < 0.0001 for the remaining core
datasets). As shown in Fig. 3B, when additionally given
access to a small fine-tuning set of the target testing site
(10% of the target site [FT (10%)]), we observe an AUC
of 0.807 (95% CI, 0.801–0.813). Overall, Fig. 3B serves
as an ablation demonstrating that the predictive per-
formance gradually increases over the increasingly
involved transfer strategies (pair-wise predictions,
pooled predictions, and fine-tuned predictions)
approaching the internal validation performance.

In our ablation analysis (Supplementary Fig. S10),
we found that the higher performance in AUMC can be
attributed to the predominantly surgical cohort, how-
ever we could not generalise this finding to an external
dataset. In the auxiliary analysis (Supplementary
Section S2a, Supplementary Fig. S11), where we
retrained our deep learning model by pooling all
datasets except for the respective testing dataset, we
found no improvement over our pooling strategy
(P = 0.99) which combines predictors without the need
for a) costly retraining on larger datasets and b) sharing
patient data across sites. Furthermore, a temporal
analysis of the alarms over the course of the ICU stay
suggests that it may be useful to consider time-
dependent alarm thresholds (Supplementary Section
S2c). In Fig. 4, our deep learning system is illustrated
for an example patient in an unseen testing site.

Variable importance
Explanations of the deep learning system’s predictions
are provided in a Shapley analysis in Fig. 5. In Fig. 5A,
variable importances are shown in terms of the mean
absolute Shapley value averaged over all datasets, dis-
played for the top 20 raw variables. Mean arterial pres-
sure (MAP), followed by heart rate exhibit the largest
overall contributions to predictions of our model, which
suggests that across datasets, the model has learned to
attend to variables relevant to the assessment of
validated AUC of 0.761 (95% CI, 0.746–0.770), PPV of 31.8% (95% CI,
0.75–2.69) hours. The pooling approach improved the generalisability t
derived from the best (a priori unknown) training dataset in terms of A
behave with different model transfer strategies: AUC performance of the
models (pooled), and more so when instead fine-tuning a model to a sma
realistic scenario that only small sample has been collected in a novel ta
internal validation performance when training on only 10% or 20% of
deviation of the metrics as calculated over the four datasets. A black diam
performance curves of the internal validation (top row) and external valida
an example dataset (AUMC). Our deep learning approach (attn) is visuali
baselines (SOFA, MEWS, NEWS), and LASSO-regularised logistic regressio
train-validation splitting. All baselines are shown in Supplementary Figs.
hemodynamic instability. On a more detailed level, the
right panel of Fig. 5A depicts distributions of Shapley
values for a single dataset (eICU), revealing the effect
increased (or decreased) values of individual measure-
ments have on the prediction score. High values in
MAP resulted in a lower prediction score, while high
heart rate values led to a higher prediction score, thus
encouraging a positive prediction, i.e., an alarm for
sepsis. In Fig. 5B, individual MAP measurements were
scattered against their Shapley value. We observe that
low values in this variable (below 60 mmHg) are asso-
ciated with high Shapley values, meaning they are
associated with positive predictions of the model. This is
in line with the definition of (septic) shock, which as-
sociates low MAP values with adverse outcomes.30 In
Fig. 5C, mean absolute Shapley values are shown for
individual feature groups, highlighting that depending
on the variable, different feature representations are
most informative. E.g., for MAP the raw measurement
value is informative, whereas for Lactate the number of
measurements is more informative due to sampling
information. When comparing the Shapley distributions
across datasets (Supplementary Fig. S8), we observe that
depending on the dataset, the top-ranking effects are
more (e.g., eICU) or less (e.g., AUMC) aligned with
clinical assumptions about sepsis. Please refer to
Supplementary Fig. S8 for more visualisations on other
datasets and Supplementary Fig. S9 for a depiction of all
feature types. In our ablation analysis (Supplementary
Fig. S10), we found that lab tests carry relevant sam-
pling information whereas this was less the case for vital
signs.

Discussion
In this study, we constructed the first international
multi-centre ICU dataset with hourly sepsis labels to
date, using data from four databases from three coun-
tries. For this, we undertook the effort to harmonise the
largest and most widely used13 ICU databases that to
date are publicly accessible. Using this data, an early
warning system based on deep learning was developed
and subsequently validated, both internally and exter-
nally. Upon internal validation, that is when applying
30.3–34.0), and median lead time to sepsis onset of 1.71 (95% CI,
o new datasets by outperforming or being on par with predictions
UC and PPV at 80% Sensitivity. Panel B illustrates how the metrics
internal validaton is increasingly approached when using pooling of
ll fine-tuning set of 10% of the testing site (FT (10%)), reflecting the
rget hospital. By comparison, Int. (10%) and Int. (20%) displays the
the training site, respectively. The error bars indicate the standard
ond indicates the mean over the datasets. In Panel C, more detailed
tion via pooled predictions (bottom row) performance are shown for
sed together with a subset of all included baselines, including clinical
n (lr). Error bands indicate standard deviation over 5 repetitions of
S4–S7.
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Fig. 4: Illustration of the deep learning system for recognising sepsis. Our deep learning system is illustrated for one sample patient (of an
unseen testing database) together with a subset of vital and laboratory parameters that were used for prediction. In the top two rows, the
sepsis label is shown decomposed into its components, the suspected infection (SI) window (consisting of antibiotics [ABX] administration
coinciding with body fluid sampling), and an acute increase in SOFA (ΔSOFA) of two or more points. The third row illustrates the hourly
predictions as probability of sepsis. The last two rows show laboratory and vital parameters (Z-scored units for joint visualisation). Red dotted
lines indicate the point at which the SOFA criterion is fulfilled. A decision threshold based on 80% sensitivity is indicated by the black horizontal
dashed line. The displayed model was trained on eICU and here applied to a patient of the AUMC dataset.
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Fig. 5: Shapley analysis for variable importance and explanation of predictions. Panel A shows the mean absolute Shapley (SHAP) values
averaged over all datasets (error bars indicate standard deviation over datasets). The top 20 variables are displayed. Large values indicate large
contributions to the model’s prediction of sepsis. In the subpanel on the right, Shapley value distributions are exemplified for the eICU dataset.
Positive Shapley values are indicative of positive predictions of the system and vice versa. In Panel B, Shapley values of individual heart rate and
mean arterial pressure (MAP) measurements are shown. Panel C shows the Shapley values of the individual feature groups averaged across all
datasets, whereas the available components of SOFA (labs and vitals), the count of lactate measurements, indication of oxygenation and
ventilation as well as raw MAP values were most informative.
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the model to a hold-out set coming from the same
hospital centres as the training data, we observed
excellent model performance that can be rendered
clinically useful (1.4 false alarms raised per each true
alarm at 80% sensitivity). When externally validated, that
is, applied to a cohort from a different hospital (not
included in the training data), we still observed good
performance, indicating that the model leverages a
signal that can generalise to new hospital centres in
different countries and even continents. On top of that,
we found that fine-tuning a pre-trained model on only a
small fraction of the target site boosts performance and
facilitates model transfer across sites especially when
the collected data is initially scarce at a new testing site.

Sepsis is one of the most challenging conditions in
ICU and the leading cause of mortality in critically ill
patients.31 Therefore, the possible benefits of an auto-
mated early warning system able to predict sepsis are
manifold. Multiple studies attempted to address this
problem using machine learning tools, but many of
them either lack external validation, or are based on
restricted-access datasets, limiting the ability of external
validation for researchers in the field.13,14 Moreover, one
of the most widely implemented proprietary tools for
sepsis prediction in the US was recently found to
perform poorly upon external validation,15 once again
emphasising the fundamental importance of our
study.32 Existing multi-centric studies carrying out
external validation are limited to hospitals in the US33,34

and do not validate across country borders where shifts
in policies, measurement devices, provider in-
frastructures, and patient cohorts are to be expected to
make successful model transferability considerably
more challenging. By carrying out a large external vali-
dation, and by developing an open-access, international
dataset with sepsis labels, our work aims to complement
the current literature in precisely this way, and it also
allows other clinicians to externally validate their pre-
diction models. Previous cohort studies treated sepsis
prediction as a retrospective problem (time windows
before sepsis onset were compared to time windows in
control patients) such that high AUC values may be
achieved without the guarantee that this translates to a
real-time monitoring scenario.13,14 In contrast, in our
study real-time predictions were simulated by making
predictions in hourly intervals, rendering our perfor-
mance assessment closer to a bed-side monitoring sce-
nario. Finally, to raise an early alarm is typically more
challenging than the task of a regular diagnostic test,
which is why can expect lower AUCs and PPVs
compared to (later) diagnostic tests, which may result in
alarm fatigue (due low PPV).9 Here, we explicitly
addressed alarm fatigue by devising a system that has an
upper bound of at most one single false alarm for an
entire ICU stay. For comparison, Shashikumar et al.33

report 0.04 false alarms per patient hour, which for a
stay of 100 h would on average amount to 4 false alarms.
www.thelancet.com Vol 62 August, 2023
A major implication of our study is that a sepsis
prediction model can generalise internationally to new
hospital sites, which opens the door for prospective
evaluations of such tools that were extensively validated
beforehand. Next, we found that the combination of
models that were trained on different databases has a
beneficial effect on the external validity, implying that
the integration of heterogeneous cohorts originating
from different hospitals leads to early warning systems
that can generalise to new settings (hospitals and
countries). Interestingly, we found that this can be
achieved without the need for sharing (and anonymis-
ing) sensitive data and without the need for costly
retraining of models on large unions of datasets, but
only by means of sharing and combining trained models
across centres. This finding is promising and well-
aligned with recent studies that employ federated
learning to leverage multi-centric data in a differentially
private manner.35,36

The availability of the harmonised and annotated
dataset used in this study allows for other researchers
and clinicians to evaluate their prediction models on
external hospital sites, which could be a valuable
consideration when making decisions about imple-
menting early warning systems in new hospital centres.
Finally, while in our external validations we observed a
moderate reduction in PPV, we found that alarm earli-
ness suffers when applying a model to a previously-
unseen data distribution, which can be addressed by
fine-tuning already on a small sample of the target data
distribution. When considering deployment of an early
warning system in a new hospital site, an on-site fine-
tuning and recalibration of pretrained models will be
necessary, in particular to account for a new (and
possibly unknown) prevalence of sepsis in the target
hospital.

Our study has several strengths. The first is the size
and the heterogeneity of the cohort, coming from mul-
tiple countries and hospital centres with a varying pro-
portion of medical and surgical admissions (MIMIC-III
predominantly medical, AUMC predominantly surgi-
cal). The second strength of the study is the depth of the
external validation performed, in which a model trained
on one database was validated externally on all other
databases, giving a high degree of external validity to the
study findings. The third strength is the nature of the
prediction problem we investigated. We simulated a
real-time prediction scenario, in which a model obtains
new data every hour and is able to raise an alarm at any
given time-point. Such a setting is more closely aligned
with a possible clinical implementation of an early
warning system as opposed to the majority of existing
sepsis prediction studies using ML.13

We also acknowledge some limitations to our study.
This was a retrospective, observational study. Even
though we simulated a real-time prediction scenario, a
prospective international evaluation is necessary in order
11
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to assess the clinical utility of bed-side sepsis predictions.
Despite the large resulting sample size, many patients
and even sites (in the case of the eICU dataset) had to be
excluded from all analyses due to their insufficient data
quality. Such exclusions may introduce selection bias,
which could affect the model performance for certain
subgroups of patients in future applications. Finally,
another limitation was the difference in reporting of body
fluid sampling information across databases. Due to this,
on two databases we had to use an alternative definition
of suspected infection, which relied on multiple admin-
istrations of antibiotics. However, on databases where
this was possible, we successfully validated this definition
against the original definition, showing that the two
definitions have a good overlap.

In a large international cohort of more than 136,000
patient ICU admissions, we successfully developed and
externally validated a deep learning system that recog-
nised sepsis patients in previously unseen hospitals,
using information on vital signs and laboratory mea-
surements. We hope that the harmonised dataset
resulting from our study and the performed analyses
will help pave the way for international clinical valida-
tion studies to deploy sepsis prediction models that were
externally statistically validated.
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