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Single-cell dissection of cervical cancer reveals key
subsets of the tumor immune microenvironment
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Abstract

The tumor microenvironment (TME) directly determines patients’
outcomes and therapeutic efficiencies. An in-depth understanding
of the TME is required to improve the prognosis of patients with
cervical cancer (CC). This study conducted single-cell RNA and TCR
sequencing of six-paired tumors and adjacent normal tissues to
map the CC immune landscape. T and NK cells were highly
enriched in the tumor area and transitioned from cytotoxic to
exhaustion phenotypes. Our analyses suggest that cytotoxic large-
clone T cells are critical effectors in the antitumor response. This
study also revealed tumor-specific germinal center B cells associ-
ated with tertiary lymphoid structures. A high-germinal center B
cell proportion in patients with CC is predictive of improved clini-
cal outcomes and is associated with elevated hormonal immune
responses. We depicted an immune-excluded stromal landscape
and established a joint model of tumor and stromal cells to predict
CC patients’ prognosis. The study revealed tumor ecosystem sub-
sets linked to antitumor response or prognosis in the TME and pro-
vides information for future combinational immunotherapy.

Keywords cervical cancer; heterogeneity; single-cell RNA sequencing; tumor

microenvironment

Subject Categories Cancer; Immunology

DOI 10.15252/embj.2022110757 | Received 24 January 2022 | Revised 5 April

2023 | Accepted 19 May 2023 | Published online 10 July 2023

The EMBO Journal (2023) 42: e110757

Introduction

Despite tremendous progress achieved in cervical cancer (CC) pre-

vention via widespread screening and prophylactic HPV

vaccination, CC remains prevalent worldwide, with 604,000 new

cases and 342,000 deaths in 2020 (Sung et al, 2021). Recently, an

increasing number of studies have utilized immunotherapies,

including immune checkpoint blockade (ICB), therapeutic vaccines

and engineered T cells, to improve the survival of patients with CC.

However, these regimens are usually limited to relatively modest

efficacy or regression in a small group of patients (Youn et al, 2020;

Colombo et al, 2021; Nagarsheth et al, 2021). Hence, the develop-

ment of novel immunotherapeutic strategies or targeted therapies is

urgently required.

Cervical cancer is characterized as an immune-infiltrated but

immunosuppressive cancer type, primarily due to the modulation of

the TME by HPV (O’Donnell et al, 2019; Shamseddine et al, 2021).

CC cells utilize multiple mechanisms to escape killing by cytotoxic T

lymphocytes (CTL) and NK cells, including downregulation of major

histocompatibility complex (MHC) genes, inhibition of the cGAS–
STING pathway, and increased PD-L1 expression (Ashrafi et al,

2005; Liu et al, 2016; Luo et al, 2020). Previous studies have indi-

cated a distinct anti- or pro-tumor immunity role of CD4+ T cells in

CC. The CD4+CD161+ effector T cell subset correlates with

prolonged survival, whereas regulatory T cells (Tregs) and T helper

17 cells (Th17) exhibit protumorigenic roles in precancerous lesions

and CC (Heeren et al, 2015; Walch-Ruckheim et al, 2015; Santegoets

et al, 2019). Despite these findings, whether and how T cells recog-

nize HPV-specific antigens in CC is largely unknown. B-cell signa-

tures are associated with favorable clinical outcomes in CC (Kim

et al, 2020). In addition, B-cell-mediated HPV-specific antibody

responses have been validated in HPV-related head and neck squa-

mous cell carcinoma (HNSCC), suggesting the potential role of B

cells in HPV-related cancers (Kim et al, 2020; Wieland et al, 2021).

However, investigations of B cell subset functions in CC remain

scarce. Finally, the studies above focused on specific cell subsets

sorted by flow cytometry or were limited to classical immune
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markers. The cellular characterization, interactions and dynamic

development of immune components in CC have not yet been

investigated.

An in-depth understanding of TME characterization can be

instrumental in developing more efficacious therapeutic approaches.

Single-cell-sequencing technology has created opportunities to

deepen understanding of TME, specifically focusing on the pheno-

type and dynamics of immune and tumor stromal cells (Ren

et al, 2021). To uncover the TME of CC, droplet-based single-cell

RNA sequencing (scRNA-seq) and single-cell TCR-sequencing (TCR-

seq) were conducted among six patients with cervical squamous cell

carcinoma with matched primary tumor areas and adjacent normal

tissues. By comparing the ecosystem between tumor and normal

samples, a basal-like epithelial subpopulation was identified that

could be critical to the invasion and metastasis of CC cells. For the

immune compartment, dynamic lineage tracking across different T

and B cell phenotypes was observed, emphasizing the ongoing

tumor-specific immune-exhausting or activating processes. Finally,

the function of stromal subpopulations in the immune system was

evaluated, and the co-occurrence of inflammatory cancer-associated

fibroblasts (CAFs) and an immature endothelial subset that predicts

poor outcomes were highlighted.

Results

Single-cell transcriptomics and TCR profiles of CC

Eleven samples were collected from six patients who underwent hys-

terectomy (five pairs of tumor and adjacent normal tissues and one

additional tumor sample, Table EV1). The gene expression profile and

T-cell receptor (TCR) repertoire of these samples were obtained at

single-cell resolution using the 10× Genomics Chromium platform

(Fig 1A, Table EV2). To ensure that all the cells were of high quality

and devoid of potential contaminants, we performed quality control,

doublet removal (Table EV3), multiple cell-type signature visualiza-

tion, and batch correction using a streamed pipeline (Fig EV1A–D,
Materials and Methods) (Wang et al, 2020). A total of 53,089 high-

quality cells were used for gene expression analysis, with an average

of 5,486 reads and 1,678 genes detected per cell (Fig EV1B).

Seven major cell lineages were identified from the gene expres-

sion profiles and visualized using uniform manifold approximation

and projection (UMAP, Fig 1B). Different cell lineages were anno-

tated with typical cell markers as follows (Fig 1C): epithelial cells

(EPCAM+), T cells (CD3D+), NK (natural killer) cells (KLRB1+), B

cells (CD79A+), and plasma cells (CD38+), myeloid-derived cells

(FCN1+ for macrophages, CD14+ for dendritic cells, KIT+ for mast

cells), endothelial cells (PECAM1+), and fibroblasts (COL1A1+ and

COL12A1+ for fibroblasts, MCAM+ and ACTA2+ for perivascular

cells). Tumor samples exhibited a distinct cell lineage distribution

from normal samples, with an increase in T/NK cells, B cells,

plasma cells, and mast cells in the tumor samples, indicating the

infiltration of immune cells in the CC microenvironment (Figs 1D

and EV1E). The accumulation of immune cells in the CC microenvi-

ronment was further verified by multiplex immunohistochemistry

(mIHC, Figs 1E and EV1F). In summary, the dataset demonstrated

that the CC microenvironment harbors a complex ecosystem with

increased immune cell infiltration and relatively fewer stromal cells.

POSTN+ malignant cells manifest an invasive phenotype

The heterogeneity of epithelial cells was investigated by re-

clustering the cells into five different subtypes (Figs 1F and EV1G

and H). To separate the malignant cells and normal epithelia,

CopyKAT analysis was performed (Gao et al, 2021), which infers

the malignant status of each cell based on copy number variation

from scRNA-seq data (Fig 1G). We also aligned the scRNA-seq reads

on the HPV genome (Serra & Chetty, 2018) and the HPV infection

status of each cell was evaluated (Fig 1G). EP4_EPCAM and most

cells from EP0_MUC5B were classified as normal epithelium with a

diploid genome, whereas EP1_KRT6A, EP2_POSTN, and EP3_MKI67

were classified as malignant cells. As expected, the three malignant

clusters harbored a high proportion of HPV-infected cells, which is

commonly observed in CC (Fig 1F and G), and although all five epi-

thelial clusters were observed in the six patients, the proportion of

malignant and normal clusters varied significantly, suggesting size-

able intertumoral heterogeneity between different patients

(Fig EV1I).

Thereafter, focus was given to the characteristics of malignant

cells based on their marker genes (Figs 1H and EV1G). EP3_MKI67

presented a hyperproliferative status, whereas EP1_KRT6A exhib-

ited conventional CC cell features, such as high expression of

KRT6A and CDKN2A and enrichment in the P53 pathway

(Fig EV1H). In addition, EP1_KRT6A showed an immune-related

feature (S100A8 and S100A9) previously reported in Epstein–Barr
virus-associated nasopharyngeal carcinoma and downregulation of

MHC class I genes, indicating that this subpopulation might play an

essential role in immune cell dysfunction in the TME (Jin

et al, 2020). Notably, EP2_POSTN displayed a hallmark signature of

enrichment in epithelial-mesenchymal transition (EMT) and unique

expression of the metastasis-related gene POSTN (Wei et al, 2021)

among epithelial cells and fibroblasts (Figs 1I and EV1J). Survival

analysis was performed using gene signatures from different epithe-

lial subtypes (see Materials and Methods) on TCGA CESC patients

to confirm their clinical relevance. As expected, patients with a high

proportion of EP2_POSTN showed poor survival, whereas those

with a high normal proportion of EP0_MUC5B cells had an

improved prognosis (Fig 1J). The result remained consistent after

removing the overlapping genes between EP2_POSTN and fibro-

blasts (Fig EV1K). According to the findings, EP2_POSTN may rep-

resent a subset of invasive malignant cells and is predictive of

prognosis.

T and NK cells exhibit exhausted features in the TME

T and NK cells are vital effectors of tumor immunity. However,

their dynamic status within the TME has not been completely inves-

tigated in CC. Therefore, 21,311 T and NK cells were isolated and

10 clusters derived (Fig 2A). In addition to proliferating T

cells (Tprol_MKI67), CD8+ T cells were classified as memory T cells

(CD8_IL7R), cytotoxic T cells (CD8_GZMK), and exhausted T cells

(Tex_HAVCR2), whereas CD4+ T cells were separated into naı̈ve

CD4+ T cells (CD4_CCR7), Th17 cells (CD4_IL17A), follicular helper

T cells (Tfh, CD4_CXCL13), and regulatory T cells (Tregs, Treg_FOXP3)

according to the expression of canonical markers (Fig EV2A). The

Tex_HAVCR2 subset expressed blended amounts of cytotoxic genes

and inhibitory receptors (HAVCR2, LAG3, PDCD1, and TIGIT),
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whereas cytotoxic T cells expressed GZMK rather than GZMB. These

observations roughly coincide with the general paradigm of

other cancers (Ren et al, 2021). CD4+ T-cell composition indicated a

skewed response dominated by Th17 and Tfh subsets, in concor-

dance with studies indicating a lack of cell-mediated immunity

(Th1-type response) in cervical tumors (Shamseddine et al, 2021;

Yuan et al, 2021). Moreover, the tumor area showed a high

density of Tex_HAVCR2, Treg_FOXP3, and Tprol_MKI67 (Fig 2B),

suggesting that the majority of tumor-infiltrated T cells were

exhausted and compromised by tumor antigens (Li et al, 2019). In

contrast, adjacent normal tissues were enriched in pre-stimulated

phenotypes, such as CD4_CCR7 and CD8_IL7R. For NK cells, the

NK_FCGR3A subset was excluded from the tumor area, corre-

sponding to an activated cytotoxic phenotype (PRF1 and GNLY),

whereas NK_KLRC1, a suppressive phenotype, was slightly enriched

in the tumor area. In addition, the anti-tumor activity of tumor-

infiltrating NK cells was not thoroughly dampened, as survival anal-

ysis revealed that both NK_FCGR3A and NK_KLRC1 signatures were

associated with better outcomes of overall survival in the TCGA CC

cohort (Fig EV2B), consistent with the observation that patients

with CC high-level intratumoral NK cells had an inferior risk of pro-

gression (Zhang et al, 2021). Overall, the data indicated that a large

proportion of T/NK cells were exhausted, and the CD4 response

was dominated by Th17 in the CC.

Trajectory and TCR analyses indicated both transitioned and
infiltrated sources of T cells

T-cell responses to tumor immunity can be expanded from tissue-

resident memory cells or infiltrated from the lymph nodes or blood

(Yost et al, 2019). Therefore, the origin and dynamic status of the T

cell subsets were addressed. First, the pseudo-time trajectory was

reconstructed to understand the differentiation status of T cells

using the Monocle2. Both CD4+ and CD8+ T cells are distributed in

binary, branched structures. For CD4+ T cells, the root of the trajec-

tory was CD4_CCR7, with CD4_IL17A and CD4_CXCL13 as the end-

ing clusters (Fig 2C), indicating functional differentiation from naı̈ve

CD4 T cells to T helper cells. TCR similarity can be utilized as a nat-

ural marker to identify the dynamics of clonal T cells (Nikolich-

Zugich et al, 2004) TCR repertoire analysis was then conducted to

understand the clonality and diversity of T cells in CC, to verify the

TCR repertoire mapped from scRNA expression profiles using

TRUST4 (Song et al, 2021). For single-cell TCR-seq data, 15,957 cells

with sufficient read coverage were used for downstream analysis

(Fig EV2C). CD4_CXCL13 showed reduced diversity and increased

clonality in tumor samples compared with adjacent normal samples

(Fig 2D and E), and CD4_IL17A was opposite, suggesting a potential

clonal expansion of CD4_CXCL13 in response to tumor antigens. In

addition, the similarity of complementarity-determining region 3

◀ Figure 1. The single-cell landscape for the cervical cancer.

A Experimental design of primary cervix tumor collection, processing, sequencing and data analysis; Created with BioRender.com.
B UMAP plot of all the 53,089 single cells from 6 cervical cancer patients. Cells were annotated based on known lineage-specific marker genes (denoted by colors).
C Dot plot showing the lineage-specific marker genes of T and NK cells (T/NK), B cells, Plasma, Myeloid cells, Mast cells, Fibroblasts, Perivascular cells (PVC), Endothelial

and Epithelial cells. The shade of color denotes the average gene expression level, the dot size denotes the percentage of gene expression in the corresponding
lineage.

D UMAP plot of single cells profiled in the presenting work colored by patient (upper panel) and sample source (lower panel).
E Representative mIHC of immune components in CC tumors and adjacent normal tissues. T cells: CD3 (red), B cells: CD20 (green), macrophages: CD68 (pink), NK cells:

CD56 (yellow), epithelial cells: Pan-CK (orange). Scale bar = 100 μm.
F UMAP plot showing the subtypes of 7,791 epithelial cells. Cluster annotations are denoted and colored corresponding to the cell type in the figure.
G UMAP plot showing the distribution of CNV and HPV infection status (indicated by colors).
H Heatmap showing the expression of marker genes in each subtype of epithelial cells. SCC, squamous cell carcinoma; SCJ, squamocolumnar junction; Imm, immune-

related genes; Prolif, hyperproliferation; Colu, columnar epithelium; EMT, epithelial-mesenchymal transition.
I Violin plot indicating the EMT Score of three malignant cell clusters; Differences between group were examined by Kruskal-Wallis test. ****P< 0.0001 by pairwise

Wilcoxon tests with the Benjamini-Hochberg correction.
J Comparison of Overall survival (OS) rates for the high-correlation and low-correlation groups, stratified using the EP0_MUC5B (left panel) and EP2_POSTN (right

panel) signatures in TCGA. P-values are calculated using the log-rank test (N= 255).

▸Figure 2. The dynamic subtypes of T/NK cells in TME and TCR repertoire profiling using 10× TCR-seq data.

A UMAP plot showing the subtypes of 21,311 T/NK cells. Cluster annotations are denoted and colored corresponding to cell types in the figure.
B Boxplots showing the cell-type proportions of T/NK cells for matched tumor and normal samples (n= 5). The scCODA model and the ALDEx2 model were used to

examine the differences in T/NK cells’ composition. Red bars indicate credible and significant results of scCODA. Stars indicate the significance calculated by ALDEx2
model (*P< 0.05, **P< 0.01).

C 2D graph of T cells trajectories, from CD4+ T cell subsets. The cell density distribution, by the pseudo-time, is shown at the top of the figure and colored corre-
sponding to cell types, respectively.

D, E Boxplots showing each cell type TCR Diversity (D) and Clonality (E) level for matched tumor and normal samples (n= 5) by using 10× TCR data. Student’s t-test. *P
< 0.05.

F Triangle heatmap showing the overlap of expanded TCR clonotypes across all possible combinations of T cell clusters. Data were aggregated for each of the
indicated patient groups from 10× TCR data. Numbers indicate the normalized Jaccard index number of shared expanded TCR clonotypes for each cluster pair.

G 2D graph of T cells trajectories, from CD8+ T cell subsets. The cell density distribution, by the pseudo-time, is shown at the top of the figure and coloured corre-
sponding to cell types, respectively.

H UMAP as in (A), but cells are colored corresponding to clone sizes, large (yellow) or small (green). Clones from 10× TCR data.
I Violin plots showing the differentially expressed genes between large and small clone (color-coded as in H).
J Boxplots showing the clone size of HPV (left panel) and CMV (right panel) antigen-specific TCR for matched tumor and normal samples by using 10× TCR data. Stu-

dent’s t-test.

Data information: Boxplots show the median and upper/lower quartiles.
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(CDR3) sequences among differential T cell phenotypes (Glanville

et al, 2017) were investigated, and the normalized Jaccard Index

used to qualify T-cell CDR3 similarity, where a greater value

illustrated higher similarity between two clusters (see Materials and

Methods). Notably, the intermediate to low Jaccard index across

CD4+ T cells revealed that naı̈ve T cells were not the sole origin of
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helper T cells (Figs 2F and EV2D). Treg_FOXP3 and CD4_CXCL13

showed extremely low TCR clone overlap across other subsets, indi-

cating that these cells potentially infiltrated from an external envi-

ronment, such as blood, instead of transitioning from naı̈ve CD4+ T

cells in CC. Of note, both trajectory analysis and Jaccard index

revealed that naı̈ve CD4+ T cells differentiated into Th17 cells rather

than Tfh cells, consistent with research indicating that Th17 expan-

sion was supported in the CC microenvironment (Walch-Ruckheim

et al, 2019) (Fig 2C and F). For CD8+ T cells, with CD8_IL7R mem-

ory T cells as the root, Tex_HAVCR2 assembles at the end of the

branches and CD8_GZMK scatters around the trajectory, suggesting

that the exhausted T cell phenotype was differentiated or switched

from a cytotoxic phenotype (Fig 2G). Tex_HAVCR2 and CD8_GZMK

showed higher clonal expansion levels in tumor samples than in

adjacent normal samples (Fig 2E). Consistently, high-level Jaccard

indices among CD8_GZMK, Tex_HAVCR2, and Tprol_MKI67, the

“hallmark” of ongoing expansion (Li et al, 2019), indicate that these

cells were mainly from local expansion (Fig 2F). Moreover, the

extremely high normalized Jaccard index between cytotoxic T cells

and exhausted T cells illustrated that they represented a continuous

status of T cell exhaustion instead of two distinct subsets (Fig 2F).

To investigate the potential mechanism that induces the exhaustion

of T/NK cells, cell–cell interaction analyses were performed using

CellphoneDB (Fig EV2E), and poliovirus receptor (PVR)-like protein

signaling was the main co-inhibitory interaction between T/NK cells

(CD96 and ITGIT) and malignant cells (PVR and NECTIN1). Also

observed were other interactions between malignant cells and T

cells, including LGALS9:HAVCR2, CD47:SIRPG, and PDCD1:CD274.

In summary, the findings suggest that CD8+ T cells exhibit a

cytotoxic-exhausted phenotype and a clear local expansion trajec-

tory, and that the infiltrated Tregs and PVR-like protein signaling

may contribute to the immune-resistance microenvironment of CC.

Cytotoxic and exhausted T cells form large T-cell clones

Large clonal T cells shared identified TCR clonotypes as a result of

clonal expansion; thus, these cells were considered as potentially

tumor-reactive T cells in the TME (Zheng et al, 2021). The pheno-

types and abundance of large clone T cells also correlate with ICB

therapy responses (Fairfax et al, 2020). Therefore, we investigated

the phenotypes and gene expression of clonal T cells in CC with

TCRs shared by more than five cells. Notably, large clones con-

verged specifically in cytotoxic and exhausted T cell subsets, consis-

tent with the T cell origin and trajectory (Figs 2H and EV2F,

Dataset EV1). These large clone cells expressed a panel of cytotoxic

genes (GZMA, GZMH, and IFNG) and chemokine genes (CXCL13

and CCL4), indicating an activated and lymphocyte recruitment phe-

notype (Fig 2I). In addition, large clones had a more pronounced

enrichment of pathways related to interferon-gamma than small

clones, suggesting that large clones are more prone to cytotoxic

immune responses (Fig EV2G). These results suggest that large

clones of T cells may be critical effectors in the antitumor response,

and that their specific antigens should be further investigated.

Although previous research has reported an unexpected magni-

tude of poised HPV-specific T cells in CC after expansion, the natu-

ral status of HPV-specific T cells has not been explored. TCRs’

capacity to recognize HPV antigens was investigated by mapping

the public clonotypes (Dataset EV2). Human cytomegalovirus

(CMV), which can latently infect and elicit a robust T-cell response,

was used for comparison (van den Berg et al, 2019). The results

showed enlarged clonal sizes of HPV and CMV in the tumor area

compared with the adjacent normal area (Fig 2J, Dataset EV2),

supporting the presence of HPV-specific T-cell responses. However,

inconsistent with prior research (de Vos van Steenwijk et al, 2010),

very few T cells were HPV-specific, limiting further investigation of

their phenotypes or expression profiles, perhaps due to heterogene-

ity among patients and unsorted cell capture strategies. Their

dynamic states should also be further investigated during vaccina-

tion or immunotherapy to distinguish whether they were functional

T cells or bystander clones, as previously reported (Simoni et al,

2018).

Germinal center responses are found in the tumor area

Currently, the anti-tumor properties of B-lymphocytes have been

increasingly recognized (Liu et al, 2020; Lu et al, 2020), yet are less

characterized in CC. To investigate the atlas and roles of B cells in

CC, 3,107 B cells were separated (Fig 3A). Notably, B cells are pre-

dominantly derived from tumor samples instead of adjacent normal

tissues, suggesting a consequent B cell response stimulated by the

TME. Six clusters could be distinguished: activated B cells (ABC),

memory B cells (MBC), germinal center B cells (GCB), plasma cells

(PC), and transitional B cells (TC) (Fig EV3A). B cell subsets

were also confirmed by a gene set enrichment analysis as

previously reported (Fig 3B) (Cillo et al, 2020). The ABC cluster

(B0_TNFRSF13B) was characterized by TNFRSF13B and CD83. MBC

(B1_S1PR1) expressed BACH2 and KLF4, transcription factors for

identifying germinal center-derived memory B cells (Ripperger &

Bhattacharya, 2021). GCB (B3_NEIL1) was identified by MME

(encoding CD10), AICDA, and BCL6, while PC (PC_IGHA1 and

PC_IGHG4) expressed MZB1 and XBP1 (Fig EV3A), suggesting an

underlying germinal center (GC) response in the TME. Functional

analyses suggested that the ABC gene signature is particularly con-

centrated in the antigen processing and presentation pathway,

whereas the PCs’ signature is enriched in complement activation

and immunoglobulin production pathways, indicating the distinct

anti-tumor functions of different subsets of B cells (Fig 3C).

The presence of GCB and GC-derived MBC suggested activation

of the GC response in CC. A pseudo-time trajectory analysis of the B

cells and PC was conducted to investigate the potential transitions.

The trajectory path suggested a cell differentiation fate for B cells,

starting at ABC (B0_TNFRSF13B), progressing towards GCB

(B3_NEIL1) and GC-derived MBC (B1_S1PR1), and terminating at

PC (PC_IGHA1 and PC_IGHG4), with the TC cluster (B2_MKI67)

spreading along the trajectory as a transitory status (Fig 3D). In

addition, ABC marker genes (CD83 and TNFRSF13B) and GC-related

genes (CXCR4 and CXCR5) decreased continuously, whereas PC

hallmark genes (MZB1, XBP1, SDC1, and IGHG1) increased, with an

additional decrease in antigen-presenting genes (Fig 3E). The trajec-

tory of B-cell subsets and gene expression illustrated a continuous

B-cell subset switch resembling the GC response. Furthermore, B

cell receptor (BCR) data reconstructed via TRUST4 was used to

investigate the clonal composition of B cells (Fig EV3B) (Song

et al, 2021). The elevated clonality of the TC and PC subsets indi-

cated that these subsets were derived from local expansion in the

TME (Fig EV3C). The alterations of immunoglobulin (Ig) isotypes in
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GC response (Fig 3F), which arise from somatic hypermutation and

class switch recombination, supported a tumor-specific GC response

in CC. In addition, IgG1 is the dominant subtype of IgG in GCB and

PC, suggesting the potential effector activity of these subsets in anti-

tumor immunity (Jacquelot et al, 2021). Overall, B cell subsets infil-

trating the TME were characterized and germinal center reactions
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via BCR analysis and trajectory tracking were revealed, indicating

ongoing tumor-specific immunization with T-dependent antigens

in CC.

The infiltration of B cells is associated with increased patients’
survival in CC

While B cells were highly heterogeneous in the CC TME, bulk

RNA-seq data from TCGA was used to evaluate whether B-cell sig-

natures were clinically significant. The GCB (HR= 0.14, P =
0.0120) and GC-derived MBC (HR = 0.12, P = 0.0086) signatures

were significantly associated with better outcomes (Fig 3G). It was

then estimated whether responders who underwent immunother-

apy had a higher density of B cells, as pembrolizumab (anti-PD-1

antibody) has been proven to benefit advanced CC patients

(Colombo et al, 2021). All B cells exhibited a favorable trend, and

the GCB and TC signatures were statistically significant in the gas-

tric cancer cohort treated with pembrolizumab (Fig 3H). The trend

was similar but did not reach statistical significance in another

ipilimumab-treated melanoma cohort (Fig EV3D). We also investi-

gated the correlation between B-cell subsets and cytotoxic T lym-

phocytes (CTL) (Jiang et al, 2018). Among the B cell and PC

subsets, GCB (B3_NEIL1) showed the highest positive correlation

with CTL (R = 0.451), indicating a potential interaction between

GCB and T cells that could promote T-cell infiltration in the TME

(Fig EV3E). In addition, the expression levels of B cell-related

immunoregulatory genes were detected, as summarized in previ-

ous research (Wieland et al, 2021). Immunosuppressive genes

related to B cells, including CD274, IL-10, and IDO1, remained

undetectable or at low levels apart from TGFB1 (Fig EV3F).

Although TGFB1 is expressed in global B cell subsets, GCB main-

tains a relatively low level of TGFB1, suggesting multifaceted func-

tions manifested in B cell subsets. A recent study by Meylan

et al (2022) confirmed that tertiary lymphoid structures (TLS)

could drive the in situ maturation of B cells, anti-tumor antibody

production, and antibody-dependent cell-mediated cytotoxicity

(ADCC) in renal cell cancer. CD38+Pan-CK� plasma cells were also

consistently detected in GCB+ patients (Fig 3I), and patients with

high CGB signatures showed higher expression of plasma markers

(CD38), hallmarks of ADCC (FCGR1A and FCGR3A), and NK-cell

genes (Fig 3J). Collectively, the results revealed the heterogeneity

of B-cell subsets in anti-tumor responses and emphasized the anti-

neoplastic properties of GCB.

GCB subset is confined to tertiary lymphoid structures in TME

Considering the pivotal role of GCB, mIHC (n= 3) was performed to

verify the localization of GCB in TME. Total B cells (CD20+) and PC

(CD20�CD38+) were mostly stained adjacent to the PanCK+ tumor

parenchyma (Figs 4A and B, and EV4A). GCB (CD20+BCL6+) was

consistently present in well-formed TLS rather than in poorly struc-

tured immune-cell aggregates (Fig EV4B), and cell density statistics

further verified the distribution of total B cells, PCs, and GCBs

(Fig 4C). TLS constituted by a CD20+ B-cell follicular and an outer

CD4+ or CD8+ T cell was further observed by immunohistochemis-

try (IHC) in the same patient (Fig EV4A). These results indicate that

the microenvironment supported by TLS might be necessary for the

GC reaction in the TME. The presence of GC is a typical trait of

mature TLS and is considered a favorable factor in prognosis and

immunotherapy (Sautes-Fridman et al, 2019; Cabrita et al, 2020).

Thereafter, it was investigated whether TLS was associated with the

outcomes of patients with CC. In the absence of transcriptomic sig-

natures for TLS detection in CC, previously reported signatures were

applied to TCGA patients (Sautes-Fridman et al, 2019; Horeweg

et al, 2022; Meylan et al, 2022). In addition, all prior signatures were

associated with better outcomes apart from a single follicle dendritic

cell marker L1CAM and chemokine signature (Fig EV4C), suggesting

that TLS was beneficial for patient prognosis across cancers but had

heterogeneity in neogenesis-related chemokines. Notably, Tfh, a key

regulator of GC reactions whose signature has optimal performance

(HR= 0.092, P= 0.0028), highlights the crucial role of GC reaction-

related signatures in outcome prediction.

Since T-B collaboration is an underlying mechanism for the anti-

tumor effects of B cells (Cui et al, 2021), the T cell component of

TLS in CC was investigated by focusing on interactions between B

cells and Tfh. Co-stimulatory molecules (Cui et al, 2021) for B-cell

differentiation (ICOSLG-ICOS) and proliferation (CD40-CD40L) are

prominent interactions between GCBs and Tfh cells (Fig 4D), as well

as molecules that promote germinal center development (IL-21R-

IL21) and T-B cell activation (CD27-CD70). Of note, the

CD4_CXCL13 subset exhibited a PD-1+CXCR5� Tfh-CXCL13 cell phe-

notype identified in nasopharyngeal carcinoma (Fig EV2A) (Li

et al, 2021). The spatial relevance of PD-1+CD4+CXCL13+ Tfh and

GCB were validated using mIHC (Fig 4E). Tfh cells colocalized with

TLS restrictedly, particularly in immature TLS and germinal centers

(Figs 4E and EV4B). Moreover, the quantification of cell density and

frequency also indicated the aggregation of Tfh in TLS (Fig EV4D),

◀ Figure 3. GC response identified in cervical cancer.

A UMAP plot showing the subtypes of 3,107 B cells. Cluster annotations are denoted and coloured corresponding to cell types in the figure.
B Heatmap showing the characterization of different B-cell populations with B-cell-related pathways.
C Dot plot showing the selected signaling pathways (rows) with significant enrichment of GO terms for B-cell and plasma clusters.
D 2D graph of B cells trajectories. The cell density distribution, by the pseudo-time, is shown at the top of the figure and colored corresponding to cell types.
E Heatmap showing immune-associated genes in the differentiation process.
F Stacked bar plot showing immunoglobulin (Ig) abundance of each B cell sub-cluster.
G A forest plot showing the association of different B-cell signatures with survival across the TCGA SCC cohort. Squares and lines indicate hazard ratios (HRs) and 95%

confidence intervals (CIs), respectively. HRs were calculated using univariable Cox regression; P-values were calculated using log-rank test.
H Violin plots showing the association of different B-cell signatures with the response (R, N= 15) and no response (NR, N= 42) to Pembrolizumab in the Kim cohort. P-

values calculated using the student’s t-test.
I Representative mIHC of plasma cells in CC tumor area. plasma cells: CD38+Pan-CK�, scale bar = 100 μm.
J Expression of the genes that comprise the plasma cell and ADCC signatures in TCGA cohort.

Data information: Violin plots show the median and upper/lower quartiles.
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suggesting its potential role in TLS maturation and T-B collabora-

tion. Similar to potential GCB-Tfh interactions, possible cross-talk

among other compartments via CellChat (Fig EV4E) was evaluated,

and myeloid cells showed significant cross-talk with B cells com-

pared to other cell lineages. More importantly, the B cell survival

factors APRIL and BAFF signaling are predominant in B cell

interactions with myeloid cells (Fig EV4F), resulting in B cell organi-

zation and survival in the tumor area. The localization of CD14+

myeloid cells in TLS was further vadiated with mIHC (Fig EV4G). In

summary, the analyses suggest that TLS genesis and B-cell

responses could be orchestrated by the Tfh-CXCL13 subset and mye-

loid cells.

A

C

E

D

B

Figure 4. Localization and interactions of B cells and TLS in CC.

A, B B cell subsets localization in CC tissues are exhibited by mIHC via differential markers as follow: total B cell: CD20+, GCB: CD20+BCL6-, PC: CD20-CD38+; with scale
=500 μm for (A), scale= 200 μm for (B).

C Quantification of B-cell density in Pan-CK+ tumor area, adjacent stroma and TLS. *P< 0.05, two-way ANOVA following Tukey post-hoc test.
D Bubble plots showing the interactions between Tfh (CD4_CXCL13) and B-cell populations using CellPhoneDB.
E Representative mIHC of CC tumor with CD4+PD-1+CXCL13+ Tfh cells located in TLS (yellow arrows). scale bars= 100 μm for left panel, scale bars= 20 μm for right

panel.

� 2023 The Authors The EMBO Journal 42: e110757 | 2023 9 of 22

Guangxu Cao et al The EMBO Journal



Cellular heterogeneity of myeloid cells in CC

Despite the importance of tumor-infiltrating myeloid cells in tumor

progression, the subpopulations and properties of myeloid cells in

CC have not been thoroughly investigated at the single-cell level

(Cheng et al, 2021). Three different types of myeloid cells were clas-

sified into cells from the mononuclear phagocyte system; dendritic

cells (DCs), and mast cells (Fig 5A and B), according to canonical

marker genes (Appendix Fig S1A) (Zilionis et al, 2019; Zhang

et al, 2020a). Notably, all subtypes of macrophages resembled the

signatures for tumor-associated macrophages (TAMs) instead of M1

or M2 signatures (Fig 5C, Table EV4), indicating a more elaborate

macrophage status in CC (Zhang et al, 2019; Hornburg et al, 2021).

Specifically, Mono_FCN1 expressed the monocyte signature and a
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Figure 5. Phenotype diversity of myeloid cells in CC.

A UMAP plot showing the subtypes of 3,792 Myeloid cells. Cluster annotations are denoted and colored corresponding to cell types in the figure.
B Boxplots showing the cell-type proportions of myeloid cells for matched tumor and normal samples (n = 5). The scCODA model and the ALDEx2 model were used to

examine the differences in myeloid cells’ composition. Red bars indicate credible and significant results of scCODA. Stars indicate the significance calculated by
ALDEx2 model (*P< 0.05).

C Heatmap showing the characterization of different macrophage cell populations with M1, M2 and TAM scores.
D Heatmap showing the expression of marker genes in each subtype of myeloid cells; TRM, tissue-resident macrophage; Phago, phagocytosis.
E, F 2D graph of myeloid cells trajectories, from monocyte/macrophage cell (E) and Dendritic cell (F) subsets. The cell density distribution, by the pseudo-time, is shown

at the top of the figure and colored corresponding to cell types, respectively.
G Comparison of Overall survival (OS) rates for the high-correlation and low-correlation groups, stratified using the Macro_C1QC (upper panel), and Mast_CPA3 (lower

panel) signatures in TCGA (N= 255). P-values are calculated using the log-rank test.

Data information: Boxplots show the median and upper/lower quartiles.
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high level of tissue-resident macrophage genes (Fig 5D), suggesting

that the subset represented an intermediate state during the mono-

cyte maturation of TAMs (Casanova-Acebes et al, 2021). The pres-

ence of proliferating macrophages (Macro_MKI67) also indicated

the potential renewal ability of macrophages in CC. Another tumor-

enriched subset, Macro_C1QC, expressed C1QC, TREM2, and MHC

class II genes and was therefore annotated as a conventional pheno-

type of polarized phagocytosis and antigen presentation (Tirosh

et al, 2016) Enrichment analyses also revealed that TAMs enriched

complement activation pathways, and monocytes were enriched in

humoral immune response (Appendix Fig S1B), suggesting that

TAMs and monocytes may also be involved in antibody-induced

antitumor responses. Trajectory analysis confirmed the differentia-

tion trend from monocytes to conventional macrophages (Fig 5E),

suggesting that polarized macrophages might be derived from

monocyte maturation and the proliferation of tissue-resident macro-

phages. Interestingly, a unique subset of Macro_TRAC was indepen-

dently distributed in the other branch of the trajectory. This subset

showed features of TCR-encoding genes (TRAC, CD247, and TRBC2)

which could be identified as TCR+ macrophages and have been

reported in the process of infection and pathological processes

(Beham et al, 2011; Chavez-Galan et al, 2015). Moreover, this sub-

set expressed B cells, the TLS-related chemokines CCL5, and

CXCL13 (Fig 5D), indicating a potential role in B cell recruitment

and TLS formation.

For DC, conventional DCs (cDCs) were annotated using canoni-

cal markers such as CLEC9A+ cDC1 and CD1C+ cDC2. LAMP3+

mature DCs (mDCs) infiltrated mainly in tumor areas with the

expression of immunoregulatory genes (IDO1 and CD274) and a

lack of MHC class II-encoding genes (Fig 5B and D), showing inhibi-

tory roles in tumor-infiltrating T cells. In addition, trajectory analy-

sis delineated a conserved maturation module from conventional

DCs to mature DCs (mDCs), suggesting that both cDC1 and cDC2

were the origins of mDCs (Fig 5F) (Ren et al, 2021). The majority of

mast cells accumulated in the tumor area (Fig 5B), yet the role of

mast cells in tumor progression remains unclear (Ribatti, 2016).

According to their phenotypes, myeloid cells have distinct prognos-

tic roles in CC patients. Macro_C1QC and DC_CLEC9A signatures

were significantly correlated with a better outcome in TCGA

patients, whereas highly infiltrating mast cells predicted a dismal

prognosis (Fig 5G). In summary, the data illustrated the diversity of

myeloid cells in CC and highlighted that these differential subsets

have distinct anti- or pro-tumor roles in tumor immunity.

Tumor-specific iCAF and endothelial subset are associated with
tumor progression and immunosuppression

Analysis of perivascular cells (PVCs) and CAFs (Fig 6A and B) was

then conducted. PVCs with the robust PVC marker MCAM and

angiogenic pericyte marker RGS5 (Fig 6C) were sorted (Sahai

et al, 2020; Wu et al, 2020). Within CAFs, five subtypes with

diverse characteristics were identified according to their marker

genes in various cancers (Fig EV5A): myofibroblastic CAFs

(mCAF_ACTG2), inflammatory CAFs (iCAF, iCAF_CHI3L1, and

iCAF_CXCL14), extracellular matrix CAFs (eCAF_DCN) and

angiogenesis-associated CAFs (angiCAF_ID2) (Chen et al, 2020;

Wu et al, 2020; Desbois & Wang, 2021). Expressing genes in

cytokine-mediated pathways, iCAF_CXCL14 and iCAF_CHI3L1

were identified as iCAFs (Fig 6C), which were further divided into

cytokine-related iCAF_CXCL14 and interleukin-related iCAF_-

CHI3L1. Notably, compared with the adjacent normal tissues, the

iCAF_CHI3L1 subset was predominately found in tumor samples,

whereas the absence of cytokine-related iCAFs in the tumor area

suggests remodeling of iCAFs and restrained tumor control in the

TME (Westrich et al, 2020). Importantly, the immunosuppressive

mediator CHI3L1 and tumorigenic cytokines CXCL5 and IL11 were

only expressed in iCAF_CHI3L1 (Fig EV5B). This unique subset

was further verified by IHC staining and was similar to that of

tumor cells (Fig EV5C). Surprisingly, eCAF_DCN, iCAF_CXCL14

and iCAF_CHI3L1 highly expressed extracellular matrix (ECM)-

associated genes (DCN, MMPs and collagens), suggesting their abil-

ity on ECM remodeling. CTL correlation analysis demonstrated

that PVC0_MCAM, PVC1_ACTA2, eCAF_DCN and iCAF_CHI3L1

were inversely correlated with CTL (Fig 6D), partly as a result of

ECM remodeling and immunomodulatory factors secreted by these

subsets (Di Modugno et al, 2019). Correspondingly, the gene signa-

tures of PVC0_MCAM and iCAF_CHI3L1 can also predict the

response to ICB treatment in the melanoma or gastric cancer

cohort (Fig EV5D). In summary, these results demonstrate hetero-

geneous CAFs subsets with distinct functions in CC and emphasize

the potential tumorigenic and immunosuppressive roles of the

iCAF_CHI3L1 subset.

▸Figure 6. Single-cell resolution heterogeneity of stromal cells in cervical cancer.

A UMAP plot showing the subtypes of 11,685 fibroblast cells. Cluster annotations are denoted and colored corresponding to cell types in the figure.
B Boxplots showing the cell-type proportions of fibroblast cells for matched tumor and normal samples (n = 5).
C Heatmap showing the expression of marker genes in each subtype of fibroblasts; PVC, perivascular cells; myoF, myofibroblasts; ECM, extracellular matrix Angio,

angiogenesis.
D Bar plot showing fibroblast signature associated with CTL exclusion. The bar width indicates the correlation between the bulk sample and the single-cell fibroblast

cluster. P-values were computed using a two-sided t-test for correlation and were adjusted using the Benjamini–Hochberg procedure.
E UMAP plot showing the subtypes of 3,946 endothelial cells. Cluster annotations are denoted and coloured corresponding to cell types in the figure.
F Heatmap showing the expression of marker genes in each subtype of endothelial cells; Anti-angi, anti-angiogenic drug targets.
G Boxplots showing the cell-type proportions of endothelial cells for matched tumor and normal samples.
H Boxplot showing the T-cell dysfunction score of marker genes (n= 50) in endothelial cell populations; P-values were caculated by Wilcox rank-sum test with the

Benjamini-Hochberg correction.
I Unsupervised hierarchical clustering for patients from the TCGA dataset based on the correlation to EP1, EP2, iCAF_CXCL14, iCAF_CHI3L1 and imE1_FLT1.
J Comparison of Overall survival (OS) rates for three clusters identified in (I). P-values are calculated using the log-rank test (n = 255).

Data information: Boxplots show the median and upper/lower quartiles. The scCODA model and the ALDEx2 model were used to examine the differences in fibroblasts
and endothelial cell-type composition. Red bars indicate credible and significant results of scCODA. Stars indicate the significance calculated by ALDEx2 model. *P< 0.05,
**P< 0.01, ***P< 0.001.
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Angiogenesis is a validated target in the treatment of advanced

CC. Previous research has indicated that angiogenesis occurs during

the tumorigenesis of CC to ensure an adequate supply of nutrients

during the development of cancer cells (Balasubramaniam et al,

2019). The dataset clustered four subpopulations of endothelial cells

with apparent features (Fig 6E) (Goveia et al, 2020). imE1_FLT1,

labeled by the VEGF receptor FLT1, expressed an immature gene

signature (ENG, HSPG2 and KDR) and had an increasing trend in the

tumor area, indicating a trait of neovascular endothelium (Fig 6F

and G). Compared with other subpopulations, imE1_FLT1 enhanced

the expression of angiogenesis-related genes while dampening

immunological surveillance via T cell dysfunction (Fig 6H).

E0_ACKR1 was enriched in response to interferon-gamma, antigen

processing and presentation, and regulation of lymphocyte activa-

tion, which were absent in imE1_FLT1 enrichment (Fig EV5E). Of

note, E3_PDPN were found to contain marker genes for high-

endothelial venules (HEV), including PDPN and NTAN1, which

were adjacent to TLS and could recruit lymphocytes via CCL21

(Dieu-Nosjean et al, 2016). In a trial by Lan et al (2020), a combina-

tion therapy of PD-1 antibody and apatinib (anti-VEGFR2) was

applied in patients with CC, highlighting the power of vascular nor-

malization in immunotherapy (Lan et al, 2020). We investigated if

an abnormal tumor endothelial signature could predict patients’

responses to immunotherapy. In the two pembrolizumab treatment

cohorts, non-responders showed accordant high-imE1_FLT1 scores

(Fig EV5D). This conclusion was also supported by survival analy-

sis, which showed worse outcomes in patients highly associated

with imE1_FLT1 compared with the E0_ACKR1 signature

(Fig EV5F). Overall, imE1_FLT1 is a typical neovascular endothelial

phenotype and thus could be considered a potential target for anti-

angiogenic regimens.

Co-occurrence of stromal subsets predicts poor outcomes for
patients with CC

To determine whether differential components could co-occur in the

same patient with CC and whether this co-occurrence could predict

prognosis, unsupervised hierarchical clustering was used to investi-

gate the co-occurrence of epithelial and stromal components. As

shown in Fig 6I, a joint model incorporating classic and invasive

tumor subsets, iCAFs and immature endothelial subsets provided a

promising prognosis for patients with CC. Patients in cluster 3

showed a high correlation with EP2_POSTN, iCAF_CHI3L1 and

imE1_FLT1, suggesting that they harbored invasion, immune sup-

pression and angiogenesis characteristics. In cluster 2, only EP2

showed a significant correlation, whereas patients in cluster 1

showed no significant correlation within these subsets. Based on

this, patients in cluster 1 had a better overall survival rate than

those in clusters 2 and 3. There was an intermediate risk of death

for those in cluster 2, while the poorest clinical outcomes were

found in cluster 3 (Fig 6J). However, similar approaches failed to

demonstrate significant results when immune components were

used as predictors. This is partially due to the complicated status of

immune cells in the TME which could not be categorized into spe-

cific patterns. Interestingly, signatures of imE1_FLT1, iCAF_CHI3L1

and EP2_POSTN were highly correlated in the subset of the TCGA

cohort, whereas signatures of imE1_FLT1 and EP1_KRT6A were

inversely correlated (Fig EV5G), suggesting the co-occurrence of

imE1_FLT1, EP2_POSTN and iCAF_CHI3L1 in patients with CC.

According to these results, specific gene signatures derived from

multiplex subsets of scRNA-seq can be used as outcome predictors

in patients with CC, further indicating that scRNA-seq can provide

profound insights into the co-occurrence of cell types and offer clues

for combinational therapy.

Discussion

In this study, single-cell RNA and TCR repertoire sequencing of pri-

mary CC tissues and adjacent normal tissues were conducted to

decode the heterogeneity of the TME. The intra- and inter-tumoral

heterogeneity of cancer cells was revealed, and POSTN+ cells were

identified as a potential-early invasive subtype. For the immune

components, we elucidated the status transition of CD8+ T cells and

Th17- and Tfh-mediated CD4+ T-cell responses in the TME. Large

clonal cellular phenotypes and HPV antigen-specific T-cell responses

were revealed that might underlie the cornerstone of immunotherapy

targeting Tcells and/or HPV antigens. Notably, tumor-specific B cell

responses were identified, and the pivotal role of GCB in CC progno-

sis was revealed. The interactions between GCB cells and T cells in

the TLS region provide potential strategies for inducing and main-

taining TLS and B-cell responses. Finally, we described the distinct

phenotypes of CAFs and endothelial cells harbored in the tumor

region and established a joint model that could segment patients

with differential epithelial-stromal co-occurrence patterns and prog-

nosis. Taken together, this study reveals the cellular features within

the TME of CC and provides profound insights into potential thera-

peutic modalities or outcome prediction (Appendix Fig S2).

Analysis of T-cell subpopulations revealed the dynamic status

and differentiation of T cells in CC. The equivalent fraction of cyto-

toxic T cells and exhausted T cells, characterized by a mixture of

dysfunctional and effector phenotypes, supports the generality of

tumor-infiltrating T cells between CC and other cancers (Ren

et al, 2021). However, it was noticed that large clones aggregated in

cytotoxic and exhausted T-cell subsets but highly expressed a cyto-

toxic profile, which is consistent with previous reports in melanoma

and pancreatic cancer that indicate high-frequency clones are

tumor-reactive effector populations (Pasetto et al, 2016; Schalck

et al, 2022). These results suggest the selected roles of anti-tumor

responses in tumor-infiltrating T cells. HPV antigens are historical

targets for antigen-specific immunotherapies for CC, and their effi-

cacy has been confirmed in a fraction of individuals (van der Burg &

Melief, 2011; Stevanovic et al, 2017; Nagarsheth et al, 2021). How-

ever, the response of this key population to HPV-based immunother-

apies has not been thoroughly investigated. An enlarged HPV

antigen-specific T-cell clone size was observed in the tumor area,

whereas HPV-specific clones were restricted to a limited number.

We queried the TCRs in the VDJdb database to identify HPV-specific

T cells, but the epitopes collected in this database were limited to E7

protein, which might lead to a severe underestimation of HPV-

specific cells. PD-1+TCF7+ HPV-specific T-cell subsets identified by

scRNA-seq could further proliferate and differentiate into effector T

cells (Eberhardt et al, 2021). Hence, the phenotypes and dynamic

status of HPV-specific subsets in CC warrant further investigation.

Moreover, sorted HPV-specific T cells should be further investigated

to distinguish the epitopes they identified and their subpopulations,
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so that strategies for immune checkpoint blockade and therapeutic

vaccines can be developed precisely.

The anti-tumor mechanism of B cells is a new frontier. This

study’s data highlight a GC response and showed that GCB predicts

better clinical outcomes in patients with CC. As a transient structure

within B-cell follicles, GC are considered the hallmark of mature

TLS, and the majority of tumor-specific B-cell responses are depen-

dent on TLS (Fridman et al, 2022). In contrast, humoral immunity

has been investigated in various cancers. Meylan et al (2022) demon-

strated that TLS-positive patients showed high-density IgG-stained

cancer cells and cell apoptosis in renal cell carcinoma, and IGHG

expression was only observed in the GC of TLS, suggesting that anti-

body production and the ADCC effect are anti-tumor mechanisms of

TLS. Similar results have been reported for HPV-associated HNSCC

(Cillo et al, 2020; Wieland et al, 2021). In contrast, T–B cell interac-

tions may be another mechanism. Neoantigen-derived GCB pro-

motes effector functions in CD8 T cells in a Tfh-IL-21 manner, which

has been demonstrated in a lung adenocarcinoma murine model,

with TLS serving as a likely interaction location (Cui et al, 2021). IL-

21 is also significant for GC biology and plasma cell differentiation

(Quast et al, 2022). In this study, it was noted that a subset of the

CD4+CXCR5�PD-1+CXCL13+ Tfh subset was restricted to TLS, partic-

ularly immature TLS and GC. This subset showed strong interactions

with GCB, including IL21-IL21R, ICOS-ICOSL and CD70-CD27. Thus,

this subset should be considered a critical collaborator within TLS

and warrants further investigation. In addition, ICOSL+ B cells within

the TLS boost anti-tumor immunity by increasing the effector to reg-

ulatory T-cell ratio (Lu et al, 2020). However, whether GC is essen-

tial for TLS in anti-tumor responses and how T–B cells collaborate to

promote these processes in CC remain to be explored.

Recently, TLS and plasma cell signatures, rather than T cells,

have been considered determinants of the ICB response. A phase 2

study in soft-tissue sarcomas reported that TLS-positive patients

showed significantly higher progression-free survival, and intratu-

moral plasma cells were strongly correlated with improved out-

comes (Italiano et al, 2022). Likewise, large-scale lung cancer

cohorts verified that an increased plasma cell signature is associated

with TLS and is significantly associated with extended OS with the

PD-L1 inhibitor atezolizumab (Patil et al, 2022). Given the vital role

of TLS and B-cell responses in ICB response and prediction, strate-

gies that consider TLS as a predictive biomarker to select patients

for ICB treatment and induce TLS neogenesis to sensitize patients to

anti-PD1/PD-L1 regimens are attractive perspectives for improving

the systematic treatment of CC. Of note, although multiple

approaches such as adjuvant chemotherapy can be utilized to

induce TLS, a study on cervical neoplastic lesions proved that a

therapeutic HPV vaccine can develop TLS in intraepithelial lesions

adjacent to the stroma (Maldonado et al, 2014), which appears to be

a viable approach for HPV-related cancers.

Cancer cells were distinguished from epithelial cells by integrat-

ing cell proportion, HPV mRNA expression, CDKN2A expression

and genomic copy number profiles inferred by CopyKAT, which

could serve as a pipeline for identifying HPV-related cancer cells at

single-cell resolution. Although these classic features are lacking, it

is interesting that a group of malignant cells show the hallmarks of

EMT and basal epithelial cells (TP63 and KRT14). This is analogous

to invasive leader cells reported in breast cancer and cutaneous SCC

research, in which 3D organoid assays and spatial transcriptomics

are exploited to substantiate the tumor leading-edge localization of

these basal-EMT cells (Cheung et al, 2013; Ji et al, 2020). This

study’s results suggest the presence of these dangerous cancer

leader cells in CC and depict the transcriptomic aspect. However,

further experimental verification is needed to fully understand their

biological behavior in CC invasion and metastasis. In addition,

investigation of multiple component interactions in the TME is a

unique advantage of scRNA-seq. The joint model reported here

showed that EP2_POSTN, imE1_FLT1 and iCAF_CHI3L1 could col-

lectively predict inferior outcomes. However, their spatial relevance

and whether they have mutually promoting mechanisms during

tumorigenesis or progression warrant further investigation.

Several limitations remain in this research. We could not explore

TME variations across HPV subtypes and histology due to the small

sample size. Second, the use of biopsy forceps in tissue collection

and a lack of cell sorting resulted in inadequate GCB cell numbers

for further analysis. The data could serve as a benchmark for further

immunotherapeutic investigation of CC at a single-cell resolution.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog number

Experimental models

Details described in Table EV1

Antibodies

PanCK(C11) Cell Signaling Technology Cat # 4545

CD3(BP6027) Biolynx Cat # BX50022

CD56(123C3) Cell Signaling Technology Cat # 3576

CD68(BP6036) Biolynx Cat # BX50031

CD20(E7B7T) Cell Signaling Technology Cat # 48750

BCL6(EPR11410-43) Abcam Cat # ab172610
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

CD38(EPR4106) Abcam Cat # ab108403

CD8(1G2B10) Proteintech Cat # 66868-1-Ig

CD4(2H4A2) Proteintech Cat # 67786-1-Ig

CD4(EPR6855) Abcam Cat # ab133616

PD-1(10377-H08H) Sinobiological Cat # 10377-MM23

CXCL13(EPR23400-92) Abcam Cat # ab246518

CD14(4B4F12) Abcam Cat # ab182032

Ki-67(BP6045) Biolynx Cat # BX50040

HRP-labeled Goat Anti- RabbitIgG Yuanxi Bio Cat # A10012-60

Goat Anti-Mouse IgG H&L (HRP) Abcam Cat # ab205719

Chemicals, enzymes and other reagents

MACS Tissue Storage Solution Miltenyi Biotec Cat # 130-100-008

RPMI medium Gibco Cat # C11875500BT

Fetal bovine serum Gibco Cat # A3161001C

Trypsin ThermoFisher Scientific Cat # 25200072

Collagenase type IV Worthington Cat # LS004186

Collagenase type I Worthington Cat # LS004194

Dispase II Roche Cat # 4942078001

Red blood cell lysis buffer Gibco Cat # A1049201

DAB substrate kit Abcam Cat # ab64238

Bovine serum albumin (BSA) Sigma-Aldrich Cat # A9647

Tris buffered saline with Tween 20 (TBST) ThermoFisher Scientific Cat # 37543

40-60-diamidino-2-phenylindole (DAPI) Sigma-Aldrich Cat # D9542

Software

Cell Ranger toolkit (version 5.0.0) 10× Genomics https://support.10xgenomics.com

MAESTRO v 1.5.1 Wang et al (2020) https://github.com/liulab-dfci/MAESTRO

MAESTRO v 1.5.0 Wang et al (2020) https://github.com/liulab-dfci/MAESTRO

DoubletFinder McGinnis et al (2019) https://github.com/ddiez/DoubletFinder

Python 3 N/A www.python.org

R 3.5.0 R-Project https://cran.r-project.org/mirrors.html

Seurat v2.3.4 Satija et al (2015) https://satijalab.org/seurat/

ClusterProfiler v 3.18.1 Yu et al (2012) https://guangchuangyu.github.io/software/clusterProfiler/

scCODA Buttner et al (2021) https://github.com/theislab/scCODA

TRUST4 v1.0.5.1 Song et al (2021) https://github.com/milaboratory/mixcr-rna-seq-paper

VDJmatch v1.2.2 Shugay et al (2018) https://vdjdb.cdr3.net

ggplot2 Hadley Wickham et al (2016) https://cran.r-project.org/web/packages/ggplot2/index.html

ggpubr v0.4 R-Project https://cran.r-project.org/web/packages/ggpubr/index.html

CopyKat Gao et al (2021) https://github.com/navinlabcode/copykat

GSVA v1.38.2 Hanzelmann et al (2013) https://www.bioconductor.org/packages/release/bioc/html/GSVA.html

CellPhoneDB v0.22 Efremova et al (2020) www.cellphonedb.org

CellChat v1.1.0 Jin et al (2021) http://www.cellchat.org/

Monocle2 v4.0.5 Qiu et al (2017) https://cole-trapnell-lab.github.io/monocle-release/

GraphPad Prism 7.0 GraphPad https://www.graphpad.com/

Halo10 software Indica Labs https://indicalab.com/halo/
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https://support.10xgenomics.com
https://github.com/liulab-dfci/MAESTRO
https://github.com/liulab-dfci/MAESTRO
https://github.com/ddiez/DoubletFinder
http://www.python.org
https://cran.r-project.org/mirrors.html
https://satijalab.org/seurat/
https://guangchuangyu.github.io/software/clusterProfiler/
https://github.com/theislab/scCODA
https://github.com/milaboratory/mixcr-rna-seq-paper
https://vdjdb.cdr3.net
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html
https://github.com/navinlabcode/copykat
https://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.cellphonedb.org
http://www.cellchat.org/
https://cole-trapnell-lab.github.io/monocle-release/
https://www.graphpad.com/
https://indicalab.com/halo/


Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

Other

Illumina NexSeq 500 Illumina

Chromium Next GEM Single Cell 50 Kit v1.1 10× Genomics PN-1000165

PanoVIEW VS200 slide scanner Panovue

TSA 5-color kit Yuanxi Bio Cat # H-D110051

PDOne 5-plex TSA-RM kit Panovue Cat # 10144100100

Methods and Protocols

Patients and sample preparation
All the samples were collected from the Shanghai East Hospital,

Shanghai, China. Patients with CC were selected based on the fol-

lowing criteria: (i) diagnosed with CC by pathological colposcopy

biopsy; (ii) CT- or MRI-detected resectable tumor mass with a maxi-

mum diameter of more than 2 cm; (iii) no previous medical history

of other cancers and (iv) no other anti-tumor treatment before sur-

gery. All participants provided written informed consent, and this

study was supervised and assessed by the Ethics Committee Board

of Tongji University-affiliated East Hospital. The experiments

conformed to the principles set out in the WMA Declaration of Hel-

sinki and the Department of Health and Human Services Belmont

Report.

After surgery, the tumor and adjacent normal tissues (more

than 2 cm away from the tumor edge with visual observation)

were collected immediately. Biopsy forceps were used to grab the

tissues and acquire accurate tissue types in the terminated cervi-

cal area. After washing with phosphate-buffered saline (PBS)

three times, the tissues were transported into containers

containing ice-cold tissue storage solution (Miltenyi Biotec) and

sent to the laboratory within 4 h. In the laboratory, the tissues

were cut into 1mm pieces, digested with 0.25% trypsin (Thermo-

Fisher Scientific) at 37°C for 30min, and terminated with RPMI

medium (Gibco) containing 10% fetal bovine serum (Gibco). Tis-

sues were then transported into a dissociation cocktail containing

collagenase type IV (100 U/ml, Worthington), collagenase type I

(100 U/ml, Worthington) and dispase (0.6 U/ml, Roche). After fil-

tering through a 70-um nylon mesh, the cells were centrifuged

and suspended in a red blood cell lysis buffer (Gibco). Finally,

the collected cells were suspended in 1ml of PBS for counting

and other processes.

Single-cell RNA-seq library and TCR-seq library preparation and
sequencing
Single-cell RNA-seq libraries were prepared using the Chromium

Next GEM Single Cell 50 Kit v1.1, from 10× Genomics, to generate

single-cell gel beads in the emulsion (GEMs), following the manu-

facturer’s protocol. Briefly, single cells were suspended in PBS

containing 0.04% bovine serum albumin (BSA, Sigma-Aldrich).

Approximately, 10,000 cells were captured in droplets to generate

nanoliter-scale gel beads during emulsion (GEMs). Reverse tran-

scription was performed in a thermal cycler (ThermoFisher Scien-

tific) at 53°C for 45min, 85°C for 5min, and held at 4°C.
Complementary DNA was generated and amplified, emulsions

were broken, and cDNA was isolated and purified using Dyna-

beads Cleanup Mix. The amplified cDNA was then used for both

50 gene expression library construction and V(D)J library construc-

tion. Single-cell RNA and TCR V(D)J libraries were sequenced

using an Illumina Nova-seq 6000 with 150 bp paired-end (PE150)

reads.

Single-cell RNA-Seq data processing
Raw gene expression matrices were generated for each sample

using the Cell Ranger toolkit (version 5.0.0) provided by 10×
Genomics. This pipeline was coupled with the human reference

genome (GRCh38). Doublets were removed before the data were

integrated (see the following method for more detail). Multiple

plain text count tables were converted and merged into an HDF5

format using the python-based package MAESTRO (version 1.5.1)

(Wang et al, 2020) and subsequent clustering analysis for a dataset

using the RNARunSeurat function of the R-based package MAE-

STRO (version 1.5.0), including normalization, feature selection,

dimension reduction, clustering and UMAP visualization. Thereaf-

ter, low-quality cells were processed to filter out if they met the

following criteria: (i) < 500 unique molecular identifiers (UMIs),

(ii) < 1,000 genes or (iii) > 15% UMIs derived from the mitochon-

drial genome. The samples were processed independently, and so

high-dimensional variables, common in single-cell sequencing

data, may have introduced potential batch effects. To alleviate this,

canonical correlation analysis (CCA) was used, and the RNABatch-

Correct function was implemented in MAESTRO to remove the

batch. Clustering was performed again with 3,000 features used in

the CCA analysis, 1:30 dimensions used for the UMAP analysis, a

clustering resolution parameter of 1, and default parameters used

otherwise.

Doublet removal
The R package DoubletFinder (version 4.0.5) (McGinnis et al, 2019)

was applied to each sequencing library to remove potential doublets

with an expected doublet rate of 6%. In addition, clusters with multi-

ple well-defined marker genes from different cell types were consid-

ered doublets and removed in the downstream analysis. For each

cluster of a major cell type, the scores of the functional modules for

the cell cluster were calculated using the AddModuleScore function in

Seurat (Table EV5). The average expression levels of the corre-

sponding clusters were subtracted from the aggregated expression of

the control feature sets. All the analyzed genes were binned based on

their averaged expression, and the control features were randomly

selected from each bin. Functional modules include T cells, B cells,

plasma cells, myeloid cells, mast cells, epithelial cells, fibroblasts and
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endothelial cell signature scores. The genes involved are listed in the

Table EV5. The clusters (such as C2 and C6) of a major cell type (e.g.,

B cells, Fig EV1D) with multiple cell-type features were removed.

Cell-type proportion analysis
In each patient, cell-type proportions were calculated by dividing

the number of cells in a cluster by the total number of cells in the

sample. The compositional data analysis tool scCODA (Buttner

et al, 2021) and ALDEx2 (Fernandes et al, 2014) was used to com-

pare the differential relative abundance between tumor and adjacent

normal tissue derived from scRNA-seq data. For scCODA, the refer-

ence of compositional changes was alternatively selected, and the

false discovery rate (FDR) level was 0.2 for all cell lineages. For

AlDEx2, the P-value derived from for a comparison of two condi-

tions was determined by the Welch’s t test (Wi.ep).

Differential expression analyses and cell cluster annotation
The clusters were identified as different major cell lineages based

on the average gene expression of well-known markers, including

T/NK cells (CD3D), B cells (CD79A), myeloid cells (CD68 and

CPA3), epithelial cells (KRT family genes KRT5 and KRT17), fibro-

blast cells (COL1A1) and endothelial cells (PECAM1). Sub-cluster

annotation of cell lineages refers to the specific genes listed in

Dataset EV3.

Repeating the process (normalization, dimensionality reduction

and clustering), sub-clusters were further identified and annotated

as different specific cell subtypes based on the average expression of

respective gene sets in each major cell type. All the differential

expression analyses were conducted using the FindAllMarkers func-

tion in Seurat (version 4.0.5) (Hao et al, 2021). A significantly differ-

entially expressed gene (DEG) was determined if it had a

Bonferroni-adjusted P-value lower than 0.05 and an average natural

logarithm (ln) fold-change of expression of at least 0.15 and 0.25 for

T cells and other cells, respectively. The DEGs of each subcluster

were listed in Dataset EV1.

Pathway enrichment analysis
To gain functional and mechanistic insights into a cell cluster, Gene

Ontology (GO), KEGG and Hallmark Pathway enrichment analyses

were performed using the Molecular Signatures Database (MSigDB

v7.1) (Liberzon et al, 2015) to identify biological pathways that

were enriched in a certain gene list from a specific cell subtype. The

DEGs from each cluster were then passed on to the ClusterProfiler

(version 3.18.1) package for functional enrichment.

TCR sequence assembly
To assemble the TCR sequences, the Cell Ranger toolkit (version

5.0.0) provided by 10× Genomics was used to align TCR-seq reads

to the human reference genome (GRCh38) (refdata-cellranger-vdj-

GRCh38-alts-ensembl-2.0.0).

The TRUST4 algorithm was applied (version 1.0.5.1) (Song

et al, 2021) to infer TCR and BCR clonotypes from the scRNA-seq

data of CESC patients. TRUST4 performs de novo assembly on V, J

and C genes, including the hypervariable complementarity-

determining region 3 (CDR3), and reports the consensus of BCR/

TCR sequences. It then realigns the contigs to the IMGT reference

gene sequences (Song et al, 2021) to report the corresponding

information.

The clones were identified based on the CDR3 nucleotide

sequence. TCR/BCR clones whose barcode did not match the

barcode of T cell/B cell scRNA-seq data were removed, and

complementarity-determining region 3 (CDR3) gene regions were

then used to quantify TCR clonotypes. We identified a median of

870 α (IQR, 350–1,885) and 969 β (IQR, 531–2,208) unique chains

per sample from the 10× TCR-seq dataset, 230 α (IQR, 122–808) and
535 β (IQR, 360–1,853) unique chains per sample from the TRUST4-

predicted TCR data, and 95 IGH (IQR, 17–215.5) unique chains per

sample from the TRUST4-predicted BCR data.

Single-cell TCR-seq clonotype analysis
Information about clonotypes was extracted with default parameters

and processed in R, and clonal indices, including clonality and

diversity, were calculated using the function trust-stats.py of the

TRUST package.

To quantify the TCR/BCR similarity between clusters, the Jaccard

Index was calculated among the CDR3aa sequences of each of the

two T-/B-cell subclusters and the result normalized to the 0–1
range.

Jaccard ¼ A∩Bj j
A∪Bj j (1)

In Equation (1), A is the CDR3aa number of subcluster A of T-/

B-cells and B is the CDR3aa number of subcluster B of T-/B-cells.

Clonality ¼ 1� Shannon entropy

log Nð Þ (2)

In Equation (2), Shannon entropy is the normalized entropy over

the number of unique clones and N is the number of unique clones.

CPK ¼ CDR3aa

lib:size=1; 000
(3)

In Equation (3), CDR3aa is the number of unique CDR3 calls for

a chain and lib:size is the total number of reads for that chain.

Predicting T-cell receptor antigen specificity
To check the specificity of the T-cell receptor (TCR), the VDJdb

database was queried (Shugay et al, 2018) using the standalone

VDJmatch software version 1.2.2. CDR3 sequence search parame-

ters were set that allowed two substitutions, one insertion, two dele-

tions, or indels for HPV antigen search and default parameters for

CMV antigen search. The TCR TRB chain was used to align TCR

sequences in the database.

Modeling and comparison of small and large TCR clonotypes
Clones were labeled as large or small according to the number of

unique CD3 amino acid sequences larger than five for TCR or one

for BCR, with a significant correlation between the number of large

clones identified in single-cell data.

An integrated analysis of all the merged data was performed. Fol-

lowing the identification of cellular subgroups based on TCR clone

size, conserved marker-defining subgroups were identified using the

FindMarkers function with a default two-sided Wilcoxon rank-sum

test. Plots were generated using ggpubr (v.0.4) and customized

ggplot2.
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HPV reference genome construction and HPV virus read
verification
An HPV reference genome, including HPV 16, 18, 31, 45 and 66

genome sequences was built to check HPV infection status. The ref-

erence genome files, including FASTA and GTF files, were aligned

using Cell Ranger. FASTA and GTF files for the HPV reference

genome were built to refer to the cell range process. Briefly, the

complete HPV 16, 18, 31, 45, 66 genome sequences (HPV16REF,

HPV18REF, HPV31REF, HPV45REF and HPV66REF) were down-

loaded from the Papillomavirus genome database (PaVE) (Van

Doorslaer et al, 2017), and then multiple HPV.fa files and HPV.gtf

files were used as input to run cellranger mkref. Finally, the cell-

ranger count was run to aggregate raw data from the samples and to

align reads to the HPV reference genome.

Copy number variation analysis
To distinguish cancer cells from non-malignant cell types, CopyKat

(Gao et al, 2021) was applied using the integrative Bayesian

approaches to identify genome-wide aneuploidy at 5MB resolution

in single cells to separate tumor cells from normal cells. Raw single-

cell gene expression data were extracted from the Seurat object. Epi-

thelial cells from normal samples were used as the control refer-

ence. The following CopyKat parameters were used for analysis:

two genes per chromosome for cell filtering, 0.04 fractions of genes

for smoothing, 0.1 fractions of genes and 25 window sizes for seg-

mentation, with default parameters used otherwise.

Gene set enrichment analysis
For a specific cell subtype, scRNA signatures were applied to bulk

RNA-seq samples using single-sample gene set enrichment analysis

(ssGSEA) (Subramanian et al, 2005; Barbie et al, 2009). ssGSEA

scores were calculated using the GSVA package (version 1.38.2)

(Hanzelmann et al, 2013) in Bioconductor. P-values were calculated

by a one-sided hypergeometric test and adjusted for multiple

comparisons.

Survival analyses and ICB response prediction
In the TCGA CESC cohort, patients receiving bulk RNA sequences

with various treatments and endpoints were analyzed for clinical

and survival outcomes (cancer-specific survival and recurrence).

Survival analyses for each cell type subset were performed based on

gene signature ratios (Details in Appendix Fig S3). After grouping,

the Cox proportional hazards model implemented in the R package

survival (version 3.2-11) was used to correct disease state for sur-

vival analyses and Kaplan–Meier survival curves were plotted using

the R function ggsurvplot. Hazard ratios were calculated using Cox

regression, and P-values were calculated using the log-rank test.

Dataset EV4 summarizes the gene signatures used for the survival

analyses.

The ICB prediction was conducted as previously reported (Jia

et al, 2018). Briefly, the sub-cluster single sample gene set enrich-

ment analysis (ssGSEA) signature scores calculated for each tumor

sample in the immunotherapy cohort are used as biomarkers to pre-

dict the response to ICB. For comparisons of sub-cluster ssGSEA sig-

nature scores between responders (CR/PR) and non-responders

(PD) in bulk RNA sequencing, a two-sided Wilcoxon test was used.

Dataset EV4 summarizes the gene signatures used for the ICB

prediction.

Cellular communication analysis
Potential cell–cell communication between any two different cell

types in CC, was investigated via ligand-receptor analyses using

CellPhoneDB software (version 0.22) (Efremova et al, 2020) and R

packages CellChat (Version 1.1.0) (Jin et al, 2021) with default

parameters. The gene expression matrices of all cells were selected

as inputs for cell–cell interaction analysis. The most relevant cell

type-specific ligand-receptor interactions and specific signaling path-

ways (BAFF and APRIL) were identified in the corresponding sub-

clusters.

Developmental trajectory inference
To identify the transcriptional changes in immune cell types, trajec-

tory analyses were performed for CD4+ T, CD8+ T, B, macrophages

and DCs using Monocle2 (version 4.0.5) (Qiu et al, 2017). The data

for the indicated clusters were calculated using Seurat as the input

for Monocle2 analysis. The Monocle algorithm was applied to the

top 50–1,000 signature genes, calculated using the differential

GeneTest function. The trajectory of the immune cells was

constructed using the default parameters of Monocle after dimen-

sionality reduction and cell ordering.

T-cell dysfunction and exclusion analysis
Cytotoxic T lymphocyte (CTLs) dysfunction and exclusion analysis

were performed using a strategy similar to that of TIDE (Jiang

et al, 2018) to investigate the immunomodulatory roles of different

stromal subsets. To estimate CTL levels, TIDE uses pivot genes such

as CD8A, CD8B, GZMA, GZMB and PRF1 and calculates the average

expression of these genes. Patients with CESC from the TCGA cohort

were grouped by CTL level, with the mean value as a cutoff point.

For CTL dysfunction analysis, TIDE evaluates the associations

between stromal subset signature genes and survival outcome with

the CTL level corrected in Cox–PH regression. Genes with higher

CTL dysfunction scores indicate an antagonistic interaction with

CTL levels, where the survival benefit of patients with high CTL

is lost, thus indicating that it is related to CTL dysfunction. Then, T-

cell dysfunction scores of marker genes (top 50) among subsets

were compared. The statistical significance was determined with the

Kruskal–Wallis test followed by a t-test with the Benjamini–Hoch-
berg correction.

For CTL exclusion analysis, Pearson correlations between the

pivot (CTL level) and other signature genes were examined, with

survival as the response. In this study, gene signatures were defined

by the average gene expression value, where the cells in the cluster

of interest were compared to all cells.

Immunohistochemistry and multiplex immunohistochemistry
IHC staining was performed as previously reported (Sun et al, 2020;

Zhang et al, 2020b). Briefly, formalin fixation and paraffin embed-

ding (FFPE) specimens from patients were stained with IHC to iden-

tify B cells (CD20, E7B7T, 1:200, and CST), CD4+ T cells (CD4,

2H4A2, 1:450, and Proteintech), and CD8+ T cells (CD8, 1G2B10,

1:200 and Proteintech). The tissue sections were then stained with

hematoxylin and diaminobenzidine (DAB, abcam). The mIHC

staining was performed according to the manufacturer’s instructions.

Briefly, 4-μm-thick FFPE sections were stained with primary anti-

bodies (see Reagents and Tools table) sequentially and paired with

tyramide signal amplification (TSA) staining kits. Then, cell nuclei
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were stained with 40-60-diamidino-2-phenylindole (DAPI, Sigma-

Aldrich). For example, in a panel aimed at validating B-cell subsets,

slides were incubated for half an hour with anti-CD20 antibodies

(E7B7T, CST), followed by 10min with a horseradish peroxidase-

conjugated anti-rabbit antibody (A10012-60, Yuanxi Bio). In order to

label fluorescence, a 10-min incubation was developed using TSA

570. After washing in TBST buffer (ThermoFisher Scientific), slides

were transferred to a preheated citrate solution (90°C) before being

microwaved for 15min. Slides were cooled in the same solution to

room temperature. All the slides were washed in Tris buffer between

each step. The same process was repeated for the remaining anti-

bodies, including BCL6, Pan-CK and CD38. The slides were then

treated with two drops of DAPI, washed with distilled water and air

dried. Slides were scanned using a PanoVIEW VS200 slide scanner

(Panovue) with an Olympus 20× lens. Cell density (positive cells

mm�2), frequency, and distance analysis were performed using

Halo10 software (Indica Labs). Multiplex IHC and IHC-staining

assays were performed with at least three biological replicates.

Joint analysis of the multiple predictors
To examine the prognostic value of gene signatures derived from

multiple subsets, specific gene signatures derived from multiple sub-

sets of scRNA-seq were used as predictors, and patients with TCGA

were divided into multiple groups using unsupervised hierarchical

clustering. Finally, the Cox proportional hazards model was used to

perform survival analysis to predict the patient’s prognosis, as

described above.

Statistics analysis
All the statistical analyses were performed in R (version 4.0.5)

or GraphPad Prism (version 7.0), including the two-sided paired

Student’s t-test, the two-sided Wilcoxon test, the two-sided

Pearson correlation test, the two-way ANOVA with Tukey’s post

hoc test, the one-way ANOVA with Holm–Sidak’s multiple com-

parisons test, and the two-sided Kruskal–Wallis test. Statistical

significance was determined at P< 0.05. There were no statisti-

cal methods used to predetermine the sample size. During

experiments and the assessment of results, investigators were

not blinded to allocation.

Data availability

The codes used in this study are available upon request from the

corresponding authors. The datasets and computer code produced

in this study are available in the following databases: Single-cell

sequencing data is available on the Genome Sequence Archive

(GSA) repository (HRA001742). For ICB response prediction analy-

sis, RNA-seq data from the following accessions were used:

GSE78220 (Melanoma) and PRJEB25780 (gastric cancer). For sur-

vival analysis, bulk RNA-seq data from the following study was

used: the TCGA CESC database.

Expanded View for this article is available online.
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