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Summary

Circadian clocks are 24-hour endogenous oscillators in physiological and behavioral processes. 

Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity 

in gene expression, the power calculation for omics circadian analysis have not been fully 

explored. In this paper, we develop a statistical method, namely CircaPower, to perform power 

calculation for circadian pattern detection. Our theoretical framework is determined by three 

key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. 

Via simulations, we systematically investigate the impact of these key factors on circadian 

power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show 

its underlying cosinor model is robust against variety of violations of model assumptions. In 

real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data 

and human post-mortem brain data, and illustrate how to perform circadian power calculation 

using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been 

implemented in an R package, which is made publicly available on GitHub (https://github.com/

circaPower/circaPower).
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1 | INTRODUCTION

Circadian rhythms are endogenous ~24 hour oscillations of behavior, physiology, and 

homeostasis in adaption to the diurnal cycle caused by the earth’s daily rotation. The 

circadian clock is found in virtually all cells throughout the body and controls oscillations 

in a wide variety of physiological processes, including sleep-wake cycles, body temperature, 

and melatonin secretion1,2,3,4. From the literature, the mechanism that drives circadian 

rhythms is a transcriptionial-translational feedback loop encoded by a set of core clock 

genes 5, including CLOCK, BMAL1 as the transcriptional activators; and period family 

(PER1, PER2, PER3) and cryptochrome family (CRY1, CRY2) as the major inhibitors. 

In addition to core clock genes, genome-wide transcriptomic studies have revealed 

additional circadian genes in post-mortem brain6,7, skeletal muscle8, liver9, and blood10. 

Transcriptomic circadian analyses in human11, mouse12, and baboon13 have shown that 

the circadian pattern in gene expression could be tissue-specific. Beyond transcriptomic 

data, circadian rhythmicity was also discovered in other types of omics data including 

DNA methylation14, ChIP-Seq (chromatin immunoprecipitation assays with sequencing)15, 

proteomics16, and metabolomics17. From epidemiology and animal studies, the disruption 

in clock and circadian gene expression was found to be linked to diseases including type 

2 diabetes18, cancer19,20, sleep10, major depression disorder21, aging6, schizophrenia7, and 

Alzheimer’s disease22.

As the circadian omics studies have become increasingly popular over the years (Figure. 1), 

the experimental design of such circadian omics studies has come into focus23,24, where the 

design refers to the distribution of the collected Zeitgeber time (ZT; standardized diurnal 

time with ZT0/ZT24 for the beginning of day and ZT12 for the beginning of night). In this 

paper, we consider two types of sampling design: passive and active sampling design. In 

passive design, investigators have no control of the collected ZT. Such a passive design is 

commonly seen in studies with human tissues that are difficult to obtain (e.g., post-mortem 

brain tissues6,7,21) and the irregular sampling distribution should be considered in power 

calculation. In contrast, investigators have full control of the sample collection time in an 

active sampling design. Such an active design is commonly seen in animal studies 12 or 

human blood studies 10. In the literature, 6 time points (every 4 hours) per cycle across one 

or multiple full cycles have been widely adopted in many actively designed studies25,26,27. 

Hughes et al.28 recommended evenly sampling at least 12 time points per cycle (i.e., every 

2 hours) across 2 full cycles. For the ease of discussion, we refer to this type of design as 

the “evenly-spaced sampling design”. Though these empirical practices and guidelines were 

presented and well-received, limited quantitative benchmarks are available. To address this, 

Ness-Cohn et al.29 developed a user-friendly website, TimeTrial, which allows researchers to 

explore the effects of experimental design on cycling detection. Although multiple circadian 

detection methods are allowed, the results are benchmarked through simulation using 

classification error rate and area under the curve of a ROC curve. However, a statistical 

method that enables exact power calculation is still lacking. Previous studies have reported 

the lack of overlapping circadian genes because of smaller number of samples9,30, indicating 

statistical power, i.e., the probability of successfully detecting the underlying circadian 

pattern, is not fully considered/justified. Thus, an analytical method that allows exact power 
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calculation under different experimental designs is urgently needed. In addition, all these 

prior works on circadian study design were discussed within the scope of active design, 

where investigators have control of sample collection time. In the scope for passive design, 

there are no guidelines in the literature. It is unclear whether and how the irregular ZT 

distribution will impact the circadian power calculation.

To fill in these research gaps, we propose a model-based approach to accurately calculate 

the circadian power (namely CircaPower), based on the cosinor model31,32. It assumes 

the expression level of a gene is a sinusoidal function of the circadian time 31. The 

biological rationale for using a cosinor model is that the circadian rhythm is amenable 

to adapt the cycles in the environment5, including the day-light cycle, the tides, the phases 

of the moon, the seasons, etc33. Since the day-light cycle is the leading environmental 

factor that governs circadian rhythms, a cosinor wave model is widely used to mimic the 

cosinor cycle of the day-light intensity and many previous literatures6,7,34 have used this 

model to identify biological meaningful findings. In the literature, there are several other 

algorithms developed for circadian rhythm detection. Lomb-Scargle periodograms 35 and 

COSOPT36 are more complicated parametric models. By assuming mixture of multiple 

cosinor curves with distinct periods, these methods facilitate the detection of oscillating 

transcripts with irregular shape. ARSER37, RAIN38 and JTK CYCLE39 are non-parametric 

methods, which are free of modeling assumption and more powerful to capture irregular 

curve shapes. Both parametric and non-parametric algorithms were widely applied in 

transcriptomic studies, and comparisons of these algorithms have been conducted in several 

review studies28,24,40,41. Although the complex methods have advantages to detect irregular 

curves beyond cosinor models, the power calculation using these methods are not always 

feasible since the effect size and data variability are not explicitly defined in these models. In 

addition, concerns about the accuracy of the statistical inference for these complex methods 

have been raised41. To be specific, the p-values generated by many of these methods may 

not be correct (i.e., do not follow a uniform distribution (0, 1) under the null), implying a 

potential inflated or deflated type I error rate. Therefore, we propose the power calculation 

framework based on the cosinor model, because of its flexibility in deriving closed-form test 

statistics and accurate statistical inference. We acknowledge that other complex parameters 

models and non-parametric approaches are also popular with their own unique merit, and 

exploring circadian power calculation using these complex methods is one of our future 

directions.

To the best of our knowledge, this is the first theoretical methodology developed for 

circadian power calculation in omics data. The unique contribution of this paper includes: 

(i) identifying factors related to the statistical power of circadian rhythmicity detection, 

including sample size, intrinsic effect size and sampling design; (ii) developing CircaPower, 

an analytical solution based on a closed-form formula, for fast and accurate circadian power 

calculation; (iii) demonstrating via simulations that the evenly-spaced sampling design is 

superior because of its phase-invariant property, which is also corroborated by theoretical 

proofs; (iv) illustrating how to calculate statistical power and to design a circadian 

experiment with pilot data via a case study; (v) collecting, calculating, and summarizing 

the intrinsic effect sizes of existing human and animal studies, which serves as a useful 
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reference resource when no pilot data is available; and (vi) providing an open-source R 

package.

The superior performance of our method is demonstrated in comprehensive simulation 

studies, as well as multiple transcriptomic applications in human and mouse. We 

demonstrate the performance of CircaPower using continuous gene expression data 

throughout this manuscript, but our method is also applicable in single biomarker data 

or other types of continuous omics data, including but not restricted to ChIP-Seq, DNA 

methylation, proteomics, and metabolomics.

2 | METHODS

The CircaPower framework assumes the relationship of the expression level (continuous 

data type) of a gene and the Zeitgeber time (ZT) fits a sinusoidal wave curve, and is 

based on the F  statistics of a cosinor model31. Below we introduce the model notations, 

the construction of the F  statistics, the null and alternative distribution of the F  statistics, 

the closed-form formula for circadian power calculation, and factors affecting the power 

calculation of circadian rhythmicity detection.

2.1 | Notations and basic model

As illustrated in Figure. 2a denote y as a cosine function of t (i.e., yi = A cos ω ti − ϕ + M ; 

t as the ZT; M as the MESOR (Midline Estimating Statistic Of Rhythm, a rhythm-adjusted 

mean); A as the amplitude. ω is the frequency of the sinusoidal wave, where ω = 2π
Period . 

Without loss of generality, we set period Period = 24 hours to mimic the diurnal period. ϕ is 

the phase shift of the sinusoidal wave curve. Whenever there is no ambiguity, we will omit 

the unit “hours” in period, phase, and other related quantities. Due to the periodicity of a 

sinusoidal wave, ϕ1, ϕ2  are not identifiable when ϕ1 = ϕ2 + 24. Therefore, we will restrict 

ϕ ∈ 0, 24 . Under the current cosine formula, ϕ also denotes the peak time tP.

For a given sample i 1 ≤ i ≤ n, n is the total number of samples), denote by yi the expression 

value of a gene and ti the observed ZT. We assume the following sinusoidal wave function:

yi = A cos ω ti − ϕ + M + εi, (1)

where εi is the error term for sample i; we assume εi ‘s are identically and independently 

distributed (i.i.d.) from εi N 0, σ2 , where σ is the noise level. To benchmark the goodness of 

sinusoidal wave fitting, we define the coefficient of determination

R2 = 1 − RSS
TSS

where RSS = ∑i = 1
n yi − ŷi

2, TSS = ∑i = 1
n yi − y‾ 2, ŷi = Â sin(ω(ti + ϕ̂)) + M̂, y‾ = ∑i yi/n, with 

Â, ϕ̂, and M̂ being the fitted value for A, ϕ, and M in Equation 1 under least squares loss. 

R2 ranges from 0 to 1, with 1 indicating perfect sinusoidal wave fitting, and 0 indicating 
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no fitting at all. Denote H1 = A sin ωϕ , H2 = A cos ωϕ . Equivalently, we could re-write 

Equation 1 as

yi = H1sin ωti + H2cos ωti + M + εi, (2)

where H1 = A sin ωϕ , and H2 = A cos ωϕ , which turns into a linear regression problem.

According to the linear model theory, the F  statistics Fstat  for the circadian model in 

Equation 1 can be derived as

Fstat =
TSS − RSS

r − 1
RSS
n − r

, (3)

where n is number of independent samples, r = 3 is number of parameters (i.e., A, ϕ, and M
in Equation 1.

2.2 | Power calculation

2.2.1 | Analytical power calculation—Under the null hypothesis of no circadian 

fitting (i.e., H1 = H2 = 0 in Equation 1), from the linear model theory, Fstat f0 ⋅ ∣ 2, n − 3 , 

where f0 ⋅ ∣ df1, df2  denotes a regular F distribution with degrees of freedom df1 and 

df2 (see Appendix A.1 for details). Under the alternative hypothesis (i.e., H1 ≠ 0 or 

H2 ≠ 0 in Equation 11), Fstat fλ ⋅ ∣ 2, n − 3 , where fλ ⋅ ∣ df1, df2  denotes a non-central 

F distribution with with noncentrality parameter λ = A2

σ2 ∑i cos2 w ti − ϕ  (see Appendix A.2 

for details). Figure. 2b shows the relationship between the null and alternative distributions 

of the F  statistics for the circadian model. By assuming the type I error rate at the rejection 

boundary F* is α, the relationship between α and the power 1 − β is

Fλ
−1 β ∣ 2, n − 3 = F0

−1 1 − α ∣ 2, n − 3 ,

where Fλ x ∣ df1, df2  represents cumulative density function of fλ ⋅ ∣ df1, df2  evaluated at 

x, and F0 x ∣ df1, df2  represents cumulative density function of f0 ⋅ ∣ df1, df2  evaluated at x
(see Appendix A for details).

As shown in the caption of Figure. 2b the non-centrality parameter λ controls the degree of 

separation of the null distribution f0 and the alternative distribution fλ. The larger the λ is, 

the more likely the alternative distribution will be away from the null distribution, and the 

higher power a gene will achieve. We thus define λ as the total effect size for the circadian 

power calculation. By inspecting the total effect size λ = A2

σ2 × n × 1
n ∑i = 1

n cos2 w ti − ϕ , 

this non-centrality parameter can be decomposed into three parts: (i) sample size n, (ii) 

intrinsic effect size r = A/σ (closely relate to the goodness of fit statistics R2), and (iii) 

Zong et al. Page 5

Stat Med. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampling design effect d = 1
n ∑i = 1

n cos2 w ti − ϕ . We then discuss the impact of each of these 

components on the circadian rhythmicity power calculation:

1. Sample size: As expected, given fixed d and r, a larger sample size n will result 

in a larger total effect size λ, and achieve a higher statistical power.

2. Intrinsic effect size: Intuitively, a larger circadian amplitude A with smaller 

residual variability σ will lead to a better sinusoidal curve fitting (i.e. larger R2). 

Our formula suggests that circadian fitting parameters A and σ work together as 

an intrinsic effect size r = A/σ and has a quadratic effect on the total effect size λ.

3. Sampling design effect: The sampling design effect d = 1
n ∑i = 1

n cos2 w ti − ϕ

is more complicated, because it involves both observed ti and the unknown 

parameter phase shift ϕ. It should be noted that the values of ti can either be 

unique, meaning that each sample i has a distinct circadian time, or replicated, 

indicating that several replicates are taken at each time point. In general, given an 

arbitrary circadian sampling design, we need to estimate ϕ before performing 

power calculation. Fortunately, the power calculation for the evenly-spaced 

sampling design is independent of the phase value (i.e., phase-invariant). For 

example, Hughes et al.28 recommended a collection of 12 time points (every 

2 hours) per cycle across 2 full cycles, which belongs to the evenly-spaced 

sampling design. Such active design is commonly seen in animal studies or 

human blood studies, where researchers can control the exact time to sacrifice 

the animal or to collect blood. The following theorem (phase-invariant property) 

shows that the sampling design effect d is a constant under the one-period 

one-sample evenly-spaced design, i.e., ti
′s are evenly spread within one period 

with only one sample per time point.

Theorem 1: (Phase-invariant property - one-period one-sample). Assuming there is a total 

of n ZT points ti 1 ≤ i ≤ n  within a circadian period 2π/ω, which are ordered such that 

ti < ti + 1 for all 1 ≤ i ≤ n − 1. If n ≥ 3, and ti is evenly-spaced over the period (i.e., ti + 1 − ti = C
for all 1 ≤ i ≤ n − 1, C > 0 is a fixed time interval, t1 + 2π/ω − tn = C , then regardless of the 

value for ϕ, we have

1
n i = 1

n
cos2 w ti − ϕ = 1

2

The proof is given in Appendix B It can immediately be extended to the following corollary.

Corollary 1: (Phase-invariant property - multi-period multi-sample). For multi-period (two 

or more cycles) multi-sample evenly-spaced design, the sampling design effect is phase-

invariant.
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1
n i = 1

n
cos2 w ti − ϕ = 1

2

This is because the multi-period multi-sample evenly-spaced design just replicates the one-

period one-sample evenly-spaced design, therefore the average of them remains to be 1/2.

Remark 1.: The even spread/space design invariance property is a mathematical derivation 

resulting from the equation 1
n ∑i = 1

n cos2 w ti − ϕ = 1
2 , which holds true regardless of the 

phase. The intuition behind this is based on the cosinor function’s curvatures, which 

dictate that the sample’s contribution to power is more significant when ti is at a peak 

or trough, resulting in cos2 w ti − ϕ = 1, and less significant when ti is at MESOR, resulting 

in cos2 w ti − ϕ = 0. If the samples are evenly distributed across the period, their effects will 

be even out when averaged over, and the final sampling design effect d = 1
2 .

2.2.2 | Assumptions underlying the circadian modeling framework—The 

proposed circadian modeling framework has two underlying assumptions: (i) the 

relationship between the expression level of a gene and the ZT follows a sinusoidal wave 

curve; (ii) the error terms of each sample on top of the sinusoidal wave curve follows 

independent and identical Gaussian distribution. We discuss the implication of sinusoidal 

assumption on sampling design in Section 3.2 and demonstrate that the F  statistics is robust 

against various types of violation of model assumptions in Appendix C and Figure. C1.

3 | SIMULATIONS

Throughout simulation and real application, we control type I error α = 0.001 for circadian 

power calculations to account for potential multiple comparisons.

3.1 | Comparison between CircaPower and Monte-Carlo simulation

Without the proposed analytical method CircaPower, a conventional method for circadian 

detection power calculation is by Monte-Carlo simulation (MC), which assumes known A, 

ϕ, M, σ and ti, 1 ≤ i ≤ n.

We compare CircaPower with the MC algorithm described in Appendix D. For both 

methods, the ZT points are simulated from one-period one-sample evenly-spaced design 

for the ease of discussion, which enjoys the phase-invariant property (d = 1/2, Theorem 

1). Since phase shift ϕ and MESOR M have no impact on circadian detection power 

calculation in this case, we fix ϕ = 0 and M = 10. We evaluate their power derived at a 

grid of A = 0.4, 0.8, 1, 1.2  and σ = 1, 2, 3, 4 . Note that for CircaPower, we only need the 

underlying parameters A σ, ti, and ϕ to perform power calculation, which does not rely on 

the simulated dataset. We simulate the data for the purpose of evaluating the MC algorithm.

Figure. D2a shows that the power calculated from CircaPower is almost identical to the 

MC algorithm, corroborating the correctness of the closed-form solution in CircaPower. In 
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addition, the power increases with respect to (i) larger n, (ii) larger A, and (iii) smaller σ, 

which are consistent with our theoretical formula of the total effect size λ.

As discussed in Section 2.2.1 the two curve fitting parameters A and σ work together as 

the intrinsic effect size r = A/σ and therefore can be reduced to one parameter in MC 

approach. We further validate this observation by co-varying A and σ simultaneously (i.e., 

= σ = 1, 2, 3) while keeping their ratio as a constant (i.e., r = 1). Figure. D2b shows that the 

power trajectories remain the same, indicating the proposed intrinsic effect size is sufficient 

to capture the goodness-of-fit of the model for the power calculation.

In terms of computing time, to generate all the results in Figure. D2a, it takes 1.84 seconds 

for the CircaPower using 1 CPU thread on a regular PC (8th Gen Intel Core i5–8250U 

Quad-Core processor, 1.60 GHz), while it requires 8 hours for the MC algorithm using the 

same computing resource. With parallel computing, the computing time reduces to 0.13 

seconds for CircaPower using 40 CPU threads on a Linux server (Intel Xeon Gold 6130, 

2.10GHz), while it still needs 24 minutes for the MC algorithm.

3.2 | Impact of sampling design on CircaPower

Since the sample collection scheme for active design and passive design are quite 

different, we will discuss them separately. For active designs, we vary the intrinsic effect 

r = 0.8, 1, 1.5, 2 and n = 12, 24, 36, 48. For passive designs, we vary the intrinsic effect 

r = 0.4, 0.8, 1, 1.2 and n = 12, 24, . . . , 180. The maximal sample size we use for the active 

design is smaller than that of the passive design, because the estimated intrinsic effect is 

usually higher in animal studies compared with human studies (see Table 1). Due to the 

fact that not all designs have the phase-invariant property, we also vary the phase shift 

ϕ = 0, 3, 6.

For a typical active design, researchers usually need to control the number of (i) ZT points 

per cycle; (ii) replicates at each time point within a cycle; and (iii) cycles. Because of the 

periodicity property of the sinusoidal curve in the cosinor model, (ii) and (iii) are statistically 

equivalent. Therefore, for the ease of discussion, we summarize the following two key 

parameters for an active design: (i) number of ZT points per cycle NT; (ii) total number of 

samples n. The number of replicated samples (at the same ZT across all cycles) could be 

calculated as n/NT.

We denote the active design scheme with NT points per cycle as FixTime NT and the 

one-period one-sample evenly-spaced design (i.e., FixTime-n) as the EvenSpace. For 

NT = 3, 4, 6, n, Figure. 3a shows that (i) the power curves are the same regardless of phi, 

confirming the phase-invariant property; (ii) the power trajectories for different NT
′ s are also 

identical, which implies that under evenly-spaced sampling design with NT ≥ 3, the detection 

power only depends on the total number of samples n but not the NT. Note that these 

arguments are purely based on the statistical power given sinusoidal wave assumption. In 

the perspective of curve fitting, smaller number of time points may not necessarily guarantee 

the goodness-of-fit for a sinusoidal curve, resulting in potentially false positive findings. To 

explore the impact of number of NT on the goodness-of-fit, we then simulate expression 
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data from the sinusoidal model and perform non-parametric curve fitting (see Appendix E 

and Figure. E3. E4 for details). Considering both circadian power calculation and smooth 

curve fitting, our results suggest NT = 6 (i.e., every 4 hours for 24h period design) to be the 

minimum number of ZT points to fully capture the circadian rhythmicity pattern, which is 

commonly adopted in the literature.

For passive designs, the collection of the ZT cannot be controlled. We therefore simulate ti
′s

from (i) uniform distribution (uniform design): ti
iidUNIF(0, 24); and (ii) bimodal Gaussian 

distributions (bimodal designs): ti piN 7, sd + 1 − pi N 17, sd ; pi Bernulli 0.5 . We allow 

sd = 1, 2, 3, 4 and calculate their corresponding Kullback-Leibler divergence (KLD) against 

the uniform distribution as a relative measurement to benchmark their divergence from the 

uniform. Figure. 3b shows that for the uniform design, the power trajectory is close to 

phase-invariant. This is expected since the uniform distribution is a random realization of the 

evenly-spaced sampling design, and the impact of phase on the individual ti will average out. 

The bimodal designs show phase-dependent circadian power trajectories and the impact of 

phase influence increases as the distribution deviates more from uniform (i.e., larger KLD). 

Specifically, the power loss of bimodal designs when ϕ = 3, 6 is significant when KLD is 

0.72 or greater (green and yellow curve) while negligible when KLD is only 0.18 or smaller 

(purple and blue curve). In fact, since the phase shift impacts the sampling design through 

d = 1
n ∑i = 1

n cos2 w ti − ϕ , it achieves higher power if the mode of the ZT distribution occurs 

at the underlying peak/trough time. In real omics applications, circadian genes usually have 

different phase shift values over the day. If the collected ZT distribution is far away from 

the uniform distribution, the detection power of each circadian gene would be affected 

differently across the genome as a result of its unique phase shift.

4 | REAL APPLICATIONS

4.1 | CircaPower for human studies with passive design

We investigate the power trajectories of human studies using three human post-mortem 

brain transcriptomic studies (Chen6, Seney7 and Ketchesin34) with different time of 

death distributions. Detailed descriptions of each dataset can be found in the original 

papers. Briefly, Chen6 and Seney7 performed gene expression circadian analysis using 

microarray n = 147  and RNA-seq n = 104  respectively using pre-frontal cortex tissues; 

and Ketchesin34 performed RNA-seq gene expression circadian analysis with n = 59
participants using dorsal and ventral striatum tissues.

To estimate the intrinsic effect sizes from the three brain studies, we apply the cosinor 

method31 to identify genes with rhythmic patterns and obtain estimates for their amplitude 

Â and noise level σ̂. We estimate the intrinsic effect sizes r̂ = Â/σ̂ using the 7 core circadian 

genes, or the top 100 significant rhythmic genes (ranked by p-values from the cosinor 

method). The 7 core circadian genes include Arntl, Dbp, Nrld1, Nrld2, Perl, Per2, and Per3, 

which showed persistent circadian pattern across 12 mouse tissues12. The Homo sapiens 

section of Table 1 shows the estimated intrinsic effect sizes for: (i) median r of the 7 core 

circadian genes; (ii) minimum r of the 100 most significant circadian genes. The estimated 
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intrinsic effect sizes for these three human studies range between 0.44 and 1.06 (see Table 

1).

To demonstrate the power trajectories in real data, we vary intrinsic effect sizes 

r = 0.4, 0.6, 0.8, 1, which roughly cover the estimated range of r in the post-mortem 

brain studies. The ZT points are sampled 1000 times from the kernel density estimated 

from the observed time-of-death distributions in these three studies (see top panels 

of Figure. 4). Since investigators in these human post-mortem brain studies have no 

control of sample collection time (i.e., time of death) and can only accept passive 

sampling design, the detection power curves are not phase-invariant. We vary phase shift 

ϕ = − 6, − 5, …, 0, …, 5, 6 and use a confidence band to represent the range of power 

achieved across phase shifts (see bottom panels of Figure. 4). For each scenario (i.e., fixed r, 
n and ϕ), the mean power among the 1000 times repetitions is reported. The power trajectory 

from an evenly-spaced design is also calculated as a comparison.

As expected, larger sample size n and larger intrinsic effect size r lead to a larger circadian 

power. In addition, the power trajectory is phase-invariant for the evenly-spaced sampling 

design with 0 band width, but not for the passive designs from the three human studies. 

As discussed in Section 3.2, the power will depend on the relationship between the mode 

of the ZT distribution and the underlying peak/trough time. To further demonstrate the 

impact of phase on the irregular ZT distribution, we fix n = 120, r = 0.6, while varying 

ϕ = − 6, − 5, …, 0, …, 5, 6. As shown in Figure. E5. the power trajectories fluctuate across 

different ϕ′s when samples are drawn from irregular distributions in the three post-mortem 

studies, while the trajectory stays the same for evenly-spaced ZT. However, since the KLDs 

of the kernel densities estimated from the Chen, Seney and Ketchesin are relatively low (i.e., 

0.12, 0.17, 0.14) compared with the bimodal designs in Section 3.2 the variation of power as 

a result of phase shift is small, with 3.8%, 4.4%, and 9.9% maximum drop, respectively.

4.2 | CircaPower for animal studies with with active design

We next examine the power trajectories of actively designed mouse studies using 14 

mouse gene expression circadian data42,43,44,45,46,9,47,48,49,50,51,52,53,12 from 20 types of 

tissues.Sample sizes of each study tissue are shown in Table 1. To estimate the intrinsic 

effect sizes of these tissues, we apply the cosinor method31 similarly to identify genes 

with rhythmic patterns and obtained estimates for their amplitude Â and noise level σ̂. 

The estimated intrinsic effect sizes for the median r of the 7 core circadian genes and the 

minimum r of the top 100 significant circadian genes are shown in the Mus musculus section 

of Table 1, ranging from 0.96 to 6.33, a much larger magnitude than previous human studies. 

This is reasonable since human studies are usually more heterogeneous in terms of genetics 

and environmental background. We thus fix the intrinsic effect sizes to be r = 1, 2, 3, 4
in our subsequent power calculation. Since these experiments employ an evenly-spaced 

active sampling design, the sampling design factor is a constant (i.e., d = 1/2, Corollary 

1) regardless of the phase value.. As a result, we employ the one-sample one-period evenly-

spaced design (see left panel of Figure. 5) for the purpose of power calculation. By further 

assuming the alpha levels to be α = 0.05, 0.01, 0.001, the power trajectories with respect to 

sample size n is shown in Figure. 5 (right panel).
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4.3 | Case study: circadian power calculation using mouse pilot dataset

To demonstrate how to perform circadian power calculation using pilot dataset from scratch, 

we utilize a circadian gene expression data in mouse with skeletal muscle, which is part 

of the mouse pan-tissue gene expression circadian microarray data12. Detailed description 

of this dataset has been described previously8. Briefly, 24 mouse muscle samples were 

collected (every 2 hours) across 2 full cycles. With this pilot data, we perform genome-wide 

circadian rhythmicity detection using the cosinor method31. Under p < 0.001, we identify 

716 significant genes showing circadian pattern. We similarly estimate the intrinsic effect 

sizes for: (i) median r of the 7 core circadian genes; (ii) minimum r of the top 100 significant 

circadian genes. The resulting intrinsic effect sizes are 3.58 and 2.23 respectively. By 

assuming different α to be 0.05, 0.01, 0.001, the power curves with respect to sample size are 

shown in Figure. 6. We observe that n = 12 can achieve 97.1% and 50.5% detection power 

for the two intrinsic effect sizes at α = 0.001.

5 | DISCUSSION

In this paper, we propose an analytical framework, CircaPower, to calculate the statistical 

power for circadian gene detection. To the best of our knowledge, this is the first analytical 

method to perform circadian power analysis. In simulations, we not only demonstrate the 

CircaPower is fast and accurate, but also show that its underlying cosinor model is robust 

against violations of model assumptions. In real applications, we show the performance of 

the CircaPower in mouse studies and postmortem human studies. In addition, we obtain 

the estimated intrinsic effect sizes from publicly available human and mouse transcriptomic 

circadian data. These summarized intrinsic effect sizes can be used as a reference resource 

to facilitate investigators without pilot data to perform circadain power calculation. In case 

study, we also demonstrate circadian power calculation step-by-step given a pilot dataset.

Our method has several advantages. To begin with, the theoretical framework suggests that 

the power calculation is related to a total effect size, which can be decomposed into sample 

size, intrinsic effect size (representing goodness-of-fit of circadian curve), and sampling 

design factor. Moreover, the sampling design factor brings about the concept of active design 

and passive design when samples are collected. This is an important concept in circadian 

experiment design, since the ZT collection for human (passive design) and animal (active 

design) could be quite different. After that, we demonstrate the phase-invariant property of 

the evenly-spaced sampling design, which provides theoretical foundation for the design 

of many published circadian studies. In addition, the closed-form formula in CircaPower 

allows unique inverse calculation of sample size given desired power at fast computing 

speed compared with the conventional MC algorithm. In this paper, we also systematically 

examine the intrinsic effect sizes of published mouse or human gene expression circadian 

data, which could provide guidance for future researchers to design their transcriptomic 

circadian experiment when pilot data are not available. Although we present our work using 

transcriptomic data, CircaPower is applicable to other omics data, such as DNA methylation, 

ChIP-Seq proteomics, metabolomics, and clinical data (e.g., body temperature).
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Our work has the following limitations and future work. Firstly, the CircaPower assumes 

a pre-fixed alpha level. We intentionally select a more stringent alpha (e.g., α = 0.001) 

to account for multiple comparison when thousands of genes are tested simultaneously. 

Additional modeling is needed to extend for calculating genome-wide power calculation 

while controlling false discovery rate. Secondly, in addition to detecting genes with 

rhythmic pattern, another important research question is to identify differential circadian 

pattern32,54,55,56 (i.e., the circadian pattern is disrupted because of the treatment or 

condition), which will be another future direction. Thirdly, the Gaussian assumptions 

are widely assumed in biomedical research, and we have demonstrated that the cosinor 

model is robust against violations of Gaussian assumptions. If an investigator still worries 

about these assumptions, we would recommend data transformations (e.g. Box–Cox 

transformation) before applying our method. Our previous work32 has shown that the Box-

Cox transformation can rescue the normality assumption for circadian rhythmicity detection 

using cosinor models. Similar justifications have been adopted in the literature. For example, 

though the student T test also assumes Gaussian assumptions, but it is still widely used in 

the literature, as long as there are methods to rescue the violation (i.e., data transformation). 

Lastly, as discussed in the introduction, both parametric and non-parametric models are 

popular and widely used in the literature. In the proposal, we only focus on the cosinor 

model for its simplicity and accurate statistical inference32. Further extending the current 

framework to a more flexible family of circadian pattern is of biological interests to the 

general circadian research field.
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To allow easy application by other researchers, our methods have been implemented in the R 

package CircaPower, which is publicly available in github (https://github.com/circaPower/

CircaPower). Seneyl7 dataset is available in the Common Mind Consortium at https://

www.nimhgenetics.org/available_data/commonmind/ through an approval process. All other 

datasets are publicly available on the NCBI GEO database with accession numbers shown in 

Table 1.

APPENDIX

A: PROOF OF F  STATISTICS DISTRIBUTION UNDER THE ALTERNATIVE

A.1 Derivation of F  statistics distribution under the null

Lemma 1.

Under the null distribution in the linear model framework, Fstat f0 ⋅ ∣ r − 1, n − r , where 

f0 ⋅ ∣ r − 1, n − r  denotes a regular F distribution with degrees of freedom r − 1 and n − r.
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Proof.—The proof is given in57.

Therefore, under the null hypothesis that there is no circadian rhythmicity. i.e., A = 0 in 

Equation 1, or equivalently, H1 = H2 = 0 in Equation 2,

Fstat f0 ⋅ ∣ 2, n − 3 ,

where 2 and n − 3 are the degrees of freedom of the F  distribution, and f0 denotes a regular F
distribution with non-centrality parameter 0

A.2 Derivation of F  statistics distribution under the alternative

Lemma 2.

If X Np μ, Σ  and Σ is positive definite variance-covariance matrix for the p dimensional 

multivariate normal distribution, then

X⊤Σ−1X χp
2 λ ,

where λ = μ⊤Σ−1μ is the non-centrality parameter for the χp
2 distribution with degree of 

freedom p.

Proof.—The proof is given in57.

Lemma 3.

In a linear model framework, if the design matrix X ∈ ℝn × p, the regression coefficient 

β ∈ ℝp, there are q hypotheses to be tested A⊤β = b, where A ∈ ℝp × q, b ∈ ℝq represents the 

true parameters b = A⊤β*.

We have the following results:

Fstat = (A⊤β̂)⊤B−1(A⊤β̂)
RSS = χq

2(λ)/χn − r
2 fλ( ⋅ ∣ q, n − r),

where fλ ⋅ ∣ q, n − r  denotes a non-central F distribution with non-centrality parameter 

λ = A⊤β ⊤B−1 A⊤β  and degrees of freedom q and n − r; B = A⊤ X⊤X gA.

Proof.—

A⊤β̂ = A⊤ X⊤X gX⊤Y

A⊤β̂ Nq( A⊤β , σ2A⊤ X⊤X gA)
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If we denote B = A⊤ X⊤X gA, and base on Lemma 2 we have:

(A⊤β̂)⊤B−1(A⊤β̂)
σ2 χq

2(λ)

where λ = A⊤β ⊤B−1 A⊤β . In addition, since

RSS
σ2 =

Y ⊤ I − P Y
σ2 χn − r

2 ,

therefore we could derive the following relationship58.

Fstat = (A⊤β̂)⊤B−1(A⊤β̂)
RSS = χq

2(λ)/χn − r
2 fλ( ⋅ ∣ q, n − r)

Theorem 2.

Under the sinusoidal model assumption (Equation 2), under the alternative hypothesis (there 

is a circadian fitting, i.e., H1 ≠ 0 or H2 ≠ 0), we have

Fstat fλ ⋅ ∣ 2, n − 3 ,

where λ = A2

σ2 ∑i cos2 w ti − ϕ .

Proof.—Fitting the sinusoidal model Equation 2 into the linear model framework, the 

design matrix is

X =
sin ωt1 cos ωt1

⋯ ⋯
sin ωtn cos ωtn

And

X⊤X = i
sin2 ωti

i
sin ωti cos ωti

i
sin ωti cos ωti

i
cos2 ωti

The regression coefficient is

β =
H1

H2
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The joint hypotheses are H1 = 0 and H2 = 0, which is equivalent to the following:

1 0
0 1

H1

H2
= 0

0

By denoting A = I2, the hypothesis is equivalent to Aβ = 0. According to Lemma 3 we have

Fstat fλ ⋅ ∣ 2, n − 3

λ = β⊤X⊤Xβ
σ2

= A2

σ2 ∑
i

cos2 w ti − ϕ

B: PROOF OF THE PHASE-INVARIANT PROPERTY IN THE ONE-SAMPLE 

ONE-PERIOD EVENLY-SPACED DESIGN

Lemma 4.

For n ∈ ℕ+, a ∈ ℝ, d ∈ ℝ, define R = sin Nd/2
sin d/2 .

i = 0

N − 1
cos(a + id) =

n cos a if sin d/2 = 0

R cos a + 1
2 n − 1 d otherwise

Proof.

See 59.

Corollary 2.

When n ≥ 3, ϕ ∈ ℝ;

1
n i = 0

n − 1
cos(4πi

n − ϕ) = 0

With that being said, the evenly spaced design with n ≥ 3 time points will achieve the same 

design effect, regardless of phase ϕ

Proof.

Following Lemma 4, set N = n, where n ≥ 3, d = 4π/n, then sin d/2 = sin 2π/n ≠ 0, R = 0.
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1
n i = 0

n − 1
cos(4πi

n − ϕ) = R cos 1
2 N − 1 d − a

= 0

Theorem 3

(Phase-invariant property - one-period one-sample). Assuming there is a total of n ZT points 

within a circadian period 2π/ω, the ZT ti
′s are ordered such that ti < ti + 1 for all 1 ≤ i ≤ n − 1. If 

n ≥ 3, and ti is evenly-spaced over the period (i.e., ti + 1 − ti = C for all 1 ≤ i ≤ n − 1, C > 0 is a 

fixed time interval, t1 + 2π/ω − tn = C , then regardless of the value for ϕ,

1
n i = 1

n
cos2 w ti − ϕ = 1

2

Proof.

1
n i = 0

n − 1
cos2 w ti − ϕ = 1

2n i = 0

n − 1
1 + cos 2w ti − ϕ

= 1
2 − 1

2n i = 0

n − 1
cos(2ω(2iπ

ωn − ϕ)))

= 1
2 − 1

2n i = 0

n − 1
cos(4iπ

n − ϕ)))

= 1
2

C: ROBUSTNESS ANALYSIS OF F  STATISTICS

To examine the robustness of our method when the iid Gaussian assumption is violated, we 

investigate the type I error control of F  statistics in the following scenarios: (i) heavy tail 

error distribution (i.e., student T distribution); (ii) existence of outliers; (iii) non-independent 

Gaussian errors. For all these simulations, G = 10, 000 noisy genes are simulated with error 

term εgi ‘s specified above. By declaring circadian rhythmicity at 5% nominal α level, 

we will evaluate the actual type I error rate of the F  test from the cosinor model. Since 

CircaPower is built on the F  statistics for rhythmicity detection it will be benchmarked as 

robust if the actual type I error rate is close to the nominal α level. The detailed simulateion 

setting is provided below:

1. Heavy tail error distribution. Instead of sampling the error term εgi
iidN 0, σ2 , 

1 ≤ g ≤ G and 1 ≤ i ≤ n, we sample εgi
iidt(df), where t df  is the student T 

distribution with degree of freedom df. In general, the smaller the df is, the 

heavier tail the error distribution is. When df = 1, the error distribution becomes 

the Cauchy distribution, and when df ∞, the error distribution converges to 

standard Gaussian distribution (i.e., N 0, σ2 ). To evaluate the impact of heavy 
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tail error distribution on CircaPower, we simulate a grid of df = 2.5, 3, 5, ∞ . 

Figure. C1a shows that when there is no or mild violation of the Gaussian 

assumption (i.e., df = ∞ or df = 5), the cosinor method achieves accurate type 

I error control (i.e., 5%). When there is moderate to severe violation of the 

Gaussian assumption (i.e., df = 3 or df = 2.5), type I error rate is only slightly 

conservative (i.e., below the nominal α = 0.05). Putting together, the type I error 

rate of the cosinor method can be correctly controlled against the heavy tail error 

distribution.

2. Existence of outliers To evaluate the impact of outliers on type I error control, 

we replace q% of the expression values with outliers, where q = 5, 10, 20 . 

To be specific, for a gene g, there is q% chance that the expression level is 

simulated from ygi
iidUNIF(M − A, M + A); and 1 − q% chance that the expression 

level is simulated independently based on Equation 1 under H0 :A = 0 (i.e., 

ygi = M + εgi, εgi
iidN 0, σ2 ). Figure. C1b shows that the cosinor method achieves 

accurate nominal type I error rate control (i.e., 5%), showing robustness to 

outliers.

3. Correlated gene structure Instead of assuming all genes are independent, we 

simulate every 50 genes as a gene module with correlation coefficient ρ. The 

error term for each gene module ε50 N 0, Σ50  where Σ50 is a symmetric matrix 

with diagonal elements being σ2 and off-diagonal elements being σ2ρ. We 

simulate a grid of ρ = 0, 0.25, 0.5, 0.75 . Figure. C1c shows that when genes 

are correlated, the cosinor method maintains accurate nominal type I error rate 

control (i.e., 5%).

Since our goal is to evaluate the type I error rate control, which does not involve any 

multiple testing issue, we directly use 5% nominal α level. Figure. C1 shows that the cosinor 

model only has slightly conservative type I error from cosinor model when error terms are 

drawn from very heavy tail t distribution df = 2.5 or 3  while maintains accurate type I error 

rate in all other scenarios suggesting the robustness against the three types of violation in 

general.
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Figure C1. 
Actual type I error rate for the cosiner method in detecting circadian rhythmicity pattern at 

5% nominal α level when there exist violation of model assumptions (i.e., independent 

Gaussian errors.) (a) shows the case when the error term comes from a heavy tail t
distribution (i.e., ϵi t df , df is the degree of freedom of the t distribution); (b) shows 

the case when there exists outliers; (c) shows the case when the errors of multiple genes 

are correlated (i.e., ϵ1, …, ϵm MVN 0, Σ , m is number of correlated genes, and Σ is the 

variance-covariance matrix for the multivariate normal distribution).

D: ALTERNATIVE POWER CALCULATION METHOD BY MONTE-CARLO 

SIMULATION

Without the proposed analytical method CircaPower, a conventional method for circadian 

detection power calculation is by Monte-Carlo simulation (MC), which assumes known A, 

ϕ, M, σ and ti, 1 ≤ i ≤ n in Equation 1. The detailed algorithm for MC is described as 

following:

1. Given the ZT ti
′s for n samples 1 ≤ i ≤ n  and key parameters (A, ϕ, M, and σ), 

we simulate gene expression ygi based on Equation 11 where 1 ≤ g ≤ G is the 
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gene index and G is the total number of genes. G = 10, 100 genes is used in the 

simulation comparison between CircaPower and MC algorithm in Section 3.1 in 

the main text.

2. We apply the cosinor method31 to derive the rhythmic p-value pg for each gene 

g 1 ≤ g ≤ G . Given a pre-specified alpha level α, the power of MC algorithm is 

calculated as ∑g I pg ≤ α
G .

Although both the CircaPower and the MC algorithm rely on the F  statistics for rhythmicity 

detection (see Figure. D2), the CircaPower has several obvious advantages over the MC 

algorithm. First of all, the explicit representation of total effect size in CircaPower provides 

insights on the three determining factors n, r, d  in circadian detection power calculation 

while it is hard for MC algorithm to determine selections and trends on the many parameters 

(A, ϕ, M, σ, and ti, 1 ≤ i ≤ n). In addition, our simulation shows the closed-form solution by 

CircaPower is at least 10,000 folds faster than the MC algorithm (see Section 3.1 in the main 

text). More importantly, even though both approaches can calculate power given sample 

size, only CircaPower can directly solve the inverse problem of deriving the smallest sample 

size meeting the desired detection power, while MC algorithm needs repeated interpolation 

to obtain an answer.
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Figure D2. 
Compare power trajectories from the CircaPower with the Monte-Carlo (MC) algorithm. 

The red color curve denotes the CircaPower method, and the cyan color curve denotes 

the MC approach. (a) We vary the amplitude A = 0.4, 0.8, 1, 1.2 and σ = 1, 2, 3, 4. (b) We 

co-vary A and σ simultaneously (i.e., A = 1, 2, 3, σ = 1, 2, 3) while keeping their ratio as a 

constant (i.e., r = A/σ = 1 .

E: NON-PARAMETERIC CURVE FITTING SIMULATION SETTING

From the perspective of circadian power calculation, Figure. 3a implies that the evenly-

spaced sampling design is phase-invariant as long as NT ≥ 3, which is further corroborated 

by Corollary 1. However, in the perspective of curve fitting, smaller number of time 

points may not necessarily guarantee the goodness-of-fit for a sinusoidal curve, resulting 

in potentially false positive findings.
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To explore the impact of number of NT on the goodness-of-fit for a sinusoidal wave, we 

simulate expression data from the sinusoidal model and perform non-parametric curve fitting 

to identify the minimum NT necessary to capture the sinusoidal wave curve. To be specific, 

we first choose the ZT points within a cycle to be NT = 3, 4, 6, 8, 12, where NT starts 

from 3 as at least 3 sampling times are needed to characterize the three parameters in sine 

(or cosine) model. Then for each NT, we simulate n = 48 samples, and evenly allocated 

them at 2NT time points across 2 full cycles (every 24/NT hours, from - 12h to 36h), 

resulting in 24/NT samples at each time point. The expression values of samples at each 

time point tj are simulated independently from Equation 1] where we set = 1, M = 0, and 

σ = 1. The LOESS regression is then used to fit a smooth curve through the data points. 

The LOESS regression is a nonparametric method using locally-weighted regression to fit 

a smooth curve over a scatter plot60. Such LOESS regression represents the smooth curve 

fitting without the sinusoidal assumption, which could reflect the minimum of NT that is 

necessary to capture the sinusoidal wave curve. The rationale for 2 full cycles is to improve 

the boundary behavior of the curve fitting within one cycle. In addition, to evaluate the 

effect of the phase shift, we set ϕ = 0, − 1, …, − min 24/NT − 1, 6 . By comparing the fitted 

non-parametric curves with the underlying sinusoidal wave, we can observe the minimum of 

NT that is necessary to capture the sinusoidal wave curve.

The data points and fitted smooth curves in one circadian cycle [0, 24] are shown in Figure. 

E3 When NT ≤ 4, it is uncertain whether the underlying curve fitting is a sinusoidal wave. 

Only when NT increases to 6 or more, the curve fitting is stable and almost identical to 

the underlying sinusoidal wave. To further justify this choice, we calculate the root mean 

square distance between the fitted non-parametric curve and the underlying sinusoidal curve 

at evenly spaced 1000 points between [0, 24] and plot against NT. The elbow plot (Figure. 

E4) suggests that NT = 6 is an inflection point after which the change of distance between 

the fitted curve and the underlying curve becomes stably small. Therefore, considering both 

circadian power calculation and smooth curve fitting, our results suggest NT = 6 to be the 

minimum number of ZT points to fully capture the circadian rhythmicity pattern, which is 

commonly adopted in the literature.
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Figure E3. 
Non-parametric curve fitting to explore the impact of number of ZT points per cycle (i.e., 

NT) on the goodness of fit for a sinusoidal wave. We choose the ZT points within a cycle 

to be NT = 3, 4, 6, 8, 12 (on columns). Then for each NT, we simulate n = 48 samples evenly 

allocated at 2NT-time points across 2 full cycles (every 24/NT hours, from −12h to 36h), 

resulting in 24/NT samples at each time point. The rationale for 2 full cycles is to improve 

the boundary behaviour of the curve fitting within one cycle. The purple rectangles indicate 

sampling time points. The expression values of samples at each time point tj are simulated 
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independently from Equation 1 with = 1, M = 0, and σ = 1. The LOESS regression is used to 

fit a smooth curve through the all data points. To evaluate the effect of the phase shift, we set 

ϕ = 0, − 1, …, − min 24/NT − 1, 6  (on rows). The data points and fitted smooth curve in one 

circadian cycle [0, 24] are shown in this figure, which represents the smooth curve fitting 

without the sinusoidal assumption.

Figure E4. 
Elbow plot to evaluate the effect of number of ZT points per cycle (i.e., NT) on the goodness 

of fit for a sinusoidal wave. The curve distance is calculated as 
∑x (f(x) − f̂(x))2

1000  where 

x are 1000 points evenly spaced between 0 and 24, f x  is the underlying sinusoidal 

curve evaluated at x and f̂(x) is the fitted non-parametric curve evaluated at x. To avoid 

randomness, for each NT, the non-parametric fitting is repeated 100 times and the mean 

curve distance is plot against the NT.
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Figure E5. 
The mean power trajectories across different ϕ when n = 120 and r = 0.6. For each ϕ and 

sampling distribution, we draw sampling times 1000 times and calculate corresponding 

power. Vertical bars indicate the 95% confidence interval of power estimates calculated 

form x‾ ± 1.96s/ 1000 where x‾ and s are mean and standard deviation of power estimates 

respectively. Maximum power drop maxϕ mean_Power − minϕ mean_Power
maxϕ mean_Power ) is 3.8%, 4.4%, and 

9.9% respectively.
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Figure 1. 
Annual number of publications on PubMed that contain the keywords “circadian/clock” and 

one of the following omics type: “ChIPseq”, “Metabolomics”, “Methylation”, “Proteomics”, 

“Transcriptomics”.
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Figure 2. 
Basic sinusoidal model and the power/type I error discriminatory curve. (a) shows a 

sinusoidal wave curve underlying circadian rhythmicity power calculation framework. (b) 

shows the relationship between power and type I control in detecting circadian rhythmicity. 

The black curve represents the density function f0 ⋅ ∣ 2, n − 3  of the F  statistics under the 

null distribution (no circadian pattern) whose expectation is n − 3
n − 5 ; the blue curve represents 

the density function fλ ⋅ ∣ 2, n − 3  of the F  statistics under the alternative distribution 

whose expectation is λ + 2 n − 3
2 n − 5 . The difference in expectation between fλ ⋅ ∣ 2, n − 3  and 

f0 ⋅ ∣ 2, n − 3  is λ n − 3
2 n − 5 . The red dashed line represents the decision boundary (i.e., F*) 

such that the type I error rate is controlled at α (shaded gray). The corresponding type II 

error β is the area with lightblue color and the detection power is 1 − β.
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Figure 3. 
Sampling design effect on circadian power calculation. (a) shows the sampling design effect 

for active design; (b) shows the sampling design effect for passive design.
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Figure 4. 
The circadian power calculation using publicly available human datasets. The top panel 

shows the time of death distribution for Chen, Seney, and Ketchesin. The bottom panel 

shows the mean power trajectories of different study designs over 1000 repetitions with 

different intrinsic effect sizes r = 0.4, 0.6, 0.8, 1 . The confidence bands represent the range 

of power achieved across phase values at ϕ = − 6, − 5, …, 0, …, 5, 6 for each scenario.
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Figure 5. 
Circadian power calculation using publicly available mouse datasets. The left panel shows 

the distribution of one-sample one-period evenly-spaced design. The right panel shows 

the power trajectories for each of the type I error control α = 0.001, 0.01, 0.05  assuming 

intrinsic effect sizes r = 1, 2, 3, 4 .
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Figure 6. 
Case study: power trajectories using mouse muscle gene expression circadian data as the 

pilot data. The pilot data contains 24 mouse muscle samples collected every 2 hours across 2 

full cycles. CircaPower is used to calculate the power. The intrinsic effect sizes were used as 

(i) median r of the 7 core circadian genes; (ii) minimum r of the top 100 significant circadian 

genes. By assuming different α to be 0.05, 0.01, 0.001, the power trajectories with respect to 

sample size is shown in this figure. The blue dashed lines indicate the detection power when 

n = 12 per cycle which is statistically equivalent to sampling every two hours across two full 

cycles.
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Table 1

Intrinsic effect sizes for public available transcriptomic circadian data, including 3 passively designed human 

post-mortem brain studies and 14 actively designed mouse studies from 20 types of tissues. These data are 

processed using the cosinor method31. Two types intrinsic effect sizes are used: (i) median r of the 7 core 

circadian genes; (ii) minimum r of the top 100 significant circadian genes. These intrinsic effect sizes can be 

used as a reference resource when investigators need to perform power calculation without any pilot data.

Organism Study Data Availability Tissue Sample Size
Median r of the 
7 core circadian 

genes

Minimum r of 
the top 100 

circadian genes

Homo sapiens

Chen6 GSE71620

Pre-frontal cortex 
(BA11)

147 0.91 0.46

Pre-frontal cortex 
(BA47)

147 0.77 0.44

Ketchesin34 GSE160521*

Striatum (NAc) 59 0.71 1.06

Striatum (caudate) 59 1.04 0.82

Striatum (putamen) 59 0.83 1.02

Seney7
Common Mind 

Consortium* Pre-frontal cortex 104 0.79 0.55

Mus musculus

Aguilar-Arnal42 GSE49638 Fibroblast 18 2.38 2.94

Bray43 GSE10045
Atrium 32 3.43 1.46

Ventricle 32 0.96 1.09

Cho44 GSE34018 Liver 12 2.84 4.11

Gerstner45 GSE78215 Cerebral cortex 34 2.46 2.18

Hoogerwerf46 GSE10644 Colon 18 1.86 1.56

Hughes9
GSE11922 Fibroblast 48 1.27 1.02

GSE11923 Liver 48 2.00 2.77

Mari47 GSE52333 Liver 18 4.11 3.39

Masri48 GSE73222 Liver 18 3.83 2.47

Masri49 GSE57830 Liver 36 2.69 2.20

Na50 GSE11516 Liver 36 3.65 3.69

Nikolaeva51 GSE27366 Kidney 12 2.39 2.61

Paschos52 GSE35026 Adipose 12 2.48 2.58

Solanas53 GSE84580
Satellite 24 3.64 2.30

Epidermal 20 5.03 2.62

Zhang12 GSE54650 Adrenal gland 24 5.17 2.27
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Organism Study Data Availability Tissue Sample Size
Median r of the 
7 core circadian 

genes

Minimum r of 
the top 100 

circadian genes

Aorta 24 5.55 2.29

Brainstem 24 3.90 2.07

Brown fat 24 5.05 2.72

Cerebellum 24 3.52 2.01

Heart 24 4.47 2.82

Hypothalamus 24 2.67 1.74

Kidney 24 6.33 3.65

Liver 24 3.51 3.67

Lung 24 5.78 3.47

Muscle 24 3.58 2.23

White fat 24 5.35 2.28

GSE54651*

Adrenal gland 8 5.29 5.40

Aorta 8 3.97 5.23

Brainstem 8 2.21 4.16

Brown fat 8 4.15 5.94

Cerebellum 8 4.06 4.86

Heart 8 4.73 6.23

Hypothalamus 8 2.19 4.19

Kidney 8 5.11 6.44

Liver 8 4.40 6.16

Lung 8 4.57 5.41

Muscle 8 5.26 5.24

White fat 8 3.71 3.87

*
denotes RNA-Seq data and others are microarray data.
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