
Ukegbu et al. BMC Public Health         (2023) 23:1549  
https://doi.org/10.1186/s12889-023-16418-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Public Health

Waist‑to‑height ratio associated 
cardiometabolic risk phenotype in children 
with overweight/obesity
Tochi E. Ukegbu1, Judith Wylie‑Rosett2, Adriana E. Groisman‑Perelstein3, Pamela M. Diamantis3, Jessica Rieder4, 
Mindy Ginsberg2, Alice H. Lichtenstein5, Nirupa R. Matthan5 and Viswanathan Shankar2* 

Abstract 

Background  Childhood overweight/obesity has been associated with an elevated risk of insulin resistance and car‑
diometabolic disorders. Waist-to-height ratio (WHtR) may be a simple screening tool to quickly identify children 
at elevated risk for cardiometabolic disorders. The primary objective of the present study was to create sex-specific 
tertile cut points of WHtR and assess its association with Insulin resistance and elevated liver enzyme concentrations 
in children, factors using cross-sectional data from the randomized, controlled Family Weight Management Study.

Methods  Baseline data from 360 children (7–12 years, mean Body Mass Index (BMI) ≥ 85th percentile for age 
and sex) were used to calculate WHtR tertiles by sex, male: ≤ 0.55 (T1), > 0.55- ≤ 0.59 (T2), > 0.59 (T3); female: ≤ 0.56 
(T1), > 0.56- ≤ 0.6 (T2), > 0.6 (T3). The Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was used to cat‑
egorize participants as insulin-resistant (HOMA-IR ≥ 2.6) and insulin-sensitive (HOMA-IR < 2.6). Liver enzymes aspartate 
aminotransferase (AST) and alanine aminotransferase (ALT) were categorized as normal vs. elevated (AST of < 36.0 
µkat/L or ≥ 36.0 µkat/L; ALT of < 30.0 µkat/L or ≥ 30.0 µkat/L; ALT > 26 µkat/L males, > 22 µkat/L females). We examined 
differences in baseline cardiometabolic risk factors by WHtR tertiles and sex-specific multivariable logistic regression 
models to predict HOMA-IR and elevation of liver enzymes.

Results  Study participants had a mean WHtR of 0.59 ([SD: 0.06]). Irrespective of sex, children in WHtR T3 had higher 
BMIz scores, blood pressure, triglycerides, 2-h glucose, fasting 2-h insulin, and lower high-density lipoprotein choles‑
terol (HDL-C) concentrations than those in T2 and T1. After adjusting for covariates, the odds of elevated HOMA-IR 
(> 2.6) were over five-fold higher among males in T3 versus T1 [OR, 95%CI: 5.83, 2.34–14.52] and T2 [OR, 95%CI: 4.81, 
1.94–11.92] and females in T3 [OR, 95%CI: 5.06, 2.10–12.20] versus T1. The odds of elevated ALT values (≥ 30) were 2.9 
[95%CI: 1.01–8.41] fold higher among females in T3 compared to T1.

Conclusion  In public health settings, WHtR may be a practical screening tool in pediatric populations to identify 
children at risk of metabolic syndrome.
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Background
Obesity, characterized by the excessive accumulation of 
adipose tissue, increases cardiometabolic risk factors 
such as hyperglycemia, dyslipidemia, and insulin resist-
ance (IR), has increased dramatically over the past few 
decades [1, 2]. Many of these adverse metabolic factors 
are strongly associated with their prevalence later in 
life. Although various anthropometric and biochemi-
cal measures are viable markers for cardiometabolic risk 
detection in adults, there is a lack of substantial research 
examining the accuracy of these measures as predictors 
in children [3]. Childhood obesity is also associated with 
an increased risk of developing non-alcoholic fatty liver 
disease (NAFLD) later in life, with one of the histological 
stages being liver fibrosis [4]. Hepatic ectopic lipid depo-
sition can result in inflammation and liver fibrosis [5–7]. 
Obesity and IR increase liver fibrosis risk [8, 9]. Meas-
ures of liver function, such as aspartate aminotransferase 
(AST) and alanine aminotransferase (ALT), are indica-
tors of cellular liver injury [10]. The lack of research on 
the pathogenesis of liver fibrosis in children and the una-
vailability of current assessment methods further empha-
sizes the need for simple, noninvasive methods to assess 
this condition [11, 12]. 

Waist-to-height ratio (WHtR), derived as a ratio of 
waist circumference in centimeters (cms) by height (cms), 
a simple screening tool [13], has recently been proposed 
as a diagnostic measure of early cardiometabolic risk in 
both children [3, 14–16] and adults [16–19]. WHtR is 
more strongly associated with cardiovascular and car-
diometabolic risk factors than individual anthropometric 
measures, such as waist circumference, Body Mass Index 
(BMI), and waist-hip ratio [15, 17, 20–24]. [21, 22]. The 
results of systematic reviews and meta-analyses of WHtR 
in adults have suggested values above 0.5 represents 
increased cardiometabolic risk [14, 25]. A recent meta-
analysis [18] examining WHtR values in children and 
adolescents suggested a single cutpoint of 0.49 for both 
boys and girls. In contrast, a second meta-analysis [16] 
did not support this conclusion.

The aim of the study was to establish sex-specific ter-
tile cut points of WHtR and assess their association with 
Insulin Resistance (IR), cardiometabolic risk factors, 
and elevated liver enzyme concentrations in children 
7–12  years. Our analyses explore the potential to iden-
tify the risk phenotype using the waist-to-height ratio 
(WHtR) [25].

Methods
Setting
The study utilized baseline data from the Family Weight 
Management Study (also known as the Fun Healthy 

Families study), a randomized controlled trial [26] con-
ducted from 2009 to 2013 in a pediatric ambulatory 
program of an urban hospital that provides safety-net 
primary care services in the Bronx, New York, United 
States.

Participants
Study participants (N = 360) included children aged 
7–12 years with a BMI ≥ 85th percentile for age and sex 
[27]. Exclusion criteria for the participants included any 
chronic illnesses, a physical, cognitive, or emotional 
impairment that would impact the safety of participants 
during study procedures, medical treatment causing 
fluctuations in body weight, inconvenient transportation 
distances, involvement in a separate weight management 
program, and unwillingness or inability of the parents or 
child to provide consent and assent, respectively. The trial 
design with the CONSORT diagram and study process is 
described elsewhere [26]. The Albert Einstein College of 
Medicine Institutional Review Board (IRB) approved all 
study protocols; all study participants provided written 
consent (parent or guardian) or assent (children).

Anthropometric measures
Height and weight were measured in light clothing and 
without shoes. A stadiometer and a digital scale were 
used to obtain height and weight, respectively. The waist 
circumference was measured using an elastic tape at 
the iliac crest, and the hip circumference at the point of 
maximal protrusion of the gluteal muscles in the lateral 
position. Both were recorded to the nearest centimeter. 
Scales and stadiometer were calibrated, and anthropom-
etry tapes were examined for signs of wear weekly using 
standardized protocols.

Cardiometabolic parameters
As previously reported in Wylie-Rosett et  al. [26], sys-
tolic and diastolic blood pressures were measured three 
times according to traditional pediatric standards using 
appropriate cuff size with a manual sphygmomanometer 
after sitting for 2  min. Blood specimens were obtained 
after a minimum of an 8-h fast. Fasting glucose, triglyc-
eride (TG), total cholesterol (TC), low-density lipopro-
tein (LDL) cholesterol, and high-density lipoprotein 
(HDL) cholesterol concentrations were measured spec-
trophotometrically using a Beckman-Coulter LX-20 
auto-analyzer (Brea, CA). A glucose amount of 1.75 g/kg 
body weight (GlucolaTM) was administered for the 2-h 
Oral Glucose Tolerance Test. The liver enzymes, alanine 
transaminase (ALT/SGPT) and aspartate aminotrans-
ferase (AST/SGOT), concentrations were measured 
using an Immulite 2000 analyzer (Bio-DPC; Siemens 
Medical, Gwynedd, UK).
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Intermediate parameters
The following variables were used as markers for 
increased cardiometabolic risk:

•	 WHtR parameters: There is no consensus on the 
appropriate cut points of WHtR in pediatric popula-
tions [15–18, 20, 28]. Previous reviews and analyses 
have indicated that dichotomized WHtR cut points 
at ≥ 0.5 [18] or 0.55 [29] are surrogates of increased 
risk in children; however, they may be insignificant 
when assessed for sensitivity and specificity to certain 
variables [30–32]. Therefore, the following cut points 
by sex were used based on the sample data to group 
children into three categories: females WHtR ≤ 0.56 
(T1), WHtR > 0.56—≤ 0.60 (T2), and WHtR > 0.60 
(T3); males WHtR ≤ 0.55 (T1), WHtR > 0.55—≤ 0.59 
(T2), and WHtR > 0.59 (T3).

•	 Insulin Resistance (IR): IR is a critical component 
of cardiovascular disease and metabolic syndrome 
(MetS) [1, 33]. Though increased HOMA-IR values 
are associated with higher risk, no clear cut point 
is used to assess IR in pediatric clinical studies [33]. 
We used HOMA-IR values < 2.6 and ≥ 2.6 to evaluate 
increased cardiometabolic risk based on prior pub-
lished research from the Family Weight Management 
Study [34, 35].

•	 Liver enzymes: Measures of serum AST(SGOT) 
and ALT(SGPT) levels have been used extensively 
in studies to assess liver damage [10]. There are dif-
ferent cut points proposed [36–38]. AST values 
of < 36.0 µkat/L and ≥ 36.0 µkat/L and ALT values 
of < 30.0 µkat/L and ≥ 30.0 µkat/L are proposed as cut 
points associated with increased risk of liver injury 
in children [39] and adopted for this study. In addi-
tion to these cut points, we also examined the fol-
lowing cut points 22 µkat/L for girls and 26 µkat/L 
for boys based on the North American Society For 
Pediatric Gastroenterology, Hepatology & Nutrition 
(NASPGHAN) Clinical Practice Guideline review 
[36, 38].

Statistical analysis
A sex-specific demographic, anthropometric, and cardio-
metabolic biomarker distribution was summarized using 
descriptive statistics. Normally distributed continu-
ous variables were numerically summarized using mean 
(standard deviation), while non-normally distributed 
were presented with median (interquartile range). The 
categorical variables were presented as frequency counts 
and percentages. The difference in child characteristics 
among the WHtR tertile categories (sex-specific) was 
assessed using analysis of variance, the Kruskal–Wallis 

test, or the Pearson chi-square test. We modeled HOMA-
IR, AST, and ALT values as binary variables for asso-
ciation models. The association between WHtR tertile 
categories (sex-specific) and outcome variables HOMA-
IR, AST, and ALT, adjusting for the other covariates, 
was examined using a multivariable logistic regression 
model. Firth’s bias-corrected logistic regression was used 
to associate WHtR and outcomes with a small number of 
events or when the issue of quasi or complete separation 
arose. We also modeled binary WHtR cut points (> 0.5 
v ≤ 0.5; > 0.55 v ≤ 0.55; M: > 0.59 v ≤ 0.59, F: > 0.60 v ≤ 0.60) 
for comparison. Covariates (child’s age, race, ethnicity, 
household income, parent’s education, occupation, Tan-
ner stage) that were significantly different at the 20% level 
at the univariable model as were demographic confound-
ers were considered for the multivariable model. Final 
multivariable models were adjusted for the child’s age, 
race, ethnicity, parent’s education, and occupation; in 
addition, HOMA-IR models were adjusted for the tanner 
stage. The Tanner stage variable had 13.6% missing data, 
which was addressed using a fully conditional specifica-
tion multiple imputations approach. Ten imputation data 
sets were generated, and estimates were pooled using 
Rubin’s rules [40].

Results
Participant Characteristics
Three hundred and sixty children participated in the 
study, of which 52% (n = 185) were females and 48% 
(n = 175) were males. Seventy-four percent (n = 267) self-
identified as Hispanic, 17.5% (n = 63) as non-Hispanic 
African American or Black, and 8.3% as non-Hispanic 
origin, others including Caucasian or White, Asian, 
Hawaiian, and multiracial. The average age of children 
was 9.3 (SD: 1.7). A detailed summary of participant 
characteristics has been previously reported [26]. The 
average WHtR among the participants was 0.59 (SD: 
0.06). The average HOMA-IR, AST(SGOT), and ALT 
(SGPT) values were 3.68(SD: 2.58), 25.83 (SD: 17.57), and 
30.96(SD: 9.40), respectively (Table 1). The demographic, 
anthropometric, and cardiometabolic characteristics 
distribution between the sex-specific WHtR tertile were 
similar to different WHtR categories. For comparisons 
with our proposed WHtR tertile categories, we also cat-
egorized WHtR by commonly used cut points and their 
distribution by sex is presented in Supplemental Table 1

Differences in cardiometabolic risk parameters
In both sexes, cardiometabolic risk markers, includ-
ing BMI- z score, SBP, DBP, and 2-h glucose, fast-
ing, and 2-h insulin concentrations, were lowest in 
children in WHtR T1, intermediate in WHtR T2 and 
highest in WHtR T3 among categories (Table 1), with 
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markers showing linear relation (either a monotonic 
increase or decrease) among the WHtR tertile cate-
gories in both sexes. HDL-cholesterol concentration 
was lowest in the WHtR T3 category in both males 
and females, consistent with the previously reported 
observation of an inverse relationship between 

adiposity and HDL-cholesterol concentrations [41]. 
The liver function biomarker (SGPT/ALT) was posi-
tively associated with concentrations that were higher 
with increasing WHtR categories in males (p = 0.03) 
but did not reach statistical significance in females 
(p = 0.08).

Table 1  Distribution of participant demographic, anthropometric, and cardiometabolic biomarkers by sex-specific waist-to-height 
ratio tertile categories

Variable Waist-to-Height Ratio

Male (n = 175) Female (n = 185)

T1 (n = 58)  
≤ 0.55

T2 (n = 59)  
> 0.55- ≤ 0.59

T3 (n = 58)  
> 0.59

P-value T1 (n = 61)  
≤ 0.56

T2 (n = 62)  
> 0.56- ≤ 0.6

T3 (n = 62)  
> 0.6

P Value†

Age (years)a 9.2 (1.8) 9.2 (1.7) 9.3 (1.6) 0.95 9.0 (1.8) 9.5 (1.8) 9. 5 (1.7) 0.19

Race/ethnicity n (%)

Hispanic 45 (77.6) 44 (74.6) 43 (74.1) 44 (72.1) 47 (75.8) 44 (71.0) 0.78§

Non-Hispanic AA 8 (13.8) 11 (18.6) 10 (17.2) 0.96§ 11 (18.0) 9 (14.5) 14 (22.6)

Non-Hispanic White & 
Others

5 (8.6) 4 (6.8) 5 (8.6) 6 (9.8) 6 (9.7) 4 (6.5)

Parent education n (%)

 < High School 30 (51.7) 27 (45.8) 28 (48.3) 0.83§ 29 (47.5) 29 (46.8) 32 (51.6) 0.39§

High school or GED 13 (22.4) 17 (28.8) 18 (31.0) 15 (24.6) 21 (33.9) 12 (19.4)

 > High school 15 (25.9) 15 (25.4) 12 (20.7) 17 (27.9) 12 (19.4) 18 (29.0)

Parent occupation n (%)

Employed full time 9 (15.5) 10 (17.0) 10 (17.2) 1.00§ 11 (18.0) 13 (21.0) 16 (25.8) 0.46§

Employed part-time 10 (17.2) 9 (15.3) 9 (15.5) 7 (11.5) 13 (21.0) 9 (14.5)

Other (retired Home‑
maker unemployed)

39 (67.2) 40 (67.8) 39 (67.2) 43 (70.5) 36 (58.1) 37 (59.7)

Height (cm) a 140.6 (12.2) 139.2 (10.6) 141.8 (11.7) 0.50 138.6 (11.9) 142.2 (11.4) 142.2(11.5) 0.14

Weight (lbs) a 98.4 (23.9) 107.5 (26.1) 131.5 (35.0)  < .0001 95.5 (23.1) 113.1 (28.3) 134.0 (37.4)  < .0001

BMI Z scorea 1.7 (0.29) 2.1 (0.3) 2.4 (0.2)  < .0001 1.6 (0.3) 1.9 (0.3) 2.3 (0.2)  < .0001

SBP (mmHg) a 104.0 (7.5) 106.6 (9.3) 111.4 (11.8) 0.0002 102.2 (8.8) 106.3 (10.7) 109.5 (12.3) 0.001

DBP (mmHg)a 57.4 (5.2) 57. 7 (5.3) 59.8 (6.1) 0.05¥ 57.1 (4.8) 58.5 (6.1) 60.0 (5.6) 0.02

Triglycerides (mg/dL)b 63 (47–90) 73(49–101) 72(59–98) 0.16¥ 71 (52–113) 79(60–113) 86(61–126) 0.07¥

Total cholesterol (mg/
dL)a

154.5 (27. 7) 153.5 (29.2) 159.5 (26.1) 0.46 157.6 (26.9) 151.3 (30.6) 158.1 (29. 4) 0.35

HDL-C (mg/dL)a 49.9 (10.2) 46.6 (7.9) 45.4 (9.2) 0.03 48.1 (9.8) 44.3 (9.0) 43.3 (9.7) 0.01

LDL-C (mg/dL)a 90.5 (23.1) 91.4 (25.1) 97.0 (20.4) 0.26 93.3 (23.2) 91.2 (20.7) 93.6 (25.5) 0.83

Fasting glucose (mg/
dL)a

84.6 (7.1) 86.2 (7.1) 86.0 (10.5) 0.55 84.0 (8.1) 84. 6 (13.4) 84.6 (7.4) 0.93

Glucose 2 HR (mg/dL)a 93.3 (13. 7) 96.7 (15.0) 105. 8 (18.6) 0.0001 92.30 (16.4) 95.2 (20. 0) 100.9 (17.5) 0.03

Fasting insulin  
(μU/mL)b

10.3 (7.0–15.5) 12.5(9.9–18.2) 16.5 (11.6–23.4) 0.0001¥ 11.8 (8.2–16.5) 18.0 (11.5–28.0) 18.2(13.0–27.9)  < .0001¥

Fasting Insulin 2 HR 
(μU/mL)b

49.3 (26.3–72.1) 47.0 (27.5–74.1) 76.7(49.2–135.0) 0.0003¥ 46.9 (34.3–77.5) 92.9(63.8–157.1) 99.9(44.7–204.1)  < .0001¥

HOMA-IRb 2.0 (1.40–3.37) 2.5 (2.2–4.0) 3.5(2.3–5.3) 0.0002¥ 2.3 (1.5–3.4) 3.8 (2.5–5.9) 3.9 (2.6–6.1)  < .0001¥

ALT (SGPT) (µkat/L) 21 (19–28) 24 (19–29) 27(20–35) 0.03¥ 20 (17–24) 22(18–25) 22(18–29) 0.08¥

AST (SGOT) (μkat/L)b 31 (26–35) 32(27–35) 32(26–36) 0.82¥ 30 (27–34) 27(25–33) 28(25–32) 0.10¥

Tanner Stageb 1 (1–2) 1 (1–2) 1 (1–2) 0.84¥ 1(1–2) 2 (1–2) 2(1–2) 0.06¥

† Analysis of Variance
§ Pearson Chi-square test

¥Kruskal Wallis Test
a  values are mean (SD)
b values are median (IQR)
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Association of WHtR with insulin resistance and liver 
biomarkers
The complete case and multiple imputation model esti-
mated for the HOMA-IR are presented in Table 2. Based 
on a multiple imputation analysis, female children in 
T3 (WHtR > 0.60) had a 5.06 (95% CI: 2.10–12.20) fold 
higher odds of being insulin resistant (HOMA-IR > 2.6) 
than those in T1 (WHtR ≤ 0.56) (Table  2). The odds 
of insulin resistance were 4.81 (95%CI: 1.94–11.92) 
fold higher among T2 than T1. Similarly, the odds of 
insulin resistance were 5.83 (95%CI: 2.34–14.52) fold 
higher among T3 (WHtR > 0.59) category than T1 
(WHtR ≤ 0.55) among the males. The effect size was 
not statistically significant and was half for those in 
T2. We also compared established WHtR binary cut 
points of > 0.5 [18], > 0.55 [29] and > 0.6 [25, 42, 43]. 
The gender-specific adjusted OR for binary cut points 
(males > 0.59 and females > 0.60) were 4.54 (95%CI: 
2.17–9.50) and 2.54 (95%CI: 1.22–5.26) for males and 
females, respectively. The established conservative 
binary cut points showed elevated risk, but the strength 
of association was smaller.

ALT as a marker for liver injury in children was 
assessed using two cut-off criteria: (i) ≥ 30 vs. < 30) 
and NASPGHAN sex-specific criteria of > 26 vs. ≤ 26 

for males and > 22 vs. ≤ 22 for females. Among the 
females, the odds of elevated ALT (≥ 30) were 2.9-fold 
higher among T3 compared to the T1 WHtR category 
(aOR, 2.92; 95% CI: 1.01, 8.41). Although an elevated 
association was observed in the T2 WHtR category 
(aOR = 1.77; 95%CI: 0.59, 5.35), the difference did not 
reach statistical significance (Table  3). Among males, 
there was a non-significant elevated association between 
T3 WHtR (aOR = 1.87) and T2 WHtR (aOR = 1.13). 
When assessed using the NASPGHAN criteria, among 
both female and male children, the odds of elevated 
ALT (males > 26; female > 22) showed stronger associa-
tions in theT3 WHtR than the T1 category. A non-sig-
nificant positive association was observed between AST 
and WHtR among males but not females (Table 4).

As the WHtR tertile cut points were similar in both 
sexes, we also examined the association between common 
WHtR tertile cut points and HOMA-IR and liver enzymes. 
The results suggested a similar pattern to sex-specific 
results. (Supplemental Table 2).

Discussion
The study’s primary finding confirmed our hypothesis 
and suggested that higher WHtR is associated with an 
unfavorable cardiometabolic profile, specifically IR and 

Table 2  Odds Ratio, 95% confidence interval, and P-value from multivariable logistic regression for HOMA-IR

#  waist-to-height ratio tertiles: Male: ≤ 0.55 T1, > 0.55- ≤ 0.59 T2, > 0.59 T3; Female: ≤ 0.56 T1, > 0.56- ≤ 0.6 T2, > 0.6 T3; (ref )-reference category

*multiple imputations

§ Male ≤ 0.59 v > 0.59, Female ≤ 0.6 v > 0.6, & ≤ 0.50 v > 0.50

All models adjusted for age, race/ethnicity, parents education, occupation, and Tanner stage

Variable Male Female

aOR 95% CI P-value aOR 95% CI P-value

WHtR# T1 (ref ) 1 1

T2 1.66 0.66–4.17 0.2783 5.38 2.00–14.49 0.0009
T3 5.56 2.02–15.28 0.0009 5.68 2.23–14.48 0.0003

WHtR#* T1 (ref ) 1 1

T2 2.00 0.83–4.83 0.1218 4.81 1.94–11.92 0.0007
T3 5.83 2.34–14.52 0.0002 5.06 2.10–12.20 0.0003

WHtR§ M: ≤ 0.59; F: ≤ 0.60 (ref ) 1 1

M: > 0.59; F: > 0.60 4.51 1.99–10.22 0.0003 2.31 1.09–4.92 0.0299
WHtR§* M: ≤ 0.59; F: ≤ 0.60 (ref ) 1 1

M: > 0.59; F: > 0.60 4.54 2.17–9.50  < 0.0001 2.54 1.22–5.26 0.0124
WHtR  ≤ 0.55 (ref ) 1 1

 > 0.55 3.26 1.38–7.69 0.0072 3.73 1.54–9.03 0.0035
WHtR*  ≤ 0.55 (ref ) 1 1

 > 0.55 3.99 1.73–9.17 0.0011 3.31 1.49–7.37 0.0033
WHtR  ≤ 0.5 (ref ) 1 1

 > 0.5 1.16 0.21–6.46 0.8673 2.63 0.43–16.08 0.2944

WHtR*  ≤ 0.5 (ref ) 1 0.21–6.46 0.8673 2.63 0.43–16.08 0.2944

 > 0.5 2.00 0.38–10.58 0.4151 2.77 0.47–16.41 0.2603
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elevated liver biomarkers. The odds ratio magnitude with 
WHTR tertiles was more substantial in female than male 
children except for NASPGHAN ALT and AST.

Within this cohort of 7–12-year-old children with a 
BMI ≥ 85th percentile for age and sex, children in the 
upper tertile for WHtR had almost 1.83 -5.68-fold higher 

Table 3  Odds Ratio, 95% confidence interval, and P-value from multivariable logistic regression for ALT/SGPT

a  waist-to-height ratio tertiles: Male: ≤ 0.55 T1, > 0.55- ≤ 0.59 T2, > 0.59 T3; Female: ≤ 0.56 T1, > 0.56- ≤ 0.6 T2, > 0.6 T3; (ref )-reference category
b  Male ≤ 0.59 v > 0.59, Female ≤ 0.6 v > 0.6, & ≤ 0.50 v > 0.50

all models adjusted for age, race/ethnicity, parents education, occupation
c  Firth Bias Corrected Logistic regression

Variable Male Female

aOR 95% CI P-value aOR 95% CI P-value

ALT/SGPT: < 30, ≥ 30
WHtRa T1 (ref ) 1 1

T2 1.13 0.46–2.80 0.7847 1.77c 0.59–5.35 0.3128

T3 1.87 0.79–4.40 0.1550 2.92c 1.01–8.41 0.0471
WHtRb M: ≤ 0.59; F: ≤ 0.60 (ref ) 1 1

M: > 0.59; F: > 0.60 1.48 0.73–3.00 0.2850 2.44c 1.05–5.66 0.0373
WHtR  ≤ 0.55 (ref ) 1

 > 0.55 1.48 0.67–3.27 0.3340 1
 ≤ 0.5 (ref ) 3.06c 0.89–8.31 0.0803

WHtR  > 0.5 1 0.30–22.37 0.3849 1

2.60 3.92c 0.16–96.5 0.4033

ALT/SGPT: Male: ≤ 26, > 26 / Female: ≤ 22, > 22
WHtRa T1 (ref ) 1 1

T2 1.69 0.75–3.84 0.2076 1.84 0.85–3.96 0.1217

T3 3.17 1.41–7.13 0.0052 2.23 1.04–4.82 0.0405
WHtRb M: ≤ 0.59; F: ≤ 0.60 (ref ) 1

M: > 0.59; F: > 0.60 2.28 1.19–4.40 0.0134 1.83 0.98–3.42 0.0592
WHtR  ≤ 0.55 (ref ) 1 1

 > 0.55 2.24 1.08–4.67 0.0308 1.96 0.93–4.10 0.0759
WHtR  ≤ 0.5 (ref ) 1 1

 > 0.5 2.08 0.39–11.15 0.3908 5.40 0.62–46.99 0.1270

Table 4  Odds Ratio, 95% confidence interval, and P-value from multivariable logistic regression for AST/SGOT (< 36, ≥ 36)

a  waist-to-height ratio tertiles: Male: ≤ 0.55 T1, > 0.55- ≤ 0.59 T2, > 0.59 T3; Female: ≤ 0.56 T1, > 0.56- ≤ 0.6 T2, > 0.6 T3

(ref )-reference category
b  Male ≤ 0.59 v > 0.59, Female ≤ 0.6 v > 0.6, & ≤ 0.50 v > 0.50; all models adjusted for age, race/ethnicity, parents education, occupation
c  Firth Bias Corrected Logistic regression

Variable Male Female

aOR 95% CI P-value aOR 95% CI P-value

WHtRa T1 (ref ) 1 1

T2 1.10 0.44–2.70 0.8440 1.40c 0.48–4.06 0.5388

T3 1.83 0.77–4.36 0.1753 1.03c 0.35–3.02 0.9595

WHtRb M: ≤ 0.59; F: ≤ 0.60 (ref ) 1

M: > 0.59; F: > 0.60 1.47 0.71–3.05 0.2985 1.11c 0.45–2.71 0.8241

WHtR  ≤ 0.55 (ref ) 1 1 0.36–2.59 0.9541

 > 0.55 1.49 0.67–3.29 0.3236 0.97c

WHtR  ≤ 0.5 (ref ) 1 1

 > 0.5 1.26 0.24–6.73 0.7897 4.71c 0.17–134.82 0.3646
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odds of elevated liver enzyme levels and IR than chil-
dren in the lowest tertile in both sexes. These results 
are consistent with previous studies in adults [21, 23, 
33] analyzing various WHtR thresholds predictive of 
higher cardiometabolic risk, adding to the research on 
anthropometric predictor value and cardiometabolic risk 
in pediatric populations. Ashwell and Hsieh [13] sug-
gested dichotomized optimal WHtR cut point of 0.5 for 
both children and adults among different ethnic groups 
between both sexes. While Khoury et  al. [25, 44] used 
arbitrary cut points < 0.5, > 0.5 to < 0.6, ≥ 0.6 in combina-
tion with BMI, showed higher WHtR categories were 
significant risk factors for lipid and cardiometabolic 
markers in children with obesity. Another study [45] 
used 0.512 as the WHtR cut point, ignoring the child’s 
sex, and concluded there is little difference between BMI 
and WHtR but preferred WHtR in identifying children 
with adverse cardiovascular disease (CVD) risk factors. A 
recent meta-analysis [18] of diagnostic studies assessing 
the WHtR cut-off value suggested an optimal practical 
cut point of 0.5; however, this was not replicated in our 
cohort. A difference between the study cohorts may be 
their makeup; ours is composed predominantly of His-
panic and Black children with a BMI ≥ 85th percentile for 
age and sex. This cut-off > 0.6 has been suggested by other 
studies [25, 42, 43] that showed a similar robust associa-
tion with cardiometabolic risk and metabolic syndrome 
in children with obesity.

ALT and AST are widely used as noninvasive screening 
tools for NAFLD and non-alcoholic steatohepatitis (NASH) 
in the pediatric population [46]. Although ALT is suggested 
as currently the best inexpensive screener of NAFLD in 
children [36], it has limitations such that there is no con-
sensus on ALT normal values, and not all ALT-positive 
screening will have liver disease, leading to inconsistencies 
[47]. While proportional relationships between the liver 
enzymes and varying WHtR thresholds have been estab-
lished [13, 21, 33], this was not replicated in our cohort, 
except for ALT (≥ 30). ALT) was nearly threefold higher in 
female children in WHtR T3 compared to T1. When ALT 
was assessed using sex-specific NASPGHAN ALT criteria, 
there was a stronger association with WHtR in both sexes; 
T3 WHtR compared to the T1 WHtR category.

Obesity screening programs could be incorporated 
into pediatric settings such as schools and conducted 
with protocols similar to those used in school Fitness-
Gram and other obesity evaluations [48, 49]. Using the 
WHtR as a screening tool in schools and public health 
settings could quickly identify high-risk children who 
should be referred for further assessment. A popu-
lation-based screening should be conducted in safe, 
confidential spaces to minimize stigmatizing children 

with overweight and obesity. Our study suggests that 
WHtR could be helpful in identifying children with an 
unhealthy phenotype of obesity.

Strengths of this study include the scientific rigor 
of data collection, the availability of a database with an 
adequate sample size to test the hypotheses, the interface 
with safety-net primary care, the availability of relevant 
cardiometabolic biomarkers, and diverse ethnic/racial 
distributions of the participants.

Study limitations include a single measure of anthro-
pometric and biochemical measures obtained at base-
line, hence, the cross-sectional design. Consistent with 
the parent study protocol criteria, all the children in 
the trial were overweight or obese, so we did not have 
a normal weight control group to perform a compara-
tive analysis. Although we had a relatively large sample 
size, we may not have had adequate statistical power to 
assess sex-specific differences. The population’s demo-
graphic characteristics (majority of parents/guardians 
identified as Hispanic and were born outside of the 
continental United States) and setting (pediatric safety-
net primary care) potentially limit the generalizability 
of our results.

Conclusion
Assessing WHtR may prove to be an efficient and quick 
screening method to identify children with overweight 
and obesity who are at elevated risk for cardiometa-
bolic disorders, particularly those who have IR and 
elevated liver biomarkers. The approach minimizes 
the stigma or social disparities associated with obesity. 
This screening method is feasible for use in schools and 
other pediatric environments, such as fitness grams and 
evaluations.
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