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Abstract

Normal aging is linked to various endocrine gland changes, including changes in the adrenal 

glands. Aging is linked to alterations of the hypothalamic-pituitary-adrenal (HPA) axis, including 

an increase in cortisol levels, a disruption of the negative cortisol feedback, and attenuation 

of cortisol’s diurnal pattern. In addition, secretion of aldosterone and adrenal androgens 

[dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS)] from the adrenal cortex decreases 

with aging. In this review, we describe normal adrenal function, the adrenal response to stress 

and immunomodulation in aging individuals as well as the effects of adrenal aging on body 

composition, metabolic profile, bone health and cognition.
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Introduction

Aging is characterized by a gradual decline in all organ function. It has been previously 

hypothesized that hormonal changes occurring with aging may contribute to the age-related 
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phenotypes that older individuals display[1]. Aging affects several endocrine systems 

including the growth hormone, the reproductive and the adrenal axis[1]. While some 

endocrine changes occurring with aging are well defined (such as the decline of estradiol 

levels in women after menopause), other age-related endocrine changes are not as clearly 

understood.

Among all endocrine axes that are affected by aging, the adrenal axis appears to be the most 

complex mainly due to the multiple hormones produced by the different adrenal zones and 

the essential role of adrenal glands in human body homeostasis. Aging appears to affect 

the secretion of all adrenal cortical hormones including cortisol, aldosterone, and adrenal 

androgens[2–4]. Aging can impact the diurnal secretion of cortisol and the adrenal response 

to stress and immune stimuli[2]. As humans age, they are often required to respond to such 

stimuli to survive, and the hypothalamic-pituitary-adrenal (HPA) axis plays a critical role in 

this stress response and immunomodulation[5, 6]. As changes in the adrenal gland and the 

global HPA axis can have a significant impact on human function and survival, this narrative 

review aims to present an overview of normal adrenal physiology and the effect of aging on 

adrenal function.

Methods

A multiple step strategy was utilized to conduct this narrative review as shown in Figure 

1. Identification of relevant articles was conducted through August 2022 by utilizing the 

Pubmed database and applying the following query (Q1): adrenal [MeSH] OR cortisol 

[MeSH] OR DHEAS [MeSH] OR Aldosterone [MeSH] AND aging [MeSH]. To focus our 

search in the respective sections of the this review, we also queried the database using 

the query (Q1) in combination with the following keywords: Q1 AND stress [All Fields] 

resulting in 653 published articles; Q1 AND immunosenescence [All Fields] resulting in 

28 papers, Q1 AND body composition [All Fields] resulting in 99 published papers, Q1 

AND OR bone density [All Fields] resulting in 55 published articles; Q1 AND cognitive 

function [All Fields] resulting in 168 published articles; Q1 AND cognition [All Fields] 

resulting in 224 published articles; Q1 AND adrenal nodules [All Fields] resulting in 9 

published articles; and finally, Q1 AND inflammation [All Fields] resulting in 7 published 

articles. Screening of all published articles was conducted with the Rayyan Software [7]. 

After duplicates were removed, 3,759 published articles were identified. Most articles were 

published in the years 1990–2010 (N =1,754), followed by articles published before the 

year 1990 (N=1,502) and articles published in the years 2010–2022 (N=503). Next, 124 

papers were removed from the pipeline as the abstract and full text were not written in 

English. Eligibility was then assessed using the following criteria: publications focusing on: 

1) The normal adrenal and HPA function; (2) Adrenal changes with aging; (3) The HPA 

axis response in stress and immunosenescence; and (4) HPA changes with aging: effects on 

body composition, metabolic profiles, bone density and cognition. A total of 1,096 published 

articles met criteria for inclusion in this review study and a subset of representative articles 

(n=50) were cited in this narrative review to comply with the Journal’s guidelines for 

authors.
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(i) Normal adrenal and HPA function

(A) The HPA axis and response to stress: The adrenal glands are essential 

endocrine organs that function under the regulatory control of hypothalamic corticotropin 

releasing hormone (CRH) that stimulates the secretion of adrenocorticotrophic hormone 

(ACTH) in the anterior pituitary[8]. Under the control of ACTH, adrenal glands secrete 

glucocorticoids (i.e. cortisol) in relatively high amounts (10–20 mg/day). Glucocorticoids 

act via the glucocorticoid receptor that is expressed throughout the body resulting in diverse 

actions, with roles in glucose regulation, adipocyte differentiation, osteoblast function, 

and blood pressure control[9], while glucocorticoid excess can lead to hypertension, 

insulin resistance, osteoporosis and immunosuppression[10]. Apart from glucocorticoids, 

the adrenal cortex is responsible for secretion of mineralocorticoids (i.e., aldosterone). 

Mineralocorticoids are secreted in lower amounts than the glucocorticoids (100–105 

mcg/day) under the control of potassium, angiotensin II and ACTH (to a lesser extent)

[11]. Finally, adrenal androgens (dehydroepiandrosterone [DHEA] and its sulfated ester 

[DHEAS]) are the most abundant steroids secreted from the adrenal glands. DHEA is a 

precursor of sex steroids with the potential for estrogenic or androgenic effects based on 

peripheral conversion in target tissues. Although adrenal steroids are a principal component 

of circulating androgens in women, their contribution in men is much smaller due to gonadal 

androgen production[8].

Stress is commonly defined as a state of perceived threat to homeostasis. Several principal 

components of the response to stress are located in the hypothalamus (paraventricular 

nucleus), the anterior pituitary gland and the adrenal glands, i.e., the HPA axis. Modification 

of the glucocorticoid receptor expression with gene knockout has revealed its essential role 

in survival as well as other functions throughout the body, including immunomodulation 

[12]. This is consistent with the fact that glucocorticoids are a critical component of 

the stress response and display anti-inflammatory/immunosuppressive actions[8]. Physical 

stress increases CRH, ACTH and cortisol secretion through hypothalamic mediated 

processes, with increased HPA axis activity being documented in response to stressful 

stimuli, including surgery, significant trauma, and acute illness (Figure 2)[13]. That was 

demonstrated in a study by Boonen et al that reported 83% higher cortisol levels in the 

patients with critical illness compared with controls[13]. In contrast to the increase in 

circulating cortisol demonstrated in the acute stress response, cortisol levels in chronic 

and neuropsychiatric diseases are less well defined. Cortisol levels are positively correlated 

with the symptom severity experienced by patients with chronic malignancies[14], and 

individuals with chronic depression and other neuropsychiatric diseases demonstrate higher 

cortisol levels[15].

(B) The role of the HPA axis in immunomodulation: Glucocorticoids have a 

role in responding to and modulating the immune response. Proinflammatory cytokines, 

including tumor necrosis factor 1 (TNF1), interleukins 1 and 6 (IL-1 and IL-6), and 

leukemia inhibitory factor (LIF, a IL-6 cytokine member) activate the HPA axis via 

directly increasing ACTH or by augmenting the CRH effect in the anterior pituitary[16]. 

On the other hand, glucocorticoids also demonstrate inhibitory immune effects, as 

demonstrated by the development of highly potent glucocorticoid therapies that are 
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used for treating a variety of autoimmune and inflammatory diseases. The glucocorticoid-

induced inhibitory immune effects are mediated via multiple mechanisms with most of the 

glucocorticoid associated anti-inflammatory effects linked to gene suppression associated 

with the glucocorticoid receptor. The activated glucocorticoid receptor can affect multiple 

pro-inflammatory transcription factors, such as the activator protein 1 and the nuclear 

factor kappa B (NF-kB) [17]. Glucocorticoids have also direct actions on both T and B 

lymphocytes, by inhibiting the action of NF-kB[18], inhibiting macrophage phagocytosis, 

suppressing monocyte differentiation into macrophages and reducing local inflammation 

by blocking the inflammatory effects of histamine and plasminogen activators [19]. 

Finally, glucocorticoids suppress the production of multiple interleukins that serve as 

immunomodulatory chemokines, including IL2 [20] and interferon gamma (INFγ), by 

underregulating the STAT-1 expression[21, 22].

(C) Intraadrenal regulation of steroidogenesis: While a detailed discussion of 

intraadrenal regulation of adrenal function is beyond the scope of this review, it is now 

appreciated that locally produced hormones, neuropeptides, and cytokines act in a paracrine 

fashion and modulate adrenal cortisol production[23]. ACTH-independent regulation of 

cortisol secretion was suggested with observations of ACTH and glucocorticoid dissociation 

in sepsis, surgery, malignancy and depression and has been demonstrated in studies using 

intact isolated adrenals or in vivo models[24]. There remains much to be understood 

regarding the mechanisms of ACTH-independent cortisol secretion, but in the future 

comprehensive discussion of the HPA axis and the stress response will need to incorporate 

accumulating evidence about non-ACTH mechanisms modulating cortisol secretion.

(ii) Adrenal changes with aging:

Aging is defined as progressive decline in biological functions over time. Among other 

physiologic functions that decline during aging, changes in adrenal function may occur with 

the passage of time (Table 1).

A) Changes in cortisol secretion and response to stress with 
aging: Increasing age is linked to higher cortisol secretion with a flat diurnal cortisol 

pattern and a disruption of the HPA axis negative feedback loop [2]. With age, cortisol 

exhibits an attenuated awakening response and a more gradual decline later in the day, 

resulting in a higher evening nadir [2]. In a study of 24-hour profiles of plasma cortisol 

from healthy individuals (ages 18–83 years), mean cortisol levels in both sexes increased 

by 20–50% between 20–80 years of age. Aging led to a progressive increase in the 

nocturnal cortisol nadir level in both sexes. This study demonstrated that with older age 

the diurnal pattern of cortisol secretion was preserved but peak amplitude and quiescent 

periods of cortisol secretion were reduced [25]. Similarly, aging was shown to increase 

basal HPA-axis activity and decrease diurnal variation in a study of healthy subjects (23–85 

years of age). There were significant age-associated increases in minimum and mean cortisol 

plasma concentrations and shortening of the evening cortisol quiescent period, suggesting 

progressively impaired circadian function with higher basal activity and a flattening of the 

diurnal amplitude of the HPA axis with increasing age [26].
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Furthermore, the effect of aging on the HPA-mediated response to stress is not completely 

understood. In a metanalysis comparing younger (average age of 28 years) with older 

subjects (average age of 69 years), a greater cortisol response to a stimulatory test or 

less decline after a suppression test was shown in older subjects[5]. Interestingly, other 

studies have shown similar cortisol profiles in younger and older subjects after stress[27]. 

Furthermore, aging affects the HPA axis sensitivity to the negative feedback of cortisol 

secretion. To study this negative feedback, Boscaro and colleagues [28] studied the ACTH 

and cortisol suppressibility by an infusion of hydrocortisone in healthy older men (65 – 99 

years old) and young men (18 – 26 years old). Despite a similar cortisol response in both 

study groups, the older group displayed an insignificant decline of ACTH levels during the 

first 15 minutes after hydrocortisone infusion, whereas the young controls demonstrated a 

marked decrease in ACTH levels within 15 minutes. In contrast, older subjects exhibited a 

significant decline from 15 to 60 minutes after hydrocortisone infusion compared to a less 

pronounced decline in younger subjects. In addition, studies comparing the diurnal rhythm 

of serum cortisol secretion before and after dexamethasone administration demonstrated 

that older subjected were more likely not to respond (serum cortisol levels > 5 mcg/dL the 

morning following dexamethasone administration)[29], compared to healthy young controls, 

highlighting the role of aging in impaired HPA sensitivity to negative cortisol feedback. It 

is possible that the failure of cortisol to suppress with dexamethasone in some older adults 

could in part be attributed to the increasing prevalence of autonomous cortisol-producing 

adenomas with increasing age. Mild cortisol secretion is seen in 50% of patients with 

adrenal cortical adenomas and fails to suppress with dexamethasone [30]. Recognizing 

such patients among the aging population is crucial, as mild autonomous cortisol secretion 

has been linked to cardiovascular disease, diabetes, osteopenia, osteoporosis, and overall 

mortality [30, 31].

Finally, there is likely an interaction between sex and aging on adrenal function. While 

several studies focusing on animals have shown that cortisol levels are higher in females 

compared to males after HPA axis stimulation, these data are not consistent in humans[32, 

33]. In aging human populations, exposure to a stress task has shown higher ACTH/cortisol 

in males [34, 35], while other studies demonstrated higher cortisol response in females[36]. 

In contrast, studies that included individuals from all age groups showed no sex differences 

in cortisol response to a stress task among young adults and children[37]. Most recently, in 

a study by Lanfear et al., hair cortisol concentrations were higher in aging males compared 

to females[38], while a study by Dettenborn et al. suggested that men display higher cortisol 

levels compared to women, regardless of their age[39]. These sex differences in production 

and excretion of cortisol and its metabolites have been linked to sex differences in 11 

beta hydroxysteroid dehydrogenase (11β-HSD) activity in females compared to men[40]. 

However, the precise mechanism of this sex dimorphism is unknown. Additionally, the 

effect of sex on the association of cortisol awaking response and DNA damage (evaluated 

by telomere length) was recently studied[41]. Telomere length decreases with aging and 

is a marker of cellular aging and senescence. While higher levels of cortisol awaking 

response were associated with longer telomere length in males, the opposite was observed 

in females, suggesting that the response to stress and its consequences in cellular aging 

differs between sexes[41]. More studies on the effect of sex in adrenal aging and cellular 
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senescence are required to fully understand the biological and cellular pathways controlling 

those differences.

B) Changes in aldosterone secretion: Aldosterone secretion from the adrenal cortex 

declines with aging in both sexes [3]. When urinary plasma aldosterone levels were studied 

in healthy older subjects (>50 years of age) compared to younger individuals (<30 years of 

age), in an upright position, older individuals were noted to have lower plasma aldosterone 

concentration compared to younger subjects that were studied both before and after sodium 

depletion [3]. The secretion rates of aldosterone in aging subjects appears to be lower than 

those of young subjects mainly due to a decrease in the RAAS activity [42]. On the other 

hand, while an endogenous decrease in aldosterone secretion is observed with aging, the 

incidence of aldosterone-producing cell clusters increases in the same population and these 

may manifest as secondary hypertension[43].

C) Changes in adrenal androgen secretion: Changes in DHEAS—DHEA and 

DHEAS secretion decreases profoundly during aging[2]. DHEA(S) levels appear to be 

low in infancy and childhood, rise during adrenarche and reach their peak in the third 

decade, after which a decline of 1–2% per year is noted. As a result by the age of 70–80 

years, levels are 20–30% of the lifetime peak concentration[4]. Interestingly, despite the 

numerous studies showing the positive effects of DHEAS on inflammation, sexual function, 

body composition, insulin resistance, bone metabolism, physical strength, and cognitive 

function[44], clinical trial data have not showed any benefits of DHEA therapy for any those 

outcomes[45].

D) Changes in catecholamine production with aging—Studies in mice have 

shown that aging leads to an increase in dopamine levels but a decline in epinephrine 

production in the mouse adrenal gland[46]. Similarly, human studies suggest that basal 

secretion, response to acute stress and clearance of epinephrine are all lower with increasing 

age[47]. Investigations suggest that the mechanism of reduced stress-induced epinephrine 

release is due to changes in calcium channel function at a cellular level[48]. This decrease 

in catecholamine production appears to be protective for aging individuals, as higher 

sympathetic activation (measured by urinary catecholamine excretion) has been linked to 

higher mortality and functional decline in healthy aging individuals[49].

(iii) The HPA axis and immunosenescence

Immunological changes observed during aging are known as immunosenescence. As already 

discussed, over-activation of the HPA axis can affect the susceptibility to infectious diseases, 

and in contrast, blunted HPA axis responses are associated with autoimmune states [50]. 

Thus, it has been suggested that changes in HPA axis and overall adrenal function that can 

occur in older individuals may be related to the decline in immune responses seen with 

aging.

Several mechanisms have been suggested by which adrenal aging may have 

immunomodulatory effects. Elevated cortisol levels that occur with aging have been shown 

to alter T-cell trafficking, and exogenous glucocorticoids can induce apoptosis of both 
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monocytes and T-cells[6]. Those data are also supported by the fact that healthy older 

patients who demonstrate increased HPA axis activation also have significantly lower T-cell 

proliferation[51]. In addition, the thymic involution that is a common consequence of aging 

has also been observed after glucocorticoid treatment[6], suggesting that the age-related rise 

in cortisol could be playing a role in the weakened immune response that is observed after 

the thymic involution.

Furthermore, DHEA is an important immunomodulator, although the mechanisms by 

which DHEA may modulate several immune responses are not completely understood. 

DHEAS has been shown to stimulate IL2 production from CD4+ cells, suggesting of an 

immunostimulatory effect of this hormone[52]. Importantly, it has been hypothesized that 

the immunomodulation occurring during aging is the result of the countereffects of cortisol 

and DHEAS on the expression levels of the receptor for activate C Kinase 1 (RACK-1), 

an important scaffold protein for immune function[53]. In summary, as shown in Figure 3 

the age-related increase in cortisol in combination with the decrease in DHEA(S) appear to 

contribute to the immunosenescence observed in older subjects and may partly explain the 

increased risk for infection and inflammatory diseases that is observed with aging.

Finally, as aging is linked to menopause in females, changes in the immune response can be 

linked to hypothalamic/gonadal changes that occur in the post-menopausal state. It is known 

that menopause is associated with multiple changes in the immune response. Interestingly, 

menopausal hormone therapy has been shown to rescue the decrease in B-cell production 

and the CD4/CD8 ratio[54, 55] and reduce the increased levels of IL-6 in postmenopausal 

women[56]. In contrast, other studies have not shown a beneficial effect of menopausal 

hormone therapy on immunosenescence [57]. Thus, given the lack of studies in this field, 

further investigation is required to understand the mechanisms of immunosenescence and the 

role of hypothalamic, adrenal and gonadal hormones on those biological pathways.

(iv) HPA changes with aging: effects on body composition, metabolic changes, bode 
density and cognition

Body composition and metabolic changes: Loss of lean muscle mass and increased 

visceral adiposity are observed with aging. It is possible that hypercortisolemia observed 

in the aging population could be associated with the body composition changes[58] and 

adverse metabolic effects, including insulin resistance and diabetes[59]. In addition, decline 

in the levels of DHEAS may contribute to body composition and metabolic changes. In 

animal models DHEAS can stimulate lipolysis by increasing PPARγ and adiponectin levels 

while leptin levels decrease contributing to overall improvement of insulin sensitivity[60]. 

In addition, lower DHEAS levels in postmenopausal women have been linked to worsening 

cardiovascular outcomes[61] with other studies not finding an association[62]. Importantly, 

DHEA/S have been shown to prevent the progression of the atherosclerotic plaque and 

have a direct effect on cardiomyocytes and vascular smooth muscle cell remodeling[63]. 

These data suggest a potential adrenal component to the metabolic and cardiovascular 

consequences of aging[63]. Further studies are required to explore the role of adrenal 

hormones as potential therapeutic agents for the cardiovascular and metabolic diseases that 

accompany aging.
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Bone density: Aging has been associated with a decrease in bone mass and is a risk factor 

for osteopenia, osteoporosis and fractures [64]. The presence of glucocorticoid receptors 

in bone cells result in susceptibility to cortisol excess and higher cortisol levels during 

aging may inhibit new bone formation via osteoblast stimulation and osteocytes apoptosis as 

well as suppression of new osteoblast formation [65]. In addition, the decrease in DHEAS 

occurring with aging has been linked to osteoporosis. In a 25 year longitudinal study of 1003 

subjects, it was shown that higher baseline DHEAS levels were linked to lower bone loss in 

a 15-year follow up time [66]. These data were similar to results of a prior study reporting 

a link between low serum DHEAS levels and a higher risk of non-vertebral fractures in 

aging men[67]. Hence, the role of cortisol and DHEAS changes with aging may have a 

direct effect on bone mineral density decline and the mechanisms of this process warrant 

additional studies.

Cognition: Changes of neurocognitive function in older people have previously been 

associated with HPA axis alterations that become evident with age. High cortisol release 

after stress has been linked to cognitive impairment [68] A study of 1337 adults over 

60 years of age demonstrated that higher salivary cortisol was associated with lower 

cognitive function. Cortisol appeared to modulate the interaction of inflammatory markers 

and cognition in older individuals. For example, the slope of the association between 

increasing IL-6 and poorer cognition was steeper in individuals with lower cortisol levels 

[69]. Importantly, a recent systematic review and metanalysis demonstrated that higher 

nighttime control was associated with worse cognitive ability, while a larger diurnal drop 

and higher cortisol awaking response were associated with better cognition[70]. Consistent 

with these findings, a flatter diurnal cortisol slope has been linked to poor emotional and 

physical health [71, 72]. Thus, preliminary evidence suggests cortisol levels in aging adults 

can affect cognitive function.

Conclusions

Aging is a pervasive process to which the adrenal glands are not immune. Changes with 

aging have been demonstrated in the three cortical adrenal zones. As discussed in this 

review, aging has been associated with higher mean cortisol levels and reduced sensitivity 

to negative cortisol feedback as well as reductions in aldosterone and DHEA(S) secretion. 

Given the importance of adrenal function in maintaining physiologic homeostasis and stress 

response, altered HPA axis function with aging may contribute to age-related changes in 

metabolic and immune function. Further study into these complex processes is warranted to 

understand mechanisms driving changes to adrenal function with aging and to explore how 

healthy aging can be promoted by further understanding of the impact of these changes.
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Highlights

• Aging is linked to higher mean cortisol levels.

• During aging, the sensitivity of the hypothalamic-pituitary-adrenal (HPA) axis 

to negative cortisol feedback decreases.

• Aging is associated with reduced aldosterone and DHEA(S) secretion.

• Altered HPA axis function with aging may contribute to age-related changes 

in metabolic and immune function.
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Figure 1: 
Flowchart of the review search results
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Figure 2: 
Hypothalamic-pituitary-adrenal (HPA) axis response to stress and inflammation.

As a response to stress CRH is produced at the hypothalamic level stimulating ACTH 

production in the pituitary, that in turn leads to increase release of cortisol from the adrenal 

glands. The HPA axis is also activated in response to inflammation both at the hypothalamic 

or the pituitary level. (Figure created in biorender.com)
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Figure 3: 
The effect of adrenal function changes with aging on immunomodulation

Elevated cortisol levels that occur with aging have been shown to alter T-cell trafficking, 

monocyte and T cell apoptosis and thymic involution, whereas the decrease that is seen the 

DHEAS levels with aging can lead to altered secretion of interleukins, including IL-2 and 

IL-6 (Figure created in biorender.com)
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Table 1:

Changes of the Hypothalamic-pituitary adrenal axis and adrenal hormone production with aging.

Changes with Aging

Cortisol production ↑

HPA axis diurnal variation ↓

Cortisol negative feedback ↓

Aldosterone production ↓

DHEA(S) production ↓
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