
Topological Knowledge Distillation for Wearable Sensor Data

Eun Som Jeon,
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer 
and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA

Hongjun Choi,
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer 
and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA

Ankita Shukla,
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer 
and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA

Yuan Wang,
Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208 
USA

Matthew P. Buman,
College of Health Solutions, Arizona State University, Phoenix, AZ 85004 USA

Pavan Turaga
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer 
and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA

Abstract

Converting wearable sensor data to actionable health insights has witnessed large interest in recent 

years. Deep learning methods have been utilized in and have achieved a lot of successes in various 

applications involving wearables fields. However, wearable sensor data has unique issues related 

to sensitivity and variability between subjects, and dependency on sampling-rate for analysis. 

To mitigate these issues, a different type of analysis using topological data analysis has shown 

promise as well. Topological data analysis (TDA) captures robust features, such as persistence 

images (PI), in complex data through the persistent homology algorithm, which holds the promise 

of boosting machine learning performance. However, because of the computational load required 

by TDA methods for large-scale data, integration and implementation has lagged behind. Further, 

many applications involving wearables require models to be compact enough to allow deployment 

on edge-devices. In this context, knowledge distillation (KD) has been widely applied to generate 

a small model (student model), using a pre-trained high-capacity network (teacher model). In this 

paper, we propose a new KD strategy using two teacher models – one that uses the raw time-series 

and another that uses persistence images from the time-series. These two teachers then train a 

student using KD. In essence, the student learns from heterogeneous teachers providing different 

knowledge. To consider different properties in features from teachers, we apply an annealing 
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strategy and adaptive temperature in KD. Finally, a robust student model is distilled, which utilizes 

the time series data only. We find that incorporation of persistence features via second teacher 

leads to significantly improved performance. This approach provides a unique way of fusing 

deep-learning with topological features to develop effective models.
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I. INTRODUCTION

Wearable sensor data analysis has become increasingly important in various fields such as 

health and wellness promotion, smart homes, and also intelligent surveillance [1]. Deep 

learning methods have been utilized to analyze wearable sensor data and have achieved great 

successes [1]. However, analysis of wearable sensor data suffers from particular issues due 

to inter and intra-person variability, dependency on temporal segmentation method, and also 

on the sampling rate of the sensors [2]. To mitigate these issues, invariant features captured 

by topological data analysis (TDA) have been proposed and have also shown to be effective 

in stand-alone ways [2].

TDA has been used to characterize the shape of complex data with persistence of connected 

components and high-dimensional holes decoded by the persistent homology (PH) algorithm 

[3]. The persistence information can be represented by features such as persistence diagram 

(PD) and persistence image (PI) [4]. Topological properties are invariant under data 

deformations such as stretching, bending, and rotation [3], which grants TDA the robustness 

needed to deal with noisy signal problems and time series data analysis [5]. TDA has 

been combined with machine learning methods to achieve significant results in time series 

forecasting [6], stock market analysis [7], [8], disease classification [9], [10], and texture 

classification [3]. However, TDA requires computational memory and time consumption to 

extract persistence features from large-scale time series [11], which hinders implementation 

on small devices with limited computational power.

On the other hand, knowledge distillation (KD) is a promising technique to generate smaller 

and efficient models (student) by leveraging the learned knowledge from a larger model 

(teacher) [12]–[14]. During KD, a teacher transfers the knowledge to a student to get 

the performance as the teacher. It has been applied in wearable sensor data analysis [15] 

and image classification [11]. Recent studies in KD explore utilizing multiple teachers to 

generate a better student; to distill a better student, multiple teachers are used with the same 

data (multi-teacher distillation) [13], [16]–[18]. However, different teachers can generate 

a ‘knowledge gap’, and there is a chance that data used for training a teacher cannot be 

utilized to train a student.

In this paper, we propose a new KD strategy to produce an improved student by combining 

TDA with KD, which alleviates the problem of requiring large computational time and 

resources for extracting topological features. As described in Figure 1, the proposed method 

results in a student model that utilizes more informative properties from a diverse set of 
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teachers – the teachers themselves are learned from the time-series data and their PIs 

separately. Firstly, to utilize topological features, PIs are obtained from PDs by TDA. 

We train two separate teachers with the generated PIs and the original time-series data, 

respectively. Secondly, a student model, that only uses the time-series data as input, is 

trained by KD from these two teachers. To account for the fact that the teachers have 

heterogeneous properties, an annealing strategy with adaptive temperature is applied during 

KD. In this annealing strategy the student model initializes its weights to a model learnt 

from scratch, instead of random initialization. This helps in reducing the search-space to 

facilitate fast saturation, and mitigates the knowledge gap between teachers and the student. 

If not mitigated, this gap can be a hindrance for distillation, since they are trained with 

different data. Further, to consider different contributions from teachers in the KD loss 

function, instead of using a fixed temperature value, adaptive temperature values are applied, 

which are computed from the standard deviation of logits from each network. Finally, a 

robust and small model is distilled from the proposed method, which uses only the raw 

time-series data as its input.

The contributions of this paper are as follows:

• We propose a strategy for knowledge distillation transferring topological features 

of time-series data to a compact student model.

• We develop a technique to reduce the statistical gap in logits between teachers 

and student for improved knowledge transfer. We present an annealing strategy 

with adaptive temperature with multiple teachers.

• We show superior empirical results of the proposed method with various teacher-

student combinations on wearable sensor data.

II. BACKGROUND

A. Topological Feature Extraction

TDA has shown robust performance for providing novel insight on the shape of complex 

data in various fields [4], [5], [7], particularly in machine learning applications [6], [7], [11]. 

As a key TDA algorithm, persistent homology tracks the changes in topological cavities of 

different dimensions in data object represented by assortments of points, edges, and triangles 

through a dynamic thresholding process called filtration [19]. The birth and death of these 

topological cavities during the filtration are summarized in persistence features, such as 

persistence diagram (PD) that encodes the birth and death times as x and y coordinates of 

planar scatter points. Incorporating PDs directly in machine learning models is challenging 

due to their heterogeneous nature, meaning that the number and locations of the scatter 

points are not fixed and can vary at the presence of slight perturbations on the underlying 

data. Ordering the scatter points according to their persistence, or lifetime, through the 

filtration provides a way of vectorizing the PDs.

Persistence image (PI) is a vector representation of PD motivated as such [4]. To construct 

the PI, PD is first mapped to a persistence surface ρ:ℝ ℝ2, defined by a weighted sum of 

Gaussian functions centered at the scatter points in the PD. The persistence surface is then 
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discretized, resulting in a grid. PI is obtained by integrating the persistence surface over the 

grid and represented with a matrix of pixel values. Higher values of the PI correspond 

to high-persistence points in the PD. The example of a PD and its corresponding PI 

are illustrated in Figure 2. However, because of requirements for large memory and time 

consumption to extract PIs from large-scale signals [11], it is difficult to utilize this method 

on small devices having limited power and computational resources. In this paper, to solve 

the problem, we propose a method in knowledge distillation, which trains a smaller model 

with topological features and generates good performance as a larger model.

B. Knowledge Distillation

Knowledge distillation trains a smaller model by transferring the knowledge from a larger 

model. KD was first introduced by Buciluă et al. [20] and developed further by Hinton et 
al. [12]. KD utilizes soft labels from the outputs of a teacher network, which have richer 

information than just a hard label. Using soft labels helps the student network more easily 

encode the knowledge from the teacher. For standard KD, the loss function for training a 

student is:

ℒ = 1 − λ ℒC + λℒK, (1)

where ℒC is the standard cross entropy loss, ℒK is KD loss, and λ is a hyperparameter; 0 

< λ < 1. The error between the ground-truth label and the output of the softmax layer for a 

student network is penalized by the cross-entropy loss:

ℒC = ℋ softmax lS , y , (2)

where, ℋ ⋅  is a cross entropy loss function, lS is the logits of a student, and y is a ground 

truth label. The outputs of student and teacher are matched by KL-divergence loss:

ℒK = τ2KL pT, pS , (3)

where, pT = softmax lT /T  is a softened output of a teacher network, pS = softmax lS/T  is 

a softened output of a student, and τ is a hyperparameter; τ > 1. Vanilla KD uses a fully 

trained teacher. Cho et al. [14] explored the effects of early stopping for KD (ESKD) to 

train teacher and student. To obtain the best performance, we adopt early stopping for KD 

(ESKD) which improves the efficacy of KD [14].

Recently, many approaches for multi-teacher knowledge distillation have been proposed 

[13], [16]–[18], [21], [22]. The benefit of using multiple teachers is that they can provide 

different types of useful knowledge to distill a better student. Features from teachers can 

be used individually or integrated for training a student. In general, since different teachers 

represent diverse knowledge, richer knowledge can be transferred to a student. On the other 

hand, there is a possibility that a data point or label used for training a teacher cannot 

be utilized to train/test a student. Thoker and Gall [23] proposed a method for action 

recognition in KD to train a student by using paired samples from two modalities. This 

motivates us to develop and explore similar ideas using topological features involving two 

teachers. The details of the proposed method are explained in section III.
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C. Annealing in KD

Simulated annealing, first introduced by Kirkpatrick et al. [24], has been applied to 

various fields for solving optimization problems [25]. Clark et al. [26] presented born-again 

multitask networks (BAM) utilizing a few single-task teachers to distill a multi-task student 

network. A dynamic weighted mixture of teacher prediction and ground truth are used for 

training a student in KD. Early in training, the student model is mostly trained by the 

teacher, and later, it is mostly trained by hard labels. Annealing KD [27] introduced two 

stages for KD to solve the capacity gap problem between outputs of teacher and student 

networks. In the first stage, a temperature parameter decreases as the epoch number grows 

while the logits of the teacher and student models are matched in a regression task. In 

stage 2, the student is fine-tuned with the hard labels and standard cross entropy loss. Our 

annealing strategy in KD uses a different approach compared to prior studies [26], [27]. 

The proposed method has two teachers that are trained with different data (time-series and 

persistence-image data) and only one task is learned by the student. Thus, the characteristics 

of features from teachers are different and their contributions are not the same. To consider 

their different outputs and contribution, we apply an annealing strategy in the proposed 

method that reduces the search space and helps for fast saturation, leveraging weights of a 

network trained from scratch. Also, our method mitigates the gap between outputs of the 

teachers and student during KD.

III. PROPOSED METHOD

The proposed method utilizes two teachers trained from different representations of the same 

data to distill a better student. First, we extract PIs from time-series data (wearable sensor 

data). We then train two teachers – one with the raw time-series, and another with the 

obtained PIs, respectively. Then, to apply annealing strategy, we train a small sized model 

with learning from scratch, which has the same size as the student. Finally, a student model 

is trained by an annealing strategy and adaptive temperature for KD, considering differently 

activated features from teachers.

A. Extracting Persistence Images from Wearable Sensor Data

Leveraging topological features can provide complementary information to improve 

performance in machine learning. To train a model performing with topological features, 

we first generate PIs to be used as an input data. We use Scikit-TDA python library [28] 

and the Ripser package for producing PD. Level-set filtration PDs for time-series signals 

are computed by the library. Scalar field topology provides a summary for different peaks 

in the signal. We compute PDs for x, y, z components of the inertial sensor signals in the 

GENEactiv dataset. We generate PIs, considering its birth-time vs. lifetime information. We 

set the grid size of the PIs to 64×64 and the parameters for the Gaussian function in PD are 

the same as reported in Som et. al. [11]. The generated PIs resolution is 64×64×3. A model 

is trained with PIs in supervised mode for classification. Finally, we utilize the topological 

features as knowledge from this trained teacher to distill a student.

Jeon et al. Page 5

Conf Rec Asilomar Conf Signals Syst Comput. Author manuscript; available in PMC 2023 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Knowledge Distillation with Multiple Teachers

Topological features in and of themselves have been shown to have favorable and also in 

fusion with other features [3], [7], [10], [11]. However, at test-time, generating PIs from test 

data adds to computational burden. Our approach results in indirect fusion of topological 

information via distillation, in a way that at test-time the needed network only operates 

on raw time-series data, and enjoys low computational load. This approach also avoids the 

need for concatenation or other hidden layers, for merging the teachers are not necessarily 

required. This is achieved by knowledge distillation from two teachers simultaneously, 

trained with time series data and PIs, respectively. To leverage features from two teachers, 

KL-divergence loss can be written as:

ℒKm = τ2 αKL pT1, pS + 1 − α KL pT2, pS , (4)

where α is a parameter to balance the loss values from different teachers, and pT1 and pT2 are 

softened outputs of teachers trained with time series data and PIs, respectively.

C. Annealing Strategy for Distillation from Multiple Teachers

Since teachers and student are trained with different inputs, features (logits) of teachers 

have different statistical properties from the one of student. Also, their architectures are 

different from the student. These differences can create a knowledge gap, which can effect 

the training of a student [13], [27]. We apply an annealing strategy in KD to reduce the 

knowledge gap. We train a small model from scratch with the raw time-series data, whose 

architecture is the same as a student. To start training with KD, student is initialized with the 

weights of the pre-trained model.

D. Adaptive Temperature for KD

The conventional KD uses fixed temperature τ in the KL-divergence loss term for matching 

the outputs of student and teacher. However, teachers learned with different data produce 

differently activated outputs and contributions for each sample to train a student. To consider 

their different contributions and properties in features, we apply an adaptive temperature 

using standard deviation for the logit:

p′ = softmax l ⋅ m/σ l , (5)

where, l is a logit, p′ is a softened output, m is a constant for scaling, and σ ⋅  is 

standard deviation of the input logit. The outputs p′ are obtained for teachers and student, 

respectively. Then, KL-divergence loss is modified as:

ℒka = τ2 αKL p′T1, p′S + 1 − α KL p′T2, p′S , (6)

where p′T1 and p′T2 are outputs from teachers, and p′S is an output from a student. By 

this, the outputs from the teachers and student are re-scaled respectively, and mapped to 

similar ranges while the relationship in-between classes is preserved. Therefore, applying 

the adaptive temperature also helps to reduce the statistical gap between teacher and student 

and improve the performance. The softened output of the student p′S is used with ground 
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truth for calculating cross-entropy loss ℒCa. Finally, the loss function for training the student 

is:

ℒa = 1 − λ ℒCa + λℒKa . (7)

IV. EXPERIMENTS

In this section, we describe dataset and settings for experiments. We evaluate the proposed 

method with various teacher-student combinations on wearable sensor data.

A. Data Description and Experimental Settings

Data description.—We perform experiments on GENEactiv [29] which is a wearable 

sensor based activity dataset. We used 14 daily activities, described in detail in a prior study 

[15]. Each class has over 900 data samples with non-overlapping subjects. The number of 

subjects for training and testing are over 130 and 43, respectively. We use the data for full 

non-overlapping window size of 500 time-steps (5 seconds). The number of samples for 

training and testing are approximately 16k and 6k, respectively.

Experimental settings.—For training a model with time series data, we set the batch size 

as 64, the total epochs as 200 using SGD with momentum 0.9, a weight decay of 1 × 10−4, 

and the initial learning rate lr as 0.05 drops down by 0.2 at 10 epochs and drops down by 0.1 

every [ t
3 ] where t is the total number of epochs. For training a model with image data, we set 

the batch size as 64, the total epochs as 200 using SGD with momentum 0.9, a weight decay 

of 1 × 10−4, and the initial learning rate lr as 0.1 drops down by 0.5 at 10 epochs and drops 

down by 0.2 at 40, 80, 120, and 160 epochs.

In experiments, we use WideResNet (WRN) [30] to construct teacher and student models for 

evaluating the performance of the proposed method, which is popularly used for KD [14], 

[15]. The model for training with time-series data consists of 1D convolutional layers. On 

the other hand, the one with PIs consists of 2D convolutional layers. We determine optimal 

parameters τ as 4 and λ as 0.7 for KD, following from the previous study [15]. We set a 

constant m for KL-divergence and cross-entropy as 2 and 1, respectively. α is set as 0.7 to 

obtain the best result. We run the test 3 times and report with the averaged accuracy and 

standard deviation for the following experiments.

B. Effect of Teacher Capacity

In this section, we explore the performance of the proposed method with different capacity 

of teachers. We trained models to be used as teacher models with time-series data and PIs, 

respectively.

Table I: summarizes the accuracy of various knowledge distillation methods for different 

combinations of teachers and students. Note, “Time series” and “PImage” denote results of 

the model trained by KD with Teacher1 trained with time-series data and Teacher2 trained 

with PIs, respectively. “TS”, “AdTemp.”, and “Ann.” denote using a teacher trained with 
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time series data, adaptive temperature, and annealing strategy, respectively. The numbers 

in brackets imply trainable parameters of the model and accuracy, respectively. As shown 

in the table, our method (TS+PImage with Ann.+AdTemp.) achieves the best performing 

results in all cases. When teachers from time-series and PIs are used together for distillation, 

even the basic model performs better than a model trained by learning from scratch and KD 

with time-series data alone. The results support the idea that annealing strategy and adaptive 

temperature help improving the performance. Also, using smaller teachers distills a better 

student, corroborating previous observations [14].

C. Effect of Teacher Combinations

To understand the effect of different teacher architectures, we tested various combinations 

of two teachers to train a student, considering different channel and depth of networks 

for WRN. As shown in Table II, in most cases, the proposed method achieves the best 

results. This further shows that the proposed method helps in improving performance. When 

WRN16-3 for Teacher1 and WRN28-1 for Teacher2 are used, our method generates a 

student performing at 71.38% in classification accuracy, that is 3.72% points higher than 

learning from scratch. Also, the result is better than using teachers with the same depth or 

width in Table I. In most cases, in Table II, the difference in results from using adaptive 

temperature is much larger than results in Table I. This is because different teachers generate 

different features, and create larger knowledge gap between teachers and a student [13], 

[27]. The results verify that an annealing strategy and adaptive temperature mitigate the 

knowledge gap and complement to distill a better student.

D. Computational Time

We compare the computational time for various models on the GENEactiv dataset. We 

implemented the test on a desktop with a 3.50 GHz CPU (Intel® Xeon(R) CPU E5-1650 

v3), 48 GB memory, and NVIDIA TITAN Xp (3840 NVIDIA® CUDA® cores and 12 GB 

memory) graphic card. We tested approximately 6k samples with a batch size of 1. In Table 

III, the considered accuracies are the best ones from Table I and II. Due to the time needed 

for generating PIs on CPU, a model learnt from scratch with PIs takes the largest amount 

of time among the models compared in the table. A WRN16-1 (1D CNNs) student from 

the proposed method takes the lowest time and shows the best accuracy. The result of CPU 

underlines the reason why a model compression method such as KD is required for running 

on edge devices having limited power and computational resources.

V. CONCLUSION

In this paper, we proposed a strategy in knowledge distillation leveraging topological 

representations on wearable sensor data, reducing the knowledge gap between the teacher 

and student by an annealing strategy and adaptive temperature. The proposed method 

showed more accurate and efficient performance in classification than baselines, and could 

be significant in various applications on edge devices. In future work, we plan to explore 

the effect of transferring the topological knowledge from intermediate layers. We also would 

like to investigate if using more diverse teachers learned with different images (e.g. Gramian 

Angular Field based images) encoded by time series data would yield a better student.
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Fig. 1: 
An overview of the proposed method. Two teachers learned with different representations of 

the same raw data are utilized to train a student model.
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Fig. 2: 
PD and its corresponding PI. In PD, higher life-time appears brighter.
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TABLE I:

Accuracy (%) with various knowledge distillation methods for different combinations of teachers and students.

Teacher1
(1D CNNs)

WRN16-1
(0.06M, 67.66)

WRN16-3
(0.5M, 68.89)

WRN28-1
(0.1M, 68.63)

WRN28-3
(1.1M, 69.23)

Teacher2
(2D CNNs)

WRN16-1
(0.2M, 58.64)

WRN16-3
(1.6M, 59.80)

WRN28-1
(0.4M, 59.45)

WRN28-3
(3.3M, 59.69)

Student
(1D CNNs)

WRN16-1
(0.06M, 67.66±0.45)

Time series 69.71±0.38 69.50±0.10 67.59±0.36 68.01±0.67

PImage 67.83±0.17 68.76±0.73 68.51±0.01 68.46±0.28

TS+PImage

Base 69.09±0.37 69.24±0.62 69.55±0.41 69.42±0.58

AdTemp. 69.80±0.68 70.10±0.39 70.01±0.83 69.55±0.51

Ann. 70.15±0.03 70.71±0.12 70.44±0.10 69.97±0.06

Ann.+AdTemp. 70.33±0.09 70.86±0.07 70.89±0.12 70.02±0.16
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TABLE II:

Accuracy (%) with various knowledge distillation methods for different structure of teachers.

Teacher1
(1D CNNs)

Teacher2
(2D CNNs)

Student
(1D CNNs)

TS+PImage

Base AdTemp. Ann. Ann.+AdTemp.

WRN16-1 (0.06M, 
67.66)

WRN28-1 (0.4M, 
59.45) WRN16-1 (0.06M 

67.66)

68.71±0.04 69.42±0.56 69.95±0.05 70.29±0.11

WRN28-1 (0.1M, 
68.63)

WRN16-1 (0.2M, 
58.64) 67.89±0.27 69.87±0.55 70.34±0.14 71.07±0.05

WRN28-1 (0.1M, 
68.63)

WRN28-3 (3.3M, 
59.69)

WRN16-1 (0.06M 
67.66)

68.25±0.13 69.71±0.22 70.28±0.08 70.49±0.17

WRN28-3 (1.1M, 
69.23)

WRN28-1 (0.4M, 
59.45) 69.09±0.59 69.30±0.29 69.95±0.07 69.80±0.09

WRN28-1 (0.1M, 
68.63)

WRN16-3 (1.6M, 
59.80)

WRN16-1 (0.06M 
67.66)

68.04±0.24 69.30±0.13 70.28±0.13 70.61±0.15

WRN16-3 (0.5M, 
68.89)

WRN28-1 (0.4M, 
59.45) 68.87±0.08 70.34±0.54 70.69±0.03 71.38±0.05

WRN16-1 (0.06M, 
67.66)

WRN28-3 (3.3M, 
59.69) 68.15±0.23 68.79±0.25 69.65±0.04 70.15±0.11
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TABLE III:

Processing time of various models on GENEactiv.

Model

Learning from scratch KD Ours
(Ann.+AdTemp.)

TS (1D)
WRN28-3

PImage (2D)
WRN16-3

TS PImage TS+PImage

WRN16-1 (1D CNNs)

Accuracy 69.23 59.8 69.71 68.76 71.38

GPU (sec) 29.94 356.92 (PIs on CPU)+13.63 (model) 15.23

CPU (sec) 1977.89 356.92 (PIs on CPU)+11191.45 (model) 16.66
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