Skip to main content
. 2023 Jul 31;14:1187573. doi: 10.3389/fpls.2023.1187573

Table 3.

Supervised machine learning approaches in plant electrochemical impedance spectroscopy.

Description Type Algorithm Metric Performance Size Year Ref
Apple mouldy core Classification SVM Accuracy 0.94 98 2016 (Yu et al., 2016)
Avocado ripeness Classification SVM Accuracy 0.90 100 2018 (Islam et al., 2018)
Grapefruit freeze damage Classification MLP Accuracy 1.00 180 2022 (Romero Fogué et al., 2022)
Lemon freeze damage Classification MLP Accuracy 1.00 10 2019 (Ochandio Fernández et al., 2019)
Oil palm basal stem rot Classification LDA Accuracy 0.86 240 2022 (Khaled et al., 2022)
Olive variety Classification MLP Accuracy 1.00 90 2020 (Luna et al., 2020)
Orange freeze damage Classification MLP Accuracy 1.00 270 2018 (Serrano-Pallicer et al., 2018)
Plant tissue discrimination Classification MLP Accuracy 1.00 100 2020 (Cavalieri and Bertemes-Filho, 2020)
Rice seed vigor Classification LDA Accuracy 0.90 100 2021 (Feng et al., 2021)
Strawberry ripeness Classification MLP F1 0.72 923 2021 (Ibba et al., 2021)
Strawberry ripeness Classification MLR Accuracy 0.773 150 2017 (González-Araiza et al., 2017)
Tangerine freeze damage Classification MLP Accuracy 1.00 270 2021 (Aparisi et al., 2021)
Tomato ripeness Classification LDA Accuracy 0.88 240 2019 (Li et al., 2019)
Wood chips Classification KNN Accuracy 0.91 NA 2020 (Tiitta et al., 2020)
Apple moisture content Regression PLS R 2 0.88 140 2018 (Reyes et al., 2018)
Apple soluble solids content Regression ELM R 2 0.908 160 2015 (Guo et al., 2015)
Banana soluble solids content Regression LR R 2 0.716 90 2014 (Jamaludin et al., 2014)
Crop leaf nitrogen content Regression MLR R 2 0.94 111 2020 (Basak et al., 2020b)
Date acidity Regression MLP R 2 0.938 800 2022 (Mohammed et al., 2022)
Durian dry matter content Regression PLS RMSE 4.63% 120 2013 [Kuson and Terdwongworakul, 2013]
Korla pear hardness Regression NFS R 2 0.911 61 2022 (Yu et al., 2022)
Korla pear soluble solids content Regression GRNN R 2 0.974 300 2020 (Lan et al., 2020)
Leaf moisture content Regression MLR R 2 0.959 28 2021 (Hao et al., 2021)
Lettuce Chlorophyll content Regression MLR RMSE 1.05 μg/L 70 2021 (Chowdhury et al., 2021)
Lime moisture content Regression PLS R 2 0.934 82 2016 (Huong and Teerachaichayut, 2016)
Melon sugar content Regression ELM R 2 0.887 480 2021 (Liu et al., 2021b)
Palm fruitlet oil content Regression LR RMSE 5.71% 90 2022 (Chin-Hashim et al., 2022)
Peach firmness Regression CART RMSE 1.59 N 200 2022 (Ivanovski et al., 2022)
Peach firmness Regression LR MSE 0.67 200 2020 (Ivanovski et al., 2020)
Persimmon soluble solids content Regression LS-SVM RMSE 0.97°Brix 105 2017 (Liu and Guo, 2017)
Pineapple sugars content Regression MLP R 2 0.973 54 2016 (Conesa et al., 2016)
Sea buckthorn soluble solids Regression MLR R 2 0.648 NA 2022 (Li et al., 2022)
Sweet potato moisture content Regression PLS R 2 0.44 80 2018 (Reyes et al., 2018)
Tomato leaf nitrogen content Regression MLR R 2 0.8374 35 2017 (Meiqing et al., 2017)
Tomato leaf phosphor content Regression MLR R 2 0.864 34 2016 (Meiqing et al., 2016)
Tomato leaf potassium content Regression MLR R 2 0.8561 34 2016 (Jinyang et al., 2016)

The encountered algorithms are K -nearest neighbors (KNN), (least-squares-) Support Vector Machine ((LS-)SVM), Linear Discriminant Analysis (LDA), Classification And Regression Trees (CART), Extreme Learning Machines (ELM), Neuro-Fuzzy System (NFS), Generalized regression neural network (GRNN), Partial Least Squares (PLS), Multi-layer Perceptron (MLP), and (Multivariate) Linear Regression (M)LR. When multiple classification problems or algorithms were considered, a single one was selected and reported per reference. If multiple algorithms were used, only the highest-performing one was reported. Data prepossessing steps are not reported.