Table 3.
Description | Type | Algorithm | Metric | Performance | Size | Year | Ref |
---|---|---|---|---|---|---|---|
Apple mouldy core | Classification | SVM | Accuracy | 0.94 | 98 | 2016 | (Yu et al., 2016) |
Avocado ripeness | Classification | SVM | Accuracy | 0.90 | 100 | 2018 | (Islam et al., 2018) |
Grapefruit freeze damage | Classification | MLP | Accuracy | 1.00 | 180 | 2022 | (Romero Fogué et al., 2022) |
Lemon freeze damage | Classification | MLP | Accuracy | 1.00 | 10 | 2019 | (Ochandio Fernández et al., 2019) |
Oil palm basal stem rot | Classification | LDA | Accuracy | 0.86 | 240 | 2022 | (Khaled et al., 2022) |
Olive variety | Classification | MLP | Accuracy | 1.00 | 90 | 2020 | (Luna et al., 2020) |
Orange freeze damage | Classification | MLP | Accuracy | 1.00 | 270 | 2018 | (Serrano-Pallicer et al., 2018) |
Plant tissue discrimination | Classification | MLP | Accuracy | 1.00 | 100 | 2020 | (Cavalieri and Bertemes-Filho, 2020) |
Rice seed vigor | Classification | LDA | Accuracy | 0.90 | 100 | 2021 | (Feng et al., 2021) |
Strawberry ripeness | Classification | MLP | F1 | 0.72 | 923 | 2021 | (Ibba et al., 2021) |
Strawberry ripeness | Classification | MLR | Accuracy | 0.773 | 150 | 2017 | (González-Araiza et al., 2017) |
Tangerine freeze damage | Classification | MLP | Accuracy | 1.00 | 270 | 2021 | (Aparisi et al., 2021) |
Tomato ripeness | Classification | LDA | Accuracy | 0.88 | 240 | 2019 | (Li et al., 2019) |
Wood chips | Classification | KNN | Accuracy | 0.91 | NA | 2020 | (Tiitta et al., 2020) |
Apple moisture content | Regression | PLS | R 2 | 0.88 | 140 | 2018 | (Reyes et al., 2018) |
Apple soluble solids content | Regression | ELM | R 2 | 0.908 | 160 | 2015 | (Guo et al., 2015) |
Banana soluble solids content | Regression | LR | R 2 | 0.716 | 90 | 2014 | (Jamaludin et al., 2014) |
Crop leaf nitrogen content | Regression | MLR | R 2 | 0.94 | 111 | 2020 | (Basak et al., 2020b) |
Date acidity | Regression | MLP | R 2 | 0.938 | 800 | 2022 | (Mohammed et al., 2022) |
Durian dry matter content | Regression | PLS | RMSE | 4.63% | 120 | 2013 | [Kuson and Terdwongworakul, 2013] |
Korla pear hardness | Regression | NFS | R 2 | 0.911 | 61 | 2022 | (Yu et al., 2022) |
Korla pear soluble solids content | Regression | GRNN | R 2 | 0.974 | 300 | 2020 | (Lan et al., 2020) |
Leaf moisture content | Regression | MLR | R 2 | 0.959 | 28 | 2021 | (Hao et al., 2021) |
Lettuce Chlorophyll content | Regression | MLR | RMSE | 1.05 μg/L | 70 | 2021 | (Chowdhury et al., 2021) |
Lime moisture content | Regression | PLS | R 2 | 0.934 | 82 | 2016 | (Huong and Teerachaichayut, 2016) |
Melon sugar content | Regression | ELM | R 2 | 0.887 | 480 | 2021 | (Liu et al., 2021b) |
Palm fruitlet oil content | Regression | LR | RMSE | 5.71% | 90 | 2022 | (Chin-Hashim et al., 2022) |
Peach firmness | Regression | CART | RMSE | 1.59 N | 200 | 2022 | (Ivanovski et al., 2022) |
Peach firmness | Regression | LR | MSE | 0.67 | 200 | 2020 | (Ivanovski et al., 2020) |
Persimmon soluble solids content | Regression | LS-SVM | RMSE | 0.97°Brix | 105 | 2017 | (Liu and Guo, 2017) |
Pineapple sugars content | Regression | MLP | R 2 | 0.973 | 54 | 2016 | (Conesa et al., 2016) |
Sea buckthorn soluble solids | Regression | MLR | R 2 | 0.648 | NA | 2022 | (Li et al., 2022) |
Sweet potato moisture content | Regression | PLS | R 2 | 0.44 | 80 | 2018 | (Reyes et al., 2018) |
Tomato leaf nitrogen content | Regression | MLR | R 2 | 0.8374 | 35 | 2017 | (Meiqing et al., 2017) |
Tomato leaf phosphor content | Regression | MLR | R 2 | 0.864 | 34 | 2016 | (Meiqing et al., 2016) |
Tomato leaf potassium content | Regression | MLR | R 2 | 0.8561 | 34 | 2016 | (Jinyang et al., 2016) |
The encountered algorithms are -nearest neighbors (KNN), (least-squares-) Support Vector Machine ((LS-)SVM), Linear Discriminant Analysis (LDA), Classification And Regression Trees (CART), Extreme Learning Machines (ELM), Neuro-Fuzzy System (NFS), Generalized regression neural network (GRNN), Partial Least Squares (PLS), Multi-layer Perceptron (MLP), and (Multivariate) Linear Regression (M)LR. When multiple classification problems or algorithms were considered, a single one was selected and reported per reference. If multiple algorithms were used, only the highest-performing one was reported. Data prepossessing steps are not reported.