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Abstract

Likert scales are commonly used in epidemiological studies employing surveys. In this tutorial 

we demonstrate how the proportional odds model and the trend odds model can be applied 

simultaneously to data measured in Likert scales, allowing for random cluster effects. We use 

two datasets as examples: an epidemiological study on aging and cognition among community-

dwelling Black persons, and a clustered large survey data from 28,882 students in 81 middle 

schools. The first example models the Likert outcome from the question: “People act as if they 

think you are dishonest”. The trend-proportional odds model indicates that Black men have higher 

odds than Black women of reporting being perceived dishonest. The second example models 

the Likert outcome from the question: “How often have you been beaten up at school?”. The 

trend-proportional odds model indicates that children with disability have a higher odds of severe 

violence than other children. For both examples, the cumulative odds ratio increases by more than 

60% at the higher Likert levels.
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Introduction

Likert scales are commonly used in epidemiological studies. Individual Likert items are 

discrete and ordinal by definition, commonly with three to seven possible levels depending 

on the design. Likert questions are useful when relying on the participant’s report of 

experiences or symptoms (Huang et al., 2010). These questions provide a closed ordinal 

array of response options (Likert, 1932). It is relatively common practice to have multiple 

Likert questions of interest. Often, the main outcome is obtained by summing individual 

Likert scores. These scores are adopted values, for example they can go from 0 to 3 in 

a four-level Likert. This paper does not focus on such composite Likert scores but on 

individual Likert outcomes based on a single Likert item. Studies that employ a single Likert 
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item may also be motivated by secondary hypothesis or by the need to generate preliminary 

data for future research.

Analysis of Likert outcomes should involve methods designed for ordinal data. However, 

these scales are often dichotomized for analyses, resulting in loss of information and 

reduction of power (Capuano, Dawson, & Gray, 2007). Another practice is to use models 

based on normal distribution. This approach is commonly criticized (Agresti, 2002; Clason 

& Dormody, 1994) given the discrete nature of the Likert (e.g. flooring, ceiling and 

no halves) and the fact that data are often skewed. A better alternative is, therefore, 

to use methods designed for this type of data, such as ordinal logistic regressions. 

Constrained cumulative ordinal models are a popular parsimonious method of analyzing 

ordinal outcomes. These include the proportional odds model (Aitchison & Silvey, 1957; 

McCullagh, 1980; Snell, 1964) and the trend odds model (Capuano & Dawson, 2013). These 

models are an extension of the binary logistic regression for ordinal outcomes with more 

than two levels.

In this paper, we first discuss the detailed formulas for the proportional odds model, the 

trend odds model, and a hybrid model known as the proportional-trend odds model. We 

then give a tutorial on how to fit these models. These models are also extended to clustered 

data, which, to our knowledge, has not been demonstrated in the literature for the case of 

trend odds models. Simple and complex examples with different 4-level Likert outcomes 

are used to illustrate the basic multivariate model and the extension. To illustrate the basic 

application, we model the Likert outcome from the question: “People act as if they think you 

are dishonest”. To illustrate the application to clustered data we model the Likert outcome 

from the question: “How often have you been beaten up at school?”. Sample SAS and R 

code are provided in the appendices.

The Proportional Odds Model

Consider a Likert outcome Y with k+1 categories. The “cumulative odds” are the odds of Y 

being at least equal to k. The cumulative odds can also be related to a predictor variable X1 

through a linear function based on the inverse log. We can express this function as

log Pr Y ≥ k ∣ X1

Pr Y < k ∣ X1
= αk + βk, 1X1, (1)

where βk, 1 is the parameter associated with the log odds ratio at each level of the outcome Y 

for predictor variable X1.

In the unconstrained cumulative ordinal model, all βk, x are different and unrelated. That is 

β1, x ≠ β2, x ≠ β3, x ≠ β4, x. In other words, there are no constraints imposed on the cumulative 

log odds ratio, βk, x (Agresti, 2002; McCullagh, 1980; Peterson, Harrell, & Brant, 1992; 

Peterson & Harrell, 1990). That there are multiple unrelated cumulative odds ratios makes 

interpretation of this model more challenging in practice. The number of parameters βk, x

increases with the number of levels in the outcome. For example, a complex 7-level-Likert 

will have six cumulative odds ratios associated with each predictor, resulting in less 

parsimony and possible model fitting problems. The constrained cumulative ordinal models 
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are a family of models that try to identify a relationship between the cumulative odds 

ratios. These models are theoretically justified by the underlying logistic distribution. The 

proportional odds model and the trend odds models belong to the constrained cumulative 

ordinal family of models.

The proportional odds model was initially discussed by Aitchison and Silvey in 1957 and 

Snell in 1964, but popularized and named by McCullagh in 1982. The development of the 

method is based on an underlying (unobserved or latent) continuous variable that follows 

a logistic distribution. It is possible to calculate log odds ratios by assuming cut-points in 

the distribution (i.e. probability above or below any value in the distribution). When there 

are shifts in the location of the distribution with changes in a predictor (i.e. males may have 

lower mean than females), it has been proved that proportional log odds ratios are observed. 

Note that this latent variable is not directly modeled.

The proportional odds model works on the assumption that all βk, x are represented by a 

common β • , x, that is β • , x = β1, x = β2, x = β3, x (McCullagh, 1980). That leads to the proportional 

odds assumption that the odds of being above any given level are the same. In other words, 

instead of having several different odds ratio for a given independent variable, a single odds 

ratio is calculated. In this model, the cumulative odds is related to an independent variable 

X1 through a linear function based on the inverse log. We can express this function as

log Pr Y ≥ k ∣ X1

Pr Y < k ∣ X1
= αk + β • , 1X1 . (2)

Because the proportional odds model summarizes data more succinctly, results are easier 

to interpret and it is the preferred model if the proportional odds assumption is met. The 

proportional odds assumption can be tested using a score test for proportional odds when 

the sample is not too large (Scott, Goldberg, & Mayo, 1997; Stokes, Davis, & Koch, 2012). 

When the sample is large, graphical displays of observed odds and estimates from binary 

logistic regression can be used (Scott et al., 1997).

The Trend Odds Model

The trend odds model was developed by Capuano and Dawson in 2012 as an attempt 

to provide a parsimonious alternative to the proportional odds model. The development 

of the method is also based on an underlying continuous variable that follows a logistic 

distribution. When there are shifts in the scale of the distribution with changes in a predictor 

(i.e. males have more variability than females), it has been proved that trend log odds ratios 

are observed. The theoretical shifts in location and scale are of practical interest because 

they yield an increasing risk or protective effect that is represented respectively by all log 

odds below zero or all log odds above zero. As in the case for the proportional odds model, 

the latent variable is not directly modeled.

The trend odds models works on the assumption that all βk,x have a monotonic relationship. 

That is β1, x < β2, x < β3, x or β1, x > β2, x > β3, x (Capuano & Dawson, 2013). That means that the 

cumulative odds have a trend, increasing or decreasing monotonically with the increase of 

outcome level k. In this model, the cumulative odds is also related to an independent variable 
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through a linear function based on the inverse log. For an independent variable X2, the trend 

odds model can be expressed as

log Pr Y ≥ k ∣ X2

Pr Y < k ∣ X2
= αk + β1, 2X2 + γ2tkX2, tk < tk + 1 . (3)

The scalar values tk are assumed to be equal to k-1 when no a priori information is available, 

for example, from previous studies.

The Proportional-Trend Odds Model

The above models have being previously used with different types of ordinal data such 

as classification groups, levels of antibody titers and temperament scales (Capuano et al., 

2007; Singh, Bard, & Jackson, 2014; Zerwas et al., 2012). Models often include multiple 

covariates (multivariate models). The proportional odds assumption may not hold for all 

the covariates in the model. Although some researchers are careful in examining the 

assumption, violations are sometimes ignored (Singh et al., 2014). Peterson and Harrell 

discussed the relief of the proportional odds assumption for some but not all covariates. 

This strategy has being used by some researchers so that some covariates have one beta 

(proportional odds) and others have multiple betas (unconstrained odds) (Zerwas et al., 

2012). Alternatively, we can use a combination of the proportional odds and the trend odds, 

here called the proportional-trend odds model. This strategy implies that some predictors 

assume proportional odds and some assume trend odds.

Consider again a Likert outcome Y with k+1 categories. There may be two covariates of 

cumulative log odds of Y given X2 be an increasing or decreasing trend. The proportional-

trend odds model can be expressed as

log Pr Y ≥ k ∣ X1, X2

Pr Y < k ∣ X1, X2
= αk + β • , 1X1 + β1, 2X2 + γ2tkX2, tk < tk + 1 (4)

In certain designs, randomization of data occurs at a cluster level. For example several 

participants may be recruited from a specific location, leading to within-location correlation. 

Random effects models are commonly used because they can handle unbalanced clusters as 

discussed by Hedeker and others (Hedeker, Gibbons, & Flay, 1994). Consider t11hat k is a 

nested observation within cluster j. Equation (4) can be expanded to a random cluster effect 

with the trend-proportional odds expressed as

log Pr Y ≥ k ∣ X1, j, X2, j

Pr Y < k ∣ X1, j, X2, j
= αk + β • , 1X1, j + β1, 2X2, j + γ2tkX2, j + φj, tk < tk + 1 (5)

The random cluster effect φj is assumed to follow a normal distribution with mean equal to 

zero and variance equal to σ.

The proportional-trend odds model assumes that the log odds are either proportional or 

have a specific patterns of increasing or decreasing trends. The proportional odds and the 

trend odds are theoretically justified by an underlying logistic distribution that has shifts 
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in location and scale, respectively. Less parsimonious parameterizations can be used for 

some covariates (i.e. unconstrained) for exploration analyses of covariates that violate both 

proportional and trend odds assumptions.

Tutorial

Analytical Strategy

To fit the proportional-trend odds model the researcher can follow some steps detailed in this 

section9. Preliminary analyses of the data should include an examination of the frequency 

distribution. If data are too sparse, ordinal modeling may not be possible (i.e. only two of 

the Likert levels have frequencies greater than 5), or it may be necessary to combine the last 

or first Likert level with the closest level. Assuming that there are enough observations per 

ordinal level, analyses can follow four steps.

Step 1 - Bivariable Analyses - Binary Logistic Regression—The objective of 

this step is to obtain cumulative odds for each possible cut-point in the initial inspection 

of the data. For example a 4-level Likert has three cut-points and three cumulative odds 

ratios: θ1, θ2, and θ3. Cumulative odds ratios for each possible cut-point can be obtained by 

fitting separate logistic regressions per cut-point (i.e. a Likert 0123 have three indicator 

variables with values: 0111, 0011, and 0001). Modeling can be performed using the Glm 

procedure in R (with family specified as binomial), or the Proc Logistic procedure in SAS. 

Alternatively one can fit the unconstrained model that will generate several parameters, one 

per cut-point. That can be accomplished by using the Proc Nlmixed procedure in SAS or the 

Vglm procedure in R (with family specified as cumulative and parallel specified as false). 

In contrast to SAS Proc Nlmixed, R Vglm does not require the user to select initial values 

and it is easier to use, especially for the less sophisticated user. Graphical displays of the log 

odds such as in Figures 1 and 2 can be used to investigate the proportional odds assumption 

and the trend odds assumption.

Step 2 - Bivariable Analyses - Proportional Odds Model—The objective of this step 

is to inspect the significance of the independent variables when entered individually in the 

proportional odds model and to assess the proportional odds assumption. The proportional 

odds model can be fit with the Proc Logistic procedure in SAS or the Glm procedure 

in R (with family specified as cumulative and parallel specified as true). The score test 

for proportional odds assumption is obtained from the SAS procedure logistic. In R the 

proportional odds assumption can be tested using likelihood ratio tests calculated from the 

difference in the deviance of proportional odds model and the deviance of the unconstrained 

model.

The proportional odds model provides a common odds ratio. That is the odds ratio of 

being above any level compared to the odds ratio of being below the level are the same 

θ = θ1 = θ2 = θ3 . A significant or borderline score test provides partial support for rejecting 

the proportional odds assumption because large samples have sufficient power to detect very 

small deviations of proportionality of odds. A non-significant score test for proportional 

odd or likelihood ratio test results in failure to reject the proportional odds assumption. For 
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example, a p value above .2 provides strong evidence that the proportional odds model is 

adequate. In this case, step 3 is particularly important to verify if the proportional odds 

assumption is being rejected due to a trend in odds.

In SAS, parameters estimates from the proportional odds model with independent variables 

that present a trend can be stored to be used as initial values for modeling in step 3.

Step 3 - Bivariable Analyses - Trend Odds Model—The objective of this step is 

to inspect the significance of the independent variables when entered individually in the 

trend odds model and respective trend parameter γ. The trend odds model can be fit in SAS 

with the Proc Nlmixed procedure, and approximate calculation can be performed in R using 

parameters obtained from the Vglm procedure. The initials required for modeling with Proc 

Nlmixed are: (a) obtained from the proportional odds model, or (b) entered as zero. For 

example, estimated values for the three intercepts and beta from the proportional odds model 

of 4-level Likert can serve as initials for the three intercepts and beta of the trend odds 

model. Gamma can have zero as the initial value.

A significant or borderline score test for proportional odds ascertained in step 2 and a 

significant trend parameter γ obtained in this step together provide sufficient evidence 

to reject the proportional odds assumption and accept the trend odds assumption. A 

trend odds model provides the baseline odds and a multiplicative trend effect. In 

a 4-level Likert the scalars t1 = 0, t2 = 1, t3 = 2 would yield the cumulative odd ratios: 

θ1 = eβ, θ2 = eβeγ, θ3 = eβeγeγ. Note that there is a monotonic multiplicative effect on 

cumulative odds ratios θ1 = eβ, θ2 = θ1eγ, θ3 = θ2eγ . The multiplicative trend effect is used 

to calculate the consecutive odds ratio when multiplying it to previous odds ratio. A 

multiplicative trend effect above one indicates that the odds ratios are increasing with each 

level of the Likert outcome (a positive trend, θ3 > θ2 > θ1). Similarly, a multiplicative trend 

effect below one indicates that the odds ratios are decreasing with each level of the Likert 

outcome (a negative trend, θ3 < θ2 < θ1). Again we can use graphical displays such as figures 

1 and 2 to compare the observed odds to the odds calculated with the proportional odds 

model and odds calculated with the trend odds model.

Step 4 - Multivariable Proportional-Trend Analyses—The objective of this step is to 

identify the trend parameter and to build the final multivariate model. First, a proportional 

odds model including all the independent variables can be fit in SAS using Proc Logistic or 

in R using the Vglm procedure. In SAS, parameters estimates can be stored to be used as 

initials values of the proportional-trend model.

In SAS, the proportional-trend odds model can be fit with the Proc Nlmixed procedure. 

Similar to step 3 the seeds required for modeling with Proc Nlmixed are: (a) obtained 

from the multivariable proportional odds model using Proc Logistic, or (b) entered as 

zero. Multivariable modeling can start with a saturate trend odds model including all the 

independent variables and respective baseline and trend parameters. Using a backward 

elimination, the non-significant parameters can be gradually removed from the model. 

In R, an approximate calculation can be performed using parameters obtained from the 
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Vglm procedure. The Vglm procedure can be used with family specified as cumulative and 

parallel specified as false only for the independent variable that has a trend. The gamma 

related to the several parameters for the independent variable that was unconstrained can be 

approximated by assuming a scalar set such as 0, 1 and 2. Appendix A and B include the 

SAS and R code described in this section.

Example I - Data on perceived discrimination reported in the Minority Aging 

Research Study

Our first example uses data on perceived discrimination from the Minority Aging 

Research Study (MARS), an epidemiologic cohort study of aging and Alzheimer’s 

disease in older African Americans. Participants were recruited from various community-

based organizations, churches, and senior subsidized housing facilities in and around the 

Chicago metropolitan area. The Everyday Discrimination Scale (Williams, Yan, Jackson, & 

Anderson, 1997) is a 9-item questionnaire that measures chronic but minor forms of unfair 

treatment in everyday life. The scale, along with other psychosocial measures was given 

at baseline. A total of 603 participants without dementia at baseline are included in this 

analysis. The sample population is 24% men, and participants had a mean age of 73.6 years 

at baseline (range from 60.2 to 97.6). All participants self-reported their race as African 

American using the race classification question from the U.S. Census. For this illustrative 

example we focus on one question from the Everyday Discrimination Scale: “People act as 

if they think you are dishonest”.

Dishonesty perception is based on a 4-level Likert: never, rarely, sometimes, and often. The 

first cumulative odds (baseline odds, θ1) are the probability of experiencing a perception 

of dishonesty at least rarely over the probability of experience it less than rarely. The 

second cumulative odds θ2  are the probability of experiencing a dishonesty perception 

at least sometimes over the probability of experiencing it less than sometimes. The third 

cumulative odds θ3  are the probability of experiencing a dishonesty perception often over 

the probability of experiencing it less than often.

For the first step of the analysis, dishonesty perception is examined as the independent 

variable in the binary logistic regression, fitting three separate models:

log Pr Y ≥  rarely ∣ gender 
Pr(Y <  rarely ∣ gender ) = αrarely  + βrarely,sex sex,

log Pr Y ≥  sometimes ∣ gender 
Pr(Y <  sometimes ∣ gender ) = αsometimes  + βsometimes,sex  sex,

and

log Pr Y ≥ often ∣ gender 
Pr Y <  often ∣ gender  = αoften  + βoften,sex  sex.
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Sex is a dichotomous indicator for Black men. In the example above, the term βrarely,sex  is 

interpreted as the log odds ratio of dishonesty perception at least rarely versus less than 

rarely for back men compared to Black women. The term βsometimes,sex  is interpreted as the 

log odds ratio of experiencing dishonesty perception at least sometimes versus less than 

sometimes for Black men compared to Black women. The term βoften,sex  is interpreted as the 

log odds ratio of experiencing dishonesty perception often versus less than often for Black 

men compared to Black women.

For the second step of the analysis, we fit a separate proportional odds model for each 

covariate:

log Pr Y ≥ k ∣ gender 
Pr Y < k ∣ gender  = αk + β • ,  sex sex .

For the third step of the analysis, we fit a separate trend odds model for each covariate:

log Pr Y ≥ k ∣ gender 
Pr Y < k ∣ gender  = αk + βrarely,sex  + γsex tk  sex .

Models under step 1 to 3 are repeated replacing age at baseline. Sex is a dichotomous 

indicator of men. The term γsex  is interpreted as the trend in log odds ratios with frequencies 

of dishonesty perception for Black men compared to Black women. We use graphical 

displays to investigate the proportional odds assumption and the trend odds assumption. For 

example, figure 1 shows observed and estimated log odds by cut-points of the outcome. We 

can see that the log odds cannot be summarized by a flat line and that estimates from the 

trend odds model are less biased.

For the fourth step of the analysis, we use the effects obtained from previous steps as starting 

values. The initial trend odds model includes all the independent variables with parameters 

for baseline and trend:

log Pr Y ≥ k ∣  sex, age
Pr Y < k ∣  sex, age  = αk + βrarely,sex  + γsex tk sex + βrarely,age  + γage tk  age

Using a backward elimination, parameters are gradually removed from the model. The final 

model is reduced to:

log Pr Y ≥ k ∣ gender, age 
Pr Y < k ∣ gender, age  = αk + βrarely,sex  + γsextk sex + β • ,  age  age

Results from these analysis show that sex and age are associated with dishonesty perception. 

There was a trend in the observed unadjusted cumulative odds ratios odds of reporting being 

perceived as dishonest at least rarely, at least sometimes and often that increased from 1.59 

to 2.52 to 5.34.
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The unadjusted proportional odds model estimated that the cumulative odds of increased 

frequency of dishonesty perception was 69% higher for Black men compared to Black 

women.

The unadjusted trend odds model estimated a trend multiplicative effect of about 1.66 

(p = . 047 , although a score test for proportional odds assumptions provided weak evidence 

of deviation from proportionality (chi-square = 4.21,  p = . 12). That represents a series of 

odds ratios 1.59 (θ1, odds of dishonesty perception at least rarely versus less than rarely), 

2.63 (θ2, odds of dishonesty perception at least sometimes versus less than sometimes), and 

4.37 (θ3, odds of dishonesty perception often versus less than often). This series of odds 

ratios was obtained by multiplying the multiplicative trend effect by the previous odds ratio 

(i.e. θ2 = θ1 ⋅ 1.66 = 2.63 and θ3 = θ2 ⋅ 1.66 = 4.37 .

The proportional-trend odds model included sex and age as covariates. Trend odds was 

assumed for sex and proportional odds was assumed for age. In the final model in Table 1, 

men had 61% higher odds of dishonesty perception at least rarely versus less than rarely 

compared with women. The final multivariate model shows a significant trend effect of 

about 1.67. That is the cumulative odds increased by 67% with each increase in Likert 

frequency. That represents a series of adjusted cumulative odds ratios of 1.61 (θ1, odds of 

dishonesty perception at least rarely versus less than rarely), 2.67 (θ2, odds of dishonesty 

perception at least sometimes versus less than sometimes), and 4.46 (θ3, odds of dishonesty 

perception often versus less than often).

Example II - Clustered data on severe violence victimization at school

In certain designs, randomization of data occurs at a cluster level. To illustrate, we use 

clustered data on school violence from 81 middle schools from a large multicultural urban 

school district. The schools were surveyed in the spring of 2004 and represent a total 

of 103 middle school programs (i.e. magnet, special education, and regular education) 

(Ramirez et al., 2012). The survey uses a questionnaire composed of items on exposure to 

violence. Respondents were asked if violence was experienced at specific locations such as 

school, neighborhood, and others. A total of 28,882 students completed self-administered 

paper-pencil scantron surveys at school, which were administered by school staff at each 

school site. The sample included 49% males. The racial/ethnic distribution was 68% 

Latinos, 11% Blacks/African Americans, 10% Whites, 4% Asians and 7% others. A total 

of 196 children (0.7%) were in special education. Variables on past violence exposure 

were combined into two distinct subscales: witnessed (Mdn = 3.0, M = 3.10, SD = 2.63  and 

victimized Mdn = 1.0, M = 1.32, SD = 1.65 . Past violence subscales, as well as disability, 

ethnicity and sex were considered potential risk factors in analyses (independent variables). 

In this example, we investigate risk factors for self-reported victimization to severe physical 

violence at school (dependent variable), based on the question “How often have you been 

beaten up at school?”.

Severe violence victimization was based on a 4-level Likert: never, sometimes, lots of times, 

and almost every day. The first cumulative odds (baseline odds, θ1) are the probability of 

experiencing severe violence at least sometimes over the probability of experience it less 
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than sometimes. The second cumulative odds θ2  are the probability of experiencing severe 

violence at least lots of times over the probability of experience it less than lots of times. The 

third cumulative odds θ3  are the probability of experiencing severe violence almost every 

day over the probability of experiencing it less than almost every day.

For the first step of the analysis, disability was examined as the independent variable in the 

binary logistic regression, fitting three separate models:

log Pr Y ≥  sometimes  ∣  disability 
Pr(Y <  sometimes  ∣  disability ) = αsometimes  + βsometimes,disability  disability  + φj

log Pr Y ≥ lots of times ∣ disability 
Pr(Y < lots of times ∣  disability ) = αlots of times + βlots of times,disability  disability  + φj

and

log Pr Y ≥  every day  ∣  disability 
Pr(Y <  every day  ∣  disability ) = αevery day  + βevery day,disability  disability  + φj,

Disability is a dichotomous indicator for children in special education. Hence, in the 

example above, the term βsometimes,disability,  is interpreted as the log odds ratio of experiencing 

severe violence at least sometimes versus less than sometimes for children in special 

education compared to others. The term βlots_of_times,disability, is interpreted as the log odds ratio 

of experiencing severe violence at least lots of times versus less than lots of times for 

children in special education compared to others. The term βalmost_every_day,disability,  is interpreted as 

the log odds ratio of experiencing severe violence almost every day versus less than almost 

every day for children in special education compared to others. The term γdisability  is interpreted 

as the trend in log odds ratios with frequencies of severe violence victimization for children 

in special education compared to others. Figure 2 shows that there is a trend in observed log 

odds ratios and that the trend odds will provide an estimate that is less biased.

For the second step of the analysis, we fit a separate proportional odds model for each 

covariate:

log Pr Y ≥ k ∣ disability 
Pr Y < k ∣  disability  = αk + β • ,  disability  disability  + φj,

For the third step of the analysis, we fit a separate trend odds model for each covariate:

log Pr Y ≥ k ∣  disability 
Pr Y < k ∣  disability  = αk + βsometimes,disability  + γdisability tk  disability  + φj .

Models under step 1 to 3 were repeated replacing disability by sex, ethnicity, past violence 

victimization and past violence witnessed. Sex is a dichotomous indicator of males. 

Ethnicity is multinomial and was parameterized as 0/1 for each type of ethnicity, with 
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Black representing a reference group. Past violence subscales were considered as continuous 

variables.

For the fourth step of the analysis, we use the effects obtained from previous steps as starting 

values. The initial trend odds model included all the independent variables with parameters 

for respective baseline and trend:

log Pr Y ≥ k ∣  disability 
Pr(Y < k ∣  disability )   = αk + βsometimes, disability  + γdisability tk  disability

+ βsometimes,sex  + γsex tk  sex
+ βsometimes,wℎite  + γwℎite tk  wℎite 
+ βsometimes,asian  + γasian tk  asian
  + βsometimes,latino  + γlatino tk  latino 
+ βsometimes,otℎers  + γotℎers tk  otℎers 
+ βsometimes, witnessed  + γwitnessed tk  witnessed 
+ βsometimes, victimized  + γvictimizedtk  victimized  + φj .

Using a backward elimination, parameters were gradually removed from the model. The 

final model was reduced to:

log Pr Y ≥ k ∣  disability 
Pr(Y < k ∣  disability ) = αk + βsometimes,disability  + γdisability tk  disability

+ βsometimes,sex  Sex  + βsometimes,wℎite  wℎite 
  + βsometimes,asian  asian  + βsometimes,latino latino 
+ βsometimes,otℎers  otℎers  + βsometimes, witnessed  witnessed
+ βsometimes, victimized  victimized  + φj .

Results from these analysis show that disability is the strongest risk factor for victimization 

to severe physical violence in these data. There is a significant random effect for schools. 

In the final model in Table 2, children in special education had 3.18 times higher odds of 

being the victim of severe violence at least sometimes versus less than sometimes compared 

to children in regular education. The final multivariate model showed a significant trend 

effect of about 1.68. That indicates a cumulative odd increase of 68% with each increase in 

Likert frequency, representing a series of adjusted cumulative odds ratios of 3.18 (θ1, odds of 

experiencing severe violence at least sometimes versus less than sometimes), 5.34 (θ2, odds 

of experiencing severe violence at least lots of times versus less than lots of times), and 

8.98 (θ3, odds of experiencing severe violence almost every day versus less than almost every 

day).

For this tutorial, we repeated the models removing the random school effect to compare 

results. In the final model in Table 3, children in special education had 2.56 times 

higher odds of experiencing severe violence at least sometimes versus less than sometimes 

compared to children in regular education. The final multivariate model showed a significant 

trend effect of about 1.66, indicating a cumulative odd increase of 66% with each increase 

in Likert frequency. That represented a series of adjusted cumulative odds ratios of 2.56 θ1, 

odds of experiencing severe violence at least sometimes versus less than sometimes), 4.26 

(θ2, odds of experiencing severe violence at least lots of times versus less than lots of times), 

and 7.07 (θ3, odds of experiencing severe violence almost every day versus less than almost 

every day).
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Final Remarks

In this paper, we detailed use of the proportional—trend odds model and its particular 

application to modeling of individual Likert outcomes. This tutorial is based on previous 

research by McCullagh (McCullagh, 1980), Capuano and Dawson (Capuano & Dawson, 

2013), Peterson and Harrel (Peterson & Harrell, 1990), and others (Aitchison & Silvey, 

1957; Hedeker et al., 1994; Snell, 1964). We provide instructions on how to fit the model 

and provide two didactic examples from real datasets. The scalar set 0,1,2 and 3 was used 

for both examples. As discussed previously, it is recommended to use this type of scalar 

when no a priori information is available. It is possible, however, to optimize the scalar set 

as a priori information becomes available.

Motivated by the situations commonly found in surveys, we extended the method to 

clustered data. This is an important addition to the literature as clustered data are common. 

This was the case of our second example where data were collected at multiple schools and 

resulted in within school correlation. Here we performed the analysis with and without a 

random effect for school. We detected a significant trend in disability with both approaches 

but odds were different. In addition, there was a differential effect of the previous violence 

subscales. It is possible that these differences are generated by the way the data were 

collected or, in other words, an artifact of the variability between schools.

This article outlines how to build a proportional-trend model. Such models provide 

interpretable measures of association. The proportional-trend model can provide additional 

insights into the extent of the risk factor. Both the proportional odds model and the trend 

odds model have a theoretical justification in underlying latent variables, making of them 

more than just a parameterization. The ability to flexibly use them in a single model can 

streamline analyses.

This paper demonstrates how to fit models for ordinal data in SAS and R; however, we 

recognize that there are a number of limitations to our work. First of all, the models 

make some specific assumptions, which can be challenging to prove or disprove. Second, 

sometimes the software may fail to converge to a specific answer if there are no reasonably 

accurate initial estimates for the parameters.
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Appendix A-: A sample if analyses in SAS
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Appendix B.: A sample analyses in R
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Figure 1. 
Unadjusted cumulative log odds ratio of dishonesty perception for Black men compared to 

Black women.
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Figure 2. 
Unadjusted cumulative log odds ratio of severe violence for children with disability 

compared to others.
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Table 1.

Example I, multivariable analyses of frequencies of perceived dishonesty with Proportional-Trend Odds model

Variable Multivariable Proportional-Trend Odds model

β Odds Ratio (eβ) p value for β γ Trend Multiplicative Effect (eγ) p value for γ

Sex

Male 0.47 1.61 .029 0.51 1.66 .047

Female Ref. Ref. Ref. Ref. Ref. Ref.

Age at baseline −0.06 0.94 .001 --- --- ---

Notes. LRT=0.2, p = .90, compared to unconstrained model for sex.
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Table 2.

Example II, multivariable analyses of level of severe violence victimization (victim beat school) with 

Proportional and Trend Odds model, accounting for school random effect

Variable Multivariable Proportional-Trend Odds model

β Odds Ratio (eβ) p value for β γ Trend Multiplicative Effect (eγ) p value for γ

Sex

Male 1.03 2.81 <.0001 --- --- ---

Female Ref. Ref. Ref. --- --- ---

Student Ethnicity

All others 0.46 1.58 <.01 --- --- ---

Asian 0.45 1.57 <.01 --- --- ---

Black/African-American Ref. Ref. Ref. --- --- ---

Latino 0.46 1.58 <.0001 --- --- ---

White 0.35 1.42 <.01 --- --- ---

Disability

Not in special education Ref. Ref. Ref. Ref. Ref. Ref.

In special education 1.16 3.18 <.0001 0.52 1.68 .056

Past Violence exposure subscales

Victimized 0.65 1.91 <.0001 --- --- ---

Witnessed −0.02 0.98 .05 --- --- ---

Notes. School random effect = 2.3947 (SE=0.544, p <.0001). LRT=2, p= .37, compared to unconstrained model disability.
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Table 3.

Example II, multivariable analyses of level of severe violence victimization (victim beat school) with 

Proportional and Trend Odds model, without a random effect for school.

Variable Multivariable Proportional-Trend Odds model

β Odds Ratio (eβ) p value for β γ Trend Multiplicative Effect (eγ) p value for γ

Sex

Male 0.85 2.34 <.0001 --- --- ---

Female Ref. Ref. Ref. --- --- ---

Student Ethnicity

All others 0.39 1.48 <.01 --- --- ---

Asian 0.45 1.57 <.01 --- --- ---

Black/African-American Ref. Ref. Ref. --- --- ---

Latino 0.40 1.49 <.0001 --- --- ---

White 0.32 1.38 <.01 --- --- ---

Disability

Not in special education Ref. Ref. Ref. Ref. Ref. Ref.

In special education 0.94 2.56 <.0001 0.51 1.66 .03

Past Violence exposure subscales

Victimized 0.48 1.61 <.0001 0.06 1.06 <.0001

Witnessed --- --- --- --- --- ---

Notes. LRT = 16, p<0.01, compared to unconstrained model for disability and past violence victimized.
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