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A noninvasive brain–computer interface is a central task in the comprehensive analysis and understanding 
of the brain and is an important challenge in international brain-science research. Current implanted 
brain–computer interfaces are cranial and invasive, which considerably limits their applications. The 
development of new noninvasive reading and writing technologies will advance substantial innovations and 
breakthroughs in the field of brain–computer interfaces. Here, we review the theory and development of the 
ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements 
in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and 
closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, 
high-frequency acoustic noninvasive brain–computer interface is prospected based on ultrasound super-
resolution imaging and acoustic tweezers.

Introduction
Brain computer interface (BCI) technology aims to create a 
direct connection between brain activity and mechanical hard-
ware or computer components. In the last decades, biomedical 
engineering has made substantial progress in developing neural 
interfaces, realizing interaction with dynamic neural systems. 
In 2006, Hochberg et al. [1] indicated that a 96-microelectrode 
array implanted in primary motor cortex could provide a val-
uable new neurotechnology to restore independence for para-
lyzed patient. Synchron Corp. developed a “stentrode”—a set 
of 16 electrodes to read neural activity of amyotrophic lateral 
sclerosis patients [2]. Willett et al. [3] proposed an intracortical 
BCI to decode attempted handwriting movements from neural 
activity in the motor cortex and translates it to text in real time. 
The applications of BCI spreads across multiple and diverse 
fields. Applications include, but are not limited to, medicine, 
games, education, aeronautics, and automatic drive [4–9].

Remarkable progress had been made in noninvasive BCI, 
which had shown good development prospect. In the first suc-
cessful case of noninvasive BCIs, locked-in syndrome patients 
controlled slow cortical potentials to select letters on a com-
puter screen to communicate [10]. Subsequently, He et al. [11] 
presented and validated a framework based on noninvasive 
electroencephalography (EEG) to achieve the neural control of 
a mechanical device to track down random targets continu-
ously. Besides bioelectrical characteristics, neural activity also 
produces other types of signals, such as blood flow. Functional 
ultrasound (fUS) imaging techniques offer a different way to 
monitor brain hemodynamics, read brain activity, and decode 

intention [12]. Transcranial focused ultrasound (tFUS) can 
focus on the cortices or deep nuclei to modulate activity in 
specific regions and affect the whole brain function using time 
reversal method (Fig. 1). With the advantages of better spatial 
resolution and safety, tFUS conforms to the development trend 
of neuromodulation [13,14]. Therefore, this paper reviewed the 
fUS imaging methods and tFUS neuromodulation technique. 
In the first part, the theory, methods, and applications of fUS 
imaging methods will be presented. Next, we describe the tFUS 
neuromodulation technique in detail, including the mechanism 
and applications in cells, rodent, primate, and human. Lastly, 
examples of the EEG-based ultrasound BCI is introduced. In 
the discussion section, we will share our viewpoints toward 
developing high-frequency acoustic-wave noninvasive BCI.

Ultrasound Brain Functional Imaging–“reading”
BCI system is targeted to control computers or mechanical 
devices through brain activity in the absence of a peripheral 
nervous system. Over the past few decades, BCIs have sought 
to help paraplegics, consumer electronics, and other applica-
tions. Moreover, varied applications based on BCIs have been 
developed, such as neurorehabilitation [4], neurocommunica-
tion [6], and exoskeletons [8]. Application of BCI starts with 
the reading of brain information. An ideal method of brain 
information reading should meet the following requirements: 
(a) high-quality information acquisition, (b) high temporal 
resolution to record rapid changes in brain neurons, and (c) 
nonsensory or noninvasive to reduce the impact on the subjects 
during the reading process.
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For the reading of neural signals in the brain, current BCIs 
gain high performance at the cost of damaging living brain 
tissue, which limits their applications in human neuroscience 
research and BCI. A noninvasive ultrasonic BCI such as fUS 
would open a new avenue for neuroscience research and 
neuroprosthetics.

At present, traditional invasive BCIs have higher spatial 
and temporal resolution and anti-interference performance. 
Noninvasive BCIs do not puncture biological tissue and are 
therefore more acceptable. Noninvasive reading of brain 
information is one of the potential directions of BCI system 
[15]. Currently, noninvasive BCIs utilize either the electro-
physiology in the brain, via EEG or magnetoencephalography 
(MEG), or hemodynamic responses via functional magnetic 
resonance imaging (fMRI) or functional near-infrared spec-
troscopy (fNIRS). Noninvasive EEG-based BCIs are widely 
used, owing to their high temporal resolution, relatively low 
cost, and high portability [16]. However, EEG generally has 
low spatial resolution and is less sensitive to deep signals [17]. 
Compared to electric fields, magnetic fields are less dis-
torted by the skull and scalp; thus, a better spatial resolution 
is offered by MEG compared with that provided by EEG [18]. 
However, the decreased signal-to-noise ratio of deep sources 
hinders the utility of MEG for investigations of deeper brain 
structures [19]. fNIRS employs near-infrared light that pen-
etrates through the skull to detect concentration changes in 
oxy- and deoxygenated hemoglobin (HbO and HbR) in the 
brain blood supply [20]. Although fNIRS-based BCIs have 
gained popularity, their long response lag makes them unsuit-
able for real-time applications [21–23]. fMRI is a powerful 
method for detecting cerebral hemodynamic responses with 
high spatial resolution throughout the whole brain and has 

been used in BCI studies [24–26]. However, the response lag 
of fMRI-based BCI is typically 1 to 2 s, owing to its low tem-
poral resolution [16,27].

Because it may offer information on the structure and blood 
flow of brain tissue noninvasively, ultrasound has become an 
important technique in brain science research in awake non-
human primates and humans [28]. High-sensitivity images of 
cerebral blood flow can be obtained using functional and 
super-resolution ultrasound imaging method, which are 
important methods to read the brain information.

Principle of ultrasound acquisition of  
brain information
The sensitivity of microvascular blood signals has been greatly 
enhanced, owing to ultrafast ultrasound imaging [29,30] and 
advances in spatiotemporal filters [31]. This enabled the detec-
tion of subtle blood variations related to neuronal activity, 
which eventually lead to ultrasound-based brain functional 
imaging [32]. Ultrasound localization microscopy (ULM) 
[33,34], which was recently introduced, has improved the spa-
tial resolution of conventional flow imaging to microscopic 
resolutions noninvasively, even in deep brain regions [35,36]. 
These technological breakthroughs make ultrasound imaging 
a promising neuroimaging modality for BCIs.

In conventional ultrasound imaging, a typical 2-dimensional 
(2D) ultrasound B-mode image requires tens of ultrasound 
transmission and reception processes, and the maximum frame 
rate that can be reached is typically only a few hundred frames 
per second. This is far from sufficient for the high frame-rate 
requirements of functional imaging. An ultrafast imaging sys-
tem benefits from multicore-architecture central processing 

Fig. 1. Acoustic-wave noninvasive BCI.
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units, parallel processing graphics processing units, and serial-
ized architecture systems; thus, it can handle many channels in 
parallel and is able to compute a full image from only a single 
transmission and receipt. The multiple methods to leverage 
ultrafast imaging architecture, such as plane-wave imaging, rep-
resent a genuine change in the medical ultrasound paradigm. 
Plan-wave-based ultrafast imaging is a method to maximize 
ultrasound-imaging frame rates up to several tens of kilohertz, 
and it offers a new route for fast and transient phenomena [29].

Doppler ultrasound in rodents has been demonstrated to 
be substantially more sensitive to blood flow in small vessels 
when using ultrafast ultrasound imaging [30,37]. For example, 
a micro-Doppler ultrasound technique was presented by Mace 
[38], which substantially improved sensitivity in the detection 
and mapping of the cerebral blood volume (CBV) throughout 
the entire brain. However, blood signals, clutter signals, and 
electronic/thermal noise are present in ultrasound signals. A 
clutter filter that is usually a high-pass filter was used to reject 
the clutter signal and electronical/thermal noise. Each pixel's 
mean Doppler signal intensity and axial blood velocity infor-
mation may be acquired. Noise has an impact on the blood 
velocity extraction; however, color Doppler is also especially 
sensitive to aliasing, such as an aliased signal that results in 
inaccurate flow direction estimation. Based on the distinct 
spatiotemporal coherence properties of tissue and blood move-
ments, Demené [31] proposed clutter reduction using spatio-
temporal singular value decomposition (SVD) for ultrasound 
data collected at a high frame rate. The customized multidimen-
sional spatiotemporal filter based on singular-value decomposition 

was used to filter ultrafast imaging datasets to reduce clutter 
filtering and motion artifacts. Compared to the conventional 
clutter filter [31], this filter has a higher sensitivity for blood-
flow detection.

The aforementioned ultrafast ultrasound imaging and 
advanced spatiotemporal filters provide ultrasound imaging 
with more implementation opportunities, owing to great spa-
tiotemporal resolution (~100 μm, 1 ms) and sensitivity [38] for 
functional information estimation. Knowing the hemodynamic 
parameter being measured is crucial for functional imaging 
based on hemodynamic contrast. CBV and the power Doppler 
value are inversely related. Other techniques have also utilized 
functional imaging, such as CBV-weighted fMRI, which is 
based on the vascular injection of iron oxide particles [39]. 
Functional imaging has several potential applications. 
Understanding how the brain functions on a broad scale under 
normal or diseased circumstances depends on being able to track 
the activity of the whole brain. Power Doppler imaging, a tech-
nique used in fUS imaging, is based on an ultrafast ultrasound 
sequence and is sufficiently sensitive to detect blood flow in even 
the small vessels.

Ultrasound-acquisition technology of cerebral blood 
flow and brain function information
Brain-science research using ultrasound technology primarily 
utilizes vascular information (Fig. 2). The ultrafast ultrasound 
measurement of CBV can detect subtle hemodynamic changes 
in considerably smaller blood vessels. Similar to fMRI [40] and 

Fig. 2. Methods of obtaining brain information using ultrasound [45–49]. Copyright (2021) IEEE; Copyright (2004) World Federation for Ultrasound in Medicine & Biology; 
Copyright (2015) Elsevier Inc.; Copyright (2020) The Author(s); Copyright (2022) The Author(s). 
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optical intrinsic imaging [41], fUS is based on neurovascular 
coupling, relying on changes in the activity of CBV in small-
diameter blood vessels to detect the collection of active neurons 
in vivo [38]. Although CBV transmits different information 
from the blood, both are manifestations of neurovascular cou-
pling [42–44], and their measurement produces indirect infor-
mation about neuronal activity in the brain. Using fUS and a 
stimulation setup, we can investigate the feasibility of mapping 
in numerous animals and humans.

For animal fUS, a craniotomy was originally performed in 
rodents before the experiments, and the experimental animal 
was maintained in an anesthesia state [32]. Subsequently, a type 
of ultrasound-clear plastic prosthesis material, called polyme-
thyl pentene, was applied, and it enabled cerebral imaging 
under the same conditions for an extended experimental 
period of several months [47]. Currently, a thinned skull is the 
main method used to acquire better fUS results [50]. Some 
experiments are executed while rodents are awake. Stimulation 
includes whisker stimulation [32], electrical stimulation [51], 
visual stimulation [52], and disease models, such as ischemic 
stroke recovery [47] and spontaneous epilepsy [32].

fUS can be used in different stimuli, typically whisker stim-
ulation [53], followed by visual [52] and odor stimulation [53]. 
Whisker stimulation is an example of an activation map. Results 
were obtained for single-, left-, and right-whisker stimulation. 
Through whisker stimulation, different brain regions were 
observed to respond, which indicated the corresponding active 
regions. The Doppler signal and stimulus pattern’s correlation 
coefficients were used to create the maps. Finally, the results 
showed a substantial activation in the ventral posteromedial 
nucleus of the thalamus, which is connected to the thalamic 
cortex S1 and activated in response to tentacle stimulation. 
Moreover, stimulation from visual, olfactory, and pain stimuli 
demonstrated excellent sensitivity.

Animals provide black and white flickering stimuli with 
different flickering periods and luminances. The increase in 
CBV is observed to be related to the stimulus cycle. A similar 
increase in CBV was observed in the lateral geniculate nuclei 
and superior colliculus domains of other vision-related areas 
during stimulation. Moreover, fUS can accurately measure the 
visual-circuit activation when the left hemisphere receives 
visual information from the opposite visual field [52,54].

Utilizing fUS technology, we may ascertain how various 
scents are mapper to related regions of the anterior piriform 
cortex and primary olfactory bulb [53,55]. Results showed that 
the response of neurons and blood vessels increased nonline-
arly with odor concentration. Research also shows that different 
smells are encoded in the main olfactory bulb for the activation 
of different spatial patterns. However, this encoding is in the 
piriform cortex, which is difficult to access in the brain struc-
ture through other imaging methods. This led to a similar 
diffuse activation pattern compared with other primary soma-
tosensory cortices, and the primary visual or auditory cortex 
lacked stimulation.

High-resolution microbubble localization for  
brain imaging
Brain imaging in small animals and clinical neonatal cases 
shows previously undetected blood flow, including microvascu-
lar networks or blood flow disrupted by apparent tissue or probe 
motion artifacts. Typically, ultrasound imaging of microvascular 

targets is simultaneously limited by the penetration depth and 
resolution. ULM was adapted from optical super-resolution 
imaging, such as photoactivated localization microscopy [56] 
and stochastic optical reconstruction microscopy [57], and it 
can overcome the compromise between imaging resolution and 
penetration depth. The ULM can achieve a spatial resolution 
that is 10 times better than traditional medical ultrasound 
imaging and provide quantitative information about blood-
flow speed, owing to its ability to track moving microbubbles.

After several initial ULM studies implemented in vitro 
[33,34,58,59], the basic framework of ULM was established 
(Fig. 3). The entire ULM procedure is as follows:

1. � Long-term acquisition of contrast-enhanced imaging 
with a low-concentration contrast agent.

2. � A filter that can separate the contrast-agent signals from 
tissue signals.

3. � Localization step to obtain the super-resolved positions 
of individual microbubbles.

4. � Tracking the path of microbubbles in continuous frames.
5. � Accumulation tracking path and visualization of super- 

resolution imaging.

In 2015, Errico et al. [35] applied this technology to an 
in vivo setting. They demonstrated that ULM is a promising 
tool that can provide detailed information about microvessels 
in rat brains. Although this study made substantial progress, 
ULM remains to be optimized in all steps.

In initial research, several strategies were utilized to dis-
tinguish microbubbles, such as harmonic [33,34,59] and dif-
ferential imaging. SVD was then introduced and applied to 
ULM to improve the process. SVD is a spatiotemporal filter 
used to determine the components of fast-moving bubbles in 
tissues [35,66]. Brown et al. [67] studied the performance of 
3 bubble-detection strategies (pulse inverse, SVD, and differ-
ential imaging). Their research showed that SVD was more 
suitable for high-frequency ULM with fast blood flow, and 
the pulse-inverse method demonstrated better precision in 
some applications. In 2018, Song et al. [68] proposed a non-
local mean filter to separate microbubbles from noise without 
any features or patterns.

The precision of localization determines the maximum res-
olution of ULM; thus, improving the performance of the local-
ization approach is a key problem in ULM. The most common 
approach to localizing contrast agents is centroid detection 
using beamformed data. In most studies, microbubbles in ULM 
were only considered as linear point-like scatter, and algorithms 
such as local maxima, weight average, or gauss fit are widely 
used in ULM adapted from photoactivated localization micros-
copy. However, Christensen-Jeffries et al. [69] demonstrated 
localization errors owing to the nonlinear response of the con-
trast agent and showed that hundreds of micrometers in error 
are introduced when using the methods mentioned above. In 
2022, Helies et al. [70] introduced performance benchmarking 
for localization algorithms. Several localization algorithms were 
compared in simulations and in vivo datasets, and the radial 
symmetry algorithm [71] was preferred in this study, owing to 
its extremely fast processing speed and moderate precision.

Because noise can be mistaken for bubbles in localization 
processing, tracking can act as a filter to separate microbub-
bles from noise and provide velocity information about 
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microvessels. However, tracking methods still require consid-
erable improvement. Currently, Hungarian or Kuhn–Munkres 
algorithms are the most frequently used approaches that focus 
on finding the optimal pairs of particles in continuous frames 
while minimizing the distance between pairing particles. This 
method may lead to some errors because it ignores the char-
acteristics of blood flow and simply considers distance as the 
only factor. The Kalman filter, which is a widely used method, 
was introduced into the ULM process, and it could improve 
the flow-speed measurement even with a reduced number of 
microbubbles [72]. A dynamic method that bypassed the local-
ization process was studied by Albert et al. [73]. Moreover, a 
multifeature tracking method was proposed by Yan [74] based 
on their study in 2005 [75]. In this work, more features were 
considered in the tracking processing, such as the intensity of 
single bubbles and Kalman motion model.

Motion is unavoidable in acquisition processing and greatly 
affects ULM quality. Thus, motion correction is essential for 
ULM in vivo. Hingot et al. [76] designed a simple subwave-
length motion-correction method using the cross-correction 
of 2 frames; however, this method is only helpful when only 
planar motion exists. Harput [77] introduced a 2-stage motion-
correction algorithm adapted from MRI, which was capable of 
nonrigid motion, but was time-consuming. One of the practical 
strategies to reduce the influence of motion caused by the 
breath or heartbeat is to use electrocardiogram gating to ensure 
that acquisition is only performed during the rest period of the 
breath or heartbeat [78]. Specifically, only planar motion must 
be considered for applications in brain imaging.

However, the methods mentioned above cannot correct out-
of-plane motion. Three-dimensional (3D) ULM is considered 
an important developing area of ULM that can obtain full infor-
mation about the region of interest without out-of-plane 
motion. Moreover, 3D ULM has already been implemented 
in vitro using different imaging strategies, such as sparse arrays 

[79], row–column arrays [80], and synchronized systems [81]. 
Additionally, several encouraging in vivo results have been 
reported using a full-matrix array [82,83] with a full-sampled 
system or multiplexer [84].

A long acquisition time still limits the clinical applications 
of 2D or 3D ULM because the model-based framework fails to 
localize high-concentration microbubbles, which results in a 
long acquisition time to obtain sufficient tracks. In contrast to 
traditional algorithms, deep learning is expected to reduce the 
required processing time. A deep learning framework was pro-
posed by Milecki et al. [85] that could obtain a super-resolution 
image at high microbubble concentrations where the tradi-
tional method failed. In 2021, Li et al. [86] presented a self-
supervised deep learning network that could improve the 
performance of microbubble localization at high microbubble 
concentrations without using the ground truth. These works 
improved the imaging speed but could not measure the blood-
flow velocity. Chen [87] designed a long short-term memory 
neural network to localize and track a moving bubble at high 
concentrations. Their work showed that the network could 
substantially improve the performance of ULM, and both the 
acquisition and processing times were considerably reduced.

In brain-imaging applications, traditional brain-ultrasound 
imaging is influenced by the skull. However, ULM can be used 
to perform transcranial imaging with an intact skull. Although 
attenuation and aberration of the skull still degraded the ULM 
performance, this study proposed an effective skull-aberration 
correction that calculated the aberration delay [88–90], which 
has exhibited good performance in patients’ brains [36].

Challenge of decoding brain information using 
ultrasound imaging
As a brain information reading method, fUS has the multiple 
advantages. Because ultrasound is more portable, it allows for 

Fig. 3. Development of ULM in brain imaging. Reproduced with permission from [35,36,49,60–65]. Copyright (2015) Springer Nature Limited; Copyright (2021) The Author(s), 
under exclusive license to Springer Nature Limited; Copyright (2022,2020,2022,2022,2021,2023) The Author(s).
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long-time, continuous measurements of free-moving animals 
[91] compared to methods such as fMRI. Besides, fUS also 
provides more spatial information than EEG, including infor-
mation on global blood flow and structures deep in the brain 
[92], which makes fUS a very promising brain reading tool in 
BCI applications. In particular, the recently proposed ULM or 
super-resolution ultrasound leverages ultrafast ultrasound and 
microbubble localization technology to greatly increase the 
resolution of cerebral blood-flow imaging up to tens of microns. 
It breaks through the diffraction limit of brain ultrasound and 
opens up a new field for fUS brain imaging. However, there are 
a number of challenges in trying to decode brain information 
using US:

First, the global blood-flow signal changes more slowly than 
the EEG signal [93], and it is unclear whether accurate decod-
ing of brain information can be achieved. Although numbers 
of publications mentioned above have recorded images of CBV 
changes of the brain in the presence of stimuli. However, these 
works only demonstrated in the certain brain regions where 
blood-flow changes are highly correlated with stimulus signals 
rather than the actual physiological state of the brain regions. 
The link between fUS signal and the physiological state of the 
brain needs to be further verified.

Compared to EEG, fUS can provide more information, such 
as structural and blood-flow changes deep in the brain instead 
of electrophysiological signals in highly specialized brain 
regions, which also places greater demands on the decoding 
algorithm. How to accurately and fully utilize the rich temporal 
and spatial information of fUS is very challenging and mean-
ingful study. Berthon et al. [94] used artificial neural network 
to decode the global blood-flow information obtained from 
fUS to decode the behavior of the brain, and their network 
was able to accurately predict the movement or resting of rats, 
demonstrating the potential of artificial neural network in BCI 
based on fUS.

Finally, fUS is a pixel/spatial location-based means of read-
ing brain information. The differences in brain anatomy 
between the 2 subjects, or different relative positions of 
the probes during the 2 acquisitions, can result in pixels not 
being matched to the corresponding anatomical regions, thus 
affecting decoding outcome by the decoder. A perfect match 
between the 2 sets of data is required to achieve the correct 
decoding and encoding of brain information [94]. Thanks to 
the 3D ultrasound, whole-brain imaging can be achieved to 
reduce the impact of differences in brain slice acquisition, but 
the huge data volume of 3D ultrasound may limit the BCI's 
online application.

Ultrasound Brain Modulation and  
Possible Writing
Ultrasound neuromodulation and its applications
Ultrasound is a sound wave (>20 kHz) beyond the range of 
human hearing. As early as the 19th century, in the process of 
studying the mutual conversion of mechanical and electric 
waves, electric current was applied to piezoelectric crystals 
to convert energy into mechanical motion to generate sound 
waves [95]. Ultrasound neuromodulation technology is a novel 
neuromodulation method that simultaneously combines non-
invasiveness and high precision [96] with high spatial resolu-
tion and depth. Ultrasound neuromodulation technology uses 
ultrasound waves emitted by ultrasonic transducers to act on 

brain nuclei through the skull, muscles, and other tissues to 
regulate neural activity [97]. In 1955, Fry et al. [98] observed 
that ultrasound stimulation of a cat’s lateral geniculate nucleus 
reversibly suppressed evoked potentials in the primary visual 
cortex. In the past 20 years, ultrasonic neuromodulation 
technology has entered the era of “big explosion”. In 2005, 
Huang et al. [99] applied ultrasound to the isolated sciatic 
nerve of a bullfrog and observed that ultrasound could affect 
the compound action potential and conduction velocity of the 
nerve. In 2008, Tyler et al. [100] demonstrated low-intensity 
ultrasound-induced neural activity in mouse hippocampal slices 
and proposed a possible mechanism by which ultrasound affects 
voltage-gated sodium and calcium channels. In 2010, they 
demonstrated the neuromodulation effect of low-intensity ultra-
sound in small animals for the first time [101]. In 2011, Yoo [102] 
showed that ultrasound is a dual-modal neuromodulation tech-
nology that can selectively activate or inhibit brain activity in 
their study of ultrasound regulation of the somatomotor area 
and visual area of rabbits. In 2013, Thomas et al. [103] used ultra-
sound to change the direction of eye movements in monkeys, 
thereby demonstrating that ultrasound can modulate neural 
activity in nonhuman primates. In 2014, Wynn et al. [13] applied 
low-intensity ultrasound directly to the primary somatosensory 
cortex of the human brain, which changed the ability of the 
human brain to distinguish touch and realized the application 
of ultrasound neuromodulation in the human body. Over several 
years, the neuromodulatory effects of ultrasound have been val-
idated in isolated tissues, rodents, nonhuman primates, and 
human clinical studies, as shown in Fig. 4. In addition, ultra-
sound neuromodulation technology can change and modulate 
the physiological activities of the normal brain, and it has poten-
tial applications in the neuromodulation treatment of neurolog-
ical diseases.

Regarding cerebrovascular-related diseases, Furuhata et al. 
[113] observed that in a rat acute-stroke model, low-intensity 
ultrasound enhanced the thrombolytic effect of systemic tPA 
administration, thereby substantially reducing cerebral infarct 
volume and improving neurological status. Tong et al. [114,115] 
showed that ultrasound stimulation of the ischemic-core region 
immediately after ischemic stroke in rats alleviated ischemic 
symptoms after brain injury. In addition, they observed that 
ultrasound stimulation can reduce the symptoms of focal 
ischemia in rats before inducing ischemic stroke. Liu et al. 
[116,117] observed that the early treating time window is the 
key to ultrasound's protective effect on acute ischemic stroke.

Studies have shown that chronic ultrasound stimulation can 
effectively and safely improve depression-like behavior in rats 
with neuropsychiatric diseases. The potential mechanisms may 
be associated with the activation of the brain-derived neuro-
trophic factor/extracellular regulated protein kinases/mamma-
lian target of rapamycin signaling pathway in the prefrontal 
cortex (PFC) via ultrasound, which increases the release of the 
brain-derived neurotrophic factor [118,119]. Niu et al. [120] 
showed that the reduction of inflammatory cytokine expression 
in the PFC by ultrasound is also an important mechanism by 
which ultrasound improves depression-like behavior. In addi-
tion, multiple clinical studies have demonstrated that ultra-
sound stimulation of the PFC can substantially improve the 
mood of healthy volunteers and alleviate depressive symptoms 
in Alzheimer’s disease (AD) patients [121,122].

Parkinson's disease (PD) is a typical neurodegenerative dis-
ease, and the prevalence of this condition increases with age. 
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Pharmacological treatments are typically used as regular treat-
ment for PD. For patients who are unable to tolerate the side 
effects of pharmacy or show no response to it, surgical treat-
ments offer another choice. Zheng et al. [110,123,124] indicated 
that ultrasound stimulation of the motor cortex or subthalamic 
nucleus could alleviate the motor symptoms of mice with PD 
by inhibiting neuroinflammation, and the treatment had an 
effect on dopamine. Neurons are neuroprotective. Mason et al. 
[125] showed that ultrasound stimulation could increase dopa-
mine content and improve exercise capacity in PD mouse mod-
els. Li et al. [126] showed that ultrasound neuromodulation 
can substantially reduce related EEG activity in a mouse model of 
PD. Low-intensity pulsed ultrasound stimulation may antag-
onize PD by enhancing glial-cell-line-derived neurotrophic 
factor levels and inhibiting the inflammatory response in the 
brain [127,128].

Mourad et al. [129] showed that ultrasound stimulation of 
the hippocampus of AD model mice can reduce amyloid aggre-
gation. Leinenga et al. [130] removed Aβ protein deposits and 
restored memory in AD mice using scanning ultrasound. Niu 
et al. [131] observed that ultrasound stimulation could delay 
telomere shortening in cortical and myocardial tissues and 
improve spatial cognition and learning in AD mouse models. 
Beisteiner et al. [122,132,133] reported that a single ultrashort 
ultrasound pulse acting on the brain's memory network sub-
stantially improved neuropsychological scores in patients, and 
the improvement persisted for up to 3 months. The beneficial 
effects of ultrasound in patients with AD can be attributed to 
the improvement in cortical atrophy via ultrasound modulation 
and the regulation of brain neural-network function by induc-
ing neuroplastic changes [133–135].

Drug addiction is a psychiatric disorder that affects the 
limbic reward circuit. Deep brain stimulation is a noninvasive 
modulation method that is used to improve symptoms. 
Recently, Niu et al. [136] observed that ultrasonic stimulation 
can effectively and rapidly reduce the behavioral preference 
induced by morphine, and its persistent effect can change 
relapse behavior after withdrawal in mice. This suggests the 
considerable potential of ultrasound neuromodulation tech-
nology for drug-addiction treatment.

Neuropathic pain, such as a chronic pain disorder, is typi-
cally caused by nerve damage [137,138]. Pilitsis et al. [139] 
showed that ultrasound stimulation of the rat dorsal root gan-
glia increased mechanical and thermal sensory thresholds, and 
this improvement was more substantial in female rats [140]. 
They also demonstrated that ultrasound can alter pain behavior 
and allodynia in a porcine peroneal nerve-injury model [141]. 
This may be related to the improvement in the inflammatory 
response of the dorsal root ganglia via ultrasound stimulation 
[142]. In addition to acting on the peripheral nerves, ultra-
sound can also modulate the central brain nuclei to treat pain. 
Niu et al. [143] observed that ultrasound stimulation of the 
anterior cingulate gyrus can effectively relieve mechanical neu-
ropathic pain. Zhu et al. [144] used the ultrasound stimulation 
of the periaqueductal gray to effectively inhibit formalin- 
induced nociception.

At the rodent level, epilepsy may occur in all age groups, 
and it is one of the most common neurological disorders. 
Ultrasound neuromodulation has reduced abnormal electrical 
discharges in epileptic brain regions [145–148] and improved 
behavioral abnormalities in chronic epilepsy [149]. Recently, 
Niu et al. [150] indicated that ultrasound has a neuroprotective 

Fig. 4. Ultrasound neuromodulation has been applied in many animal models and humans. Reproduced with permission from [13, 104–112]. Copyright (2014) Springer Nature 
America, Inc.; Copyright (2018) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Copyright (2020) The Author(s); Copyright (2018) American Chemical Society; Copyright 
(2015,2020,2020,2020,2019,2019,2019) The Author(s).
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effect, thereby inhibiting neural apoptosis in epileptic mice and 
improving epilepsy. In addition, Zheng et al. [108,109] showed 
that ultrasonic neuromodulation technology can safely and 
effectively regulate the electrical activity of neurons in the brain, 
inhibit the abnormal discharge of neurons in the brain tissue 
of epilepsy patients, and improve the behavior of epileptic mon-
keys. Several clinical studies on epilepsy patients have proven 
that ultrasound neuromodulation can safely and effectively 
suppress epileptic discharges in patients [14,151].

Direct Ultrasonic Modulation of Neural Activity 
and Sonogenetics
Manipulating local or global neural activity using different 
external physical stimuli, such as electrical, magnetic, optical, 
or acoustic stimulation, has provided several avenues for both 
basic research and clinical therapy. However, diverse modalities 
and techniques are limited by their inherent physical or bio-
logical drawbacks, including invasiveness, spatiotemporal res-
olution, and stimulus depth. An emerging approach that uses 
ultrasonic waves to control neural activity has sparked wide 
attention because ultrasound wave can noninvasively stimulate 
deep brain structures through an intact skull with millimeter-
sized dynamic focal spots and high spatiotemporal precision. 
Scientific research on evaluating ultrasonic neuroregulatory 
effects began decades ago [98], and a number of studies that 
applied ultrasonic waves to excite or reversibly suppress neural 
activity have emerged in recent years for cultured cells, brain 
slices, various animals, or humans with different acoustic param-
eters and focused targeting. The biophysical effects of ultrasonic 
wave interactions with biological tissues are complex and include 
mechanical force, heating, cavitation, and off-target auditory 
effects [95,152,153]. The underlying mechanisms of ultrasonic 
neuromodulation are not well understood; however, a number 
of studies have hypothesized that ultrasonic waves may mediate 
neural activity through mechanosensitive ion channels. Hence, 
we have summarized the mechanosensitive ion channels for 
direct ultrasonic stimulation in unmodified cells and the exog-
enous expression of mechanosensitive ion channels for sono-
genetic control in modified cells.

Ion channels are a class of proteins embedded within cellular 
membranes that allow different ions to pass through the channel 
pore and act as molecular switches to control neural activity. In 
2008, Tyler et al. [100] illustrated that ultrasound can stimulate 
the neural activity of hippocampal slice cultures and ex vivo 
mouse brains by activating voltage-gated sodium and calcium 
channels. Our previous results have also shown that ultrasound 
can increase transmembrane sodium and potassium ion currents 
and the kinetics of sodium channels in hippocampal slices using 
patch-clamp recording in vitro [104,154]. Kubanek et al. [155] 
expressed two pore domain potassium channels in Xenopus 
oocyte system, including TREK-1, TREK-2, TRAAK, and NaV1.5, 
and showed that the current regulation of ultrasonic convection 
through ion channels can reach 23% on average. Using single-
channel recording, Sorum et al. [100,156,157] further confirmed 
that the ultrasonic activation of the mechanical sensitive K+ chan-
nel TRAAK has submillisecond kinetics, which is comparable to 
the standard mechanical activation. Ultrasound-induced intra-
cellular calcium ion (Ca2+) transients through Ca2+ channels have 
also been reported in several cell types. Burks et al. [156] indicated 
that ultrasound activates a Na+-containing transient-receptor-
potential-channel-1 current upstream of voltage-gated Ca2+ 

channels in the kidney and skeletal muscle. Yoo et al. [157] 
also suggested that ultrasound excites mouse primary cortical 
neurons in vitro through specific Ca2+-selective mechano-
sensitive ion channels. Studies by Kubanek et al. and Zhou 
et al. [158,159] confirmed that ultrasound elicits behavioral 
responses in Caenorhabditis elegans through the MEC-4 chan-
nel, which is a DEG/ENaC/ASIC ion channel required for touch 
sensation. Piezo channels, including Piezo 1 and Piezo 2, are 
among the few eukaryotic channels that can be directly activated 
by ultrasonic waves in cultured cells or mammalian peripheral 
neurons [160,161]. Interestingly, Oh et al. [162] reported that 
TRPA1 channels in astrocytes act as unique sensors for ultra-
sound neuromodulation, and glutamate-releasing Best1 medi-
ates of the glia–neuron interaction.

Similar to optogenetics or chemogenetics, which make use 
of transgenic ion channels that target specific cellular popula-
tions to control neural activity, a new technology called “sono-
genetics” has been developed, which utilizes ultrasound to 
noninvasively control neural activity through engineered spe-
cific cells with ultrasound-responsive proteins (Fig. 5). The 
concept of “sonogenetics” was proposed in 2015; Ibsen et al. 
[107] used microbubbles to overexpress TRP-4 mechanosen-
sitive ion channels in Caenorhabditis elegans to trigger revers-
ible behavioral responses. Following this pioneering work, a 
series of ultrasound-responsive proteins has been reported 
to sensitize cells to acoustic stimuli. In 2018, Ye et al. [106] 
expressed the Escherichia coli mechanosensitive channel of 
large conductance (MscL) and its gain-of-function mutation, 
I92L, in rat hippocampal neurons in primary culture and 
showed that the channel could be activated by ultrasound. Qiu 
et al. [163] also proved that ultrasound can induce Ca2+ influx 
and neuron activation in vitro and evoke electromyography 
(EMG) response in targeted cells by activating heterologous 
mechanical sensitive channels (Mscl-G22S). In 2019, Qiu et al. 
[164] showed that ultrasound alone could activate the heterol-
ogous and endogenous mouse piezo-type mechanosensitive 
ion channel component 1 (Piezo1), which initiates calcium 
influx and increases nuclear c-Fos expression in primary cor-
tical neurons. In the same year, Huang et al. [165] reported an 
ultrasound-responsive engineered auditory-sensing protein, 
prestin (N7T, N308S), which has the ability to sense ultrasound 
stimuli in vitro and in vivo. The same research group further 
targeted this ultrasound-responsive protein in the dopamin-
ergic neurons of the substantia nigra in mice with PD and 
indicated that ultrasound ameliorated dopaminergic neuro-
degeneration and mitigated PD symptoms [166]. In 2022, 
Duque et al. [167] identified human TRPA1 as a candidate 

Fig. 5. Direct ultrasound stimulation and sonogenetics.
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ultrasound-responsive protein that potentiates ultrasound- 
evoked responses in primary neurons in vitro and leads to 
c-Fos expression and contralateral-limb responses in vivo. In 
addition to mechanical sonogenetics, Yang et al. [168] devel-
oped sonothermogenetics to selectively activate neurons 
through expressing thermosensitive ion-channel transient 
receptor potential vanilloid 1 in the mouse brain in vivo.

The mechanisms proposed to explain the ultrasound neuromod-
ulation effects are based on multiple hypothesis on how ultrasound 
interferes with depolarization through mechanical deformation of 
the cell membrane. In addition, experimental evidences have shown 
that ultrasound can activate mechanosensitive ion channels in neu-
rons [100,106,161,164] and other brain cell types like astrocytes 
[162], providing additional avenues for ultrasound neuromodula-
tion to interfere with the membrane potential.

While the lack of a complete understanding of the ultra-
sound neuromodulation mechanisms does not currently impede 
reaping potential benefits in a more application-driven con-
text (e.g., neurodegenerative and neuropsychiatric disorders) 
[132,169], ultrasound BCI offers a new way to understand 
mechanisms.

Two recent studies argued that ultrasound neuromodulation 
requires auditory pathway activation in rodents [153,170]. 
However, recent work by Niu et al. [171] using chemically deaf-
ened rodent models showed that the ultrasound brain modula-
tion is confined by localized response without involving auditory 
networks. Our previous study has indicated that ultrasound-
induced behavioral changes are attributed to direct activation to 
the related brain region rather than to the involvement of the 
auditory pathway [172]. In addition, hearing range of mouse is 
from 2.3 to 85.5 kHz [173], which is far below the fundamental 
frequency of ultrasound neuromodulation. Ultrasound-evoked 
auditory activation is influenced by acoustic parameters, particu-
larly pulse repetition frequency (PRF) [174], which can be inhib-
ited by the waveform shape and special acoustic masks [174,175].

Ultrasound BCI-Preliminary Studies Based  
on EEG
The demand for ultrasound stimulation systems has increased with 
the development and improvement of ultrasound neuromodulation 
techniques. Most ultrasound neuromodulation methods men-
tioned in the previous section use open-loop stimulation, which 
generates stimulus signals according to a preset schedule, but the 
stimulation cannot be automatically adjusted according to the 
changes of physiological signals. Thus, a closed-loop brain neuro-
modulation system combining existing physical neuromodulation 
technologies, such as optogenetics, deep brain stimulation [176], 
transcranial electrical stimulation [177], and transcranial magnetic 
stimulation has been developed [178]. There have also been recent 
reports on closed-loop ultrasound neuromodulation systems, 
owing to the advantages of closed-loop brain stimulation [179–181] 
(Fig. 6).

The design of a closed-loop brain-stimulation system requires 
a decoder and an encoder, where the decoder is used to decode 
the biological signals into the stimulus intent, and the encoder is 
used to convert the stimulus intent into a stimulus signal. Yang 
et al. [179] designed a closed-loop transcranial ultrasound 
stimulation (CLTUS) system that included decoding the local 
field potential (LFP) and encoding the level signals. The decoder 
design included 2 parts of experiments for the modulation and 
suppression of temporal lobe epilepsy (TLE) seizures. An exper-
iment was performed to verify whether CLTUS can detect the 
phase of the theta rhythm in real time and stimulated mouse CA1 
in a specific phase. The decoder predicts the next peak or trough 
by analyzing the data. The specific implementation first used the 
Hamming window to devise a band-pass filter to obtain theta 
rhythm signals. Then, setting the period threshold, calculating 
the amplitude of the theta rhythm to determine the location of 
all the maximum and minimum values. Finally, the next peak or 
trough moment was predicted based on the calculated average 

Fig. 6. Closed-loop ultrasound BCI based on EEG.
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period, peak-to-peak value, and time delay between the signal 
acquisition and theta rhythm determination. Once the phase of 
a specific theta rhythm was predicted, it entered the encoding 
process, which means that the computer transmitted a transistor–
transistor logic high-level signal to initiate an ultrasound stimu-
lation system consisting of a function generator, power 
amplifier, and ultrasound transducer. The results showed that 
the LFP amplitude, the theta rhythm amplitude, and power 
intensity at both specific phases increased substantially after 
CLTUS, while the relative power of the theta rhythm decreased. 
Furthermore, there was no correlation between the stimulation 
effect and the specific phase (peak or trough) of the theta 
rhythm. The system has been studied in a mouse model of TLE 
to confirm its ability to deal promptly and successfully with 
neurological disorders that are accompanied by abnormal neu-
ronal firing. In this part of the study, the standard deviation of 
the amplitude and coastline coefficient of the LFP from CA1 
were calculated as eigenvalues to detect seizures. Seizure status 
was determined when the standard deviation of the data ampli-
tude was more than 3 times the baseline value, and the coastline 
coefficient was more than twice the baseline value. When the 
conditions for the recognition of the seizure status are met, the 
computer also sends a high-level transistor–transistor logic 
signal to activate the ultrasound stimulation system to stimulate 
the hippocampal region of the mice. CLTUS system can be used 
to monitor epilepsy in real time and provide ultrasound stim-
ulation according to the monitoring results. The seizure latency 
was longer, and the seizure duration was reduced obviously in 
CLTUS-treated TLE model mice. In the experiment, an ultra-
sound transducer with a fundamental frequency of 500 kHz 
was used. The PRF was 1 kHz, and the duty cycle was 40%. For 

the experiment on the modulation of the TLE, the alternate 
parameters were 500 kHz, 500 Hz, and 5%, respectively. All the 
experiments used an ISPPA value of 1.75 W/cm2.

Recently, artificial intelligence and other methods have 
proved to be powerful tools for decoding brain signals. Zhong 
et al. [180] conceived a closed-loop ultrasound deep brain 
stimulation system based on a deep learning decoder, which 
can focus ultrasound on the hippocampus through a wearable 
transducer, proving its good efficacy. The 1-s captured EEG 
signal were first obtained by a 1- to 40-Hz finite impulse 
response band-pass filter. Subsequently, extracting the instan-
taneous frequency and spectral entropy metrics as the time-
frequency and nonlinear features of the preprocessed EEG 
signal. Finally, the above obtained feature values are combined 
into coupled feature sequences and brought into the bidirec-
tional long short-term memory (BiLSTM) network architecture 
for training, which consisted of a sequence input layer, 2 BiLSTM 
layers with a dropout layer in between, a size 2 fully connected 
layer, a softmax layer, and a classification output layer. The 
BiLSTM model was obtained using the aforementioned train-
ing. The EEG signals were manually examined to correctly 
classify the training dataset. The accuracy of the BiLSTM model 
was 81.33%. Then, continuous timely monitored EEG were sent 
into the optimal BiLSTM model by close-loop wearable ultra-
sound stimulation system, and the hippocampus was stimu-
lated with a 10-min activation of the ultrasound stimulation 
system when a 10-s sustained seizure was monitored (funda-
mental frequency = 800 kHz, PRF = 1 kHz, duty cycle = 40%, 
tone burst duration = 0.4 ms, interstimulus interval = 3.6 s). 
The closed-loop wearable ultrasound deep brain stimulation 
system constructed using BiLSTM could successfully supervise 

Fig. 7. Functional ultrasound for noninvasive BCI. Reproduced with permission from [36]. Copyright (2021) The Author(s), under exclusive license to Springer Nature Limited.
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epileptic seizures automatically. The power spectral density of 
EEG signals was substantially reduced, the duration of epileptic 
seizures was substantially shortened, and more early epileptic 
mice survived. In addition, an LSTM model was constructed 
and compared with the BiLSTM model in terms of classification 
accuracy; the performance of the network was confirmed 
through 5 cross-validations. The consequences show that 
BiLSTM network performs better than LSTM network in classi-
fication performance.

Based on the CLTUS system, Yuan et al. [181] added a fuzzy 
algorithm to the control program to achieve timely and accu-
rate control of the limb movement and nervous system of mice. 
The target of the ultrasound stimulation in this study was the 
motor cortex. The mathematical basis of the CLTUS system is 
a model between the mean absolute value (MAV) of electro-
myogram (EMG), peak value (PV) of LFP, and ultrasonic inten-
sity. The EMG and LFP signals were obtained by artificially 
changing the PV of the generator output signal from 350 to 750 
mVpp (corresponding to the sound pressure value of 0.21 to 
0.78 MPa) at 50-mVpp intervals under the open-loop stimulus 
condition. Once the EMG and LFP signals with the length of 
90 s were collected through the electrode, they were first passed 
through notch filter to remove 50-Hz ac power interference, 
and at the same time the baseline drift got removed by passing 
through an adaptive high-pass filter. Then, the EMG signal 
is filtered by 300- to 1k-Hz bandpass, rectified, and passed 
Gaussian filtering to become the preprocessed EMG. The LFP 
signal is filtered by 4- to 200-Hz bandpass, and the analysis 
signal of LFP obtained by Hilbert transform can be used to 
calculate PV and LFP envelope after modulo. Following pro-
cessing by back propagation neural network, the discrete rel-
ative datasets of EMG MAV, and LFP PV and different ultrasound 
intensity are obtained. The network consists of 3 hidden layers 
with 10, 10, and 2 neurons in each layer, based on extensive 
open-loop experimental data. The equations that described the 
EMG and ultrasound intensity, LFP and ultrasound intensity, 
and corresponding parameters were obtained using least squares 
fitting. The input of the back propagation neural network was 
ultrasound intensity, and the output was TUS-induced EMG 
MAV or LFP PV with an accuracy of 0.001. A 2D fuzzy con-
troller is employed to regulate the ultrasound intensity imme-
diately, which had 2 input ports, one for the error and one for 
the relative error between MAV or PV corresponding to EMG 
or LFP respectively. The closed-loop modulation of animal 
EMG and LFP is realized through the intensity regulation factor 
output by the controller. After the fuzzy-controlled closed-loop 
TUS system was established, the controllers were designed using 
a proportional integral derivative algorithm and an immune 
feedback algorithm, and the control effects of the 3 controllers 
were compared using simulations and practices. The perfor-
mance of fuzzy controller is better than the other 2 methods; 
not only the relative error is substantially less than proportional 
integral derivative and immune feedback control but also the 
output value is in line with the expected value. It is proved that 
the fuzzy controller can be used to control EMG and LFP in 
mice. The closed-loop TUS system using the fuzzy controller 
enabled a more accurate and rapid tracking of the desired value. 
These results show that the fuzzy-control-based CLTUS system 
is capable of stable in vivo CLTUS.

Research on closed-loop ultrasound neuromodulation is 
in its initial stage. However, this technology will be developed 
and progressed further because it meets the needs of timeliness 

and can provide further enhancement of neuromodulation and 
disease therapy. Ultrasound neuromodulation with artificial 
structure can achieve multi-target and dynamic stimulation 
with high spatiotemporal resolution in brain, thus it may be 
used to restore useful visual or auditory functions to blind 
or deaf people and to allow more efficiently transform infor-
mation within other cortical prosthetic applications. Currently, 
the biological signals used for closed-loop ultrasound neuro-
modulation are EMG, LFP, and EEG, and it is believed that 
more biological signals will be used for decoding in the future, 
such as fMRI, positron emission tomography, and ultrasound 
brain functional imaging.

Therefore, we propose fUS brain imaging to noninvasively 
“read” neural activity in the brain and apply ultrasound radia-
tion to open mechanosensitive ion channels to precisely “write” 
neural information, thereby realizing a noninvasive ultrasound 
closed-loop brain–machine interface, as shown in Fig. 7. First, 
combined with ultrasound contrast microbubbles, a high-
sensitivity high-frequency acoustic emission array is designed 
to enhance the ultrasound cranial-penetration signal intensity 
for cerebral blood-flow imaging based on encoded excitation 
technology to obtain brain neural information. Then, an auto-
matically calibratable artificial intelligence pattern classifier is 
designed to decode the cerebral blood-flow signal and establish 
a quantitative relationship between it and the electroneuro-
graphic activity. Finally, noninvasive ultrasound neuromodu-
lation and ion channel-switching technique are developed 
based on acoustic radiation force theory and acoustic tweezers 
technology [182–185]. We can activate mechanosensitive ion 
channels through ultrasound-radiation force by constructing 
a strong local gradient acoustic field and generating a modifi-
able acoustic-radiation force. We can then precisely control the 
excitability of neurons, apply ultrasound stimulation to specific 
nuclei and neural circuits, control specific sensations and 
behaviors of organisms, and realize a noninvasive closed-loop 
BCI. The implementation of this study is expected to provide 
new revolutionary tools in the fields of bioacoustics, health, 
rehabilitation, brain science, brain diseases, driverless vehicles, 
and artificial intelligence.
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