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Cellular Composition and 5hmC Signature Predict the
Treatment Response of AML Patients to Azacitidine
Combined with Chemotherapy

Guanghao Liang, Linchen Wang, Qiancheng You, Kirk Cahill, Chuanyuan Chen,
Wei Zhang, Noreen Fulton, Wendy Stock, Olatoyosi Odenike,* Chuan He,* and Dali Han*

Azacitidine (AZA) is a DNA methyltransferase inhibitor and epigenetic
modulator that can be an effective agent in combination with chemotherapy
for patients with high-risk acute myeloid leukemia (AML). However, biological
factors driving the therapeutic response of such hypomethylating agent
(HMA)-based therapies remain unknown. Herein, the transcriptome and/or
genome-wide 5-hydroxymethylcytosine (5hmC) is characterized for 41
patients with high-risk AML from a phase 1 clinical trial treated with AZA
epigenetic priming followed by high-dose cytarabine and mitoxantrone
(AZA-HiDAC-Mito). Digital cytometry reveals that responders have elevated
Granulocyte-macrophage-progenitor-like (GMP-like) malignant cells
displaying an active cell cycle program. Moreover, the enrichment of natural
killer (NK) cells predicts a favorable outcome in patients receiving
AZA-HiDAC-Mito therapy or other AZA-based therapies. Comparing 5hmC
profiles before and after five-day treatment of AZA shows that AZA exposure
induces dose-dependent 5hmC changes, in which the magnitude correlates
with overall survival (p = 0.015). An extreme gradient boosting (XGBoost)
machine learning model is developed to predict the treatment response based
on 5hmC levels of 11 genes, achieving an area under the curve (AUC) of
0.860. These results suggest that cellular composition markedly impacts the
treatment response, and showcase the prospect of 5hmC signatures in
predicting the outcomes of HMA-based therapies in AML.
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1. Introduction

Acute myeloid leukemia (AML) is an ag-
gressive malignancy characterized by a
low cure rate and 5-year survival of 30–
35%. The significant genetic and cellu-
lar heterogeneity of AML contributes to
highly variable responses to treatment.[1]

Given that epigenetic aberrations arecom-
monly observed and implicated in the
pathogenesis of AML,[2] there has been
an interest in combining hypomethylat-
ing agents (HMAs), azacitidine (AZA), and
decitabine, with cytotoxic chemotherapy,
targeted therapy, or immunotherapy with
the goal to improve outcomes for patients
with AML.[3] While HMAs can reactivate
aberrantly silenced genes, induce antivi-
ral innate immune responses, and sen-
sitize malignant cells to cytotoxic agents,
the mechanism of their anti-leukemic ef-
fect is not fully understood.[4] Recent stud-
ies have highlighted the importance of
malignant cell composition and immune
landscape in determining the clinical out-
comes of AML.[1c,d,5] However, the exact
subsets of malignant cells and immune
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cells that determine the therapeutic response to these HMAs are
unclear.

We previously reported a phase 1 clinical trial of AZA treat-
ment followed by high-dose cytarabine and mitoxantrone (AZA-
HiDAC-Mito) in high-risk AML patients, based on the hypoth-
esis that epigenetic priming with a HMA (AZA) would sensi-
tize malignant cells to cytotoxic therapy.[6] The overall response
rate [(complete remission (CR) + CR with incomplete count re-
covery (CRi)] in this phase 1 study was 61% with a low induc-
tion death rate of 2.2%. While AZA-HiDAC-Mito trended toward
a higher response rate compared to a historical cohort treated
with HiDAC-Mito alone,[6–7] the pre-treatment determinants and
biomarkers for a treatment strategy including epigenetic priming
remain unknown.

Although gene expression and epigenetic profiling have yet to
be adopted routinely in clinical practice, such approaches may
help with prognostication and treatment decisions in AML.[8]

Cytosine methylation (5mC) is a well-established epigenetic
biomarker involved in cancer development and progression.[9]

5mC is maintained by DNA methyltransferases, while the TET
family of dioxygenases convert 5mC to 5-hydroxymethylcytosine
(5hmC) in an active demethylation process.[10] Increasing evi-
dence suggests that 5hmC levels are related to tumorigenesis, in-
cluding observations that global 5hmC levels are reduced in vari-
ous cancer types.[2b,11] Furthermore, recent studies have demon-
strated that AZA treatment affects the cellular level and genomic
distribution of 5hmC,[12] which could be used as a robust diag-
nostic and prognostic biomarker for broad cancer types.[13] These
studies support 5hmC as an ideal candidate for an epigenetic
biomarker to predict the outcomes of AZA-HiDAC-Mito therapy.

Herein, to elucidate the underlying mechanisms of treatment
response for AZA-HiDAC-Mito therapy, we collected samples
in a phase 1 clinical study and performed RNA-seq and 5hmC
profiling. By combining the public single-cell RNA-seq data, we
found that responders highly expressed cell-cycle-related genes,
which were inferred to be expressed primarily by a subset of
Granulocyte-macrophage-progenitor-like (GMP-like) malignant
cells. In contrast, hematopoietic stem cell-like (HSC-like) malig-
nant cells with low expression of cell-cycle-related genes were
more likely to be enriched in non-responders. Moreover, we
found that AZA treatment induced gene expression related to NK
cell cytotoxicity in responders. In line with this, the pre-treatment
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level of NK cells was associated with improved clinical outcome of
AZA-HiDAC-Mito therapy. By analyzing samples from patients
receiving AZA treatment, compared to those receiving decitabine
treatment or standard chemotherapy in the Beat AML cohort,
and our historical HiDAC-Mito cohort, we demonstrated the spe-
cific role of NK cells in response to AZA-based treatment. Fur-
thermore, AZA exposure induced a dose-dependent alteration
in 5hmC after treatment for five days, and patients with more
pronounced changes in 5hmC modifications exhibited improved
survival. We then developed a machine learning prediction model
based on 5hmC levels in 11 genes, which accurately predicted
treatment response.

2. Results

2.1. Activation of the Cell Cycle Program was Associated with
Response to AZA-HiDAC-Mito Therapy

A total of 46 patients who received AZA-HiDAC-Mito therapy
were enrolled in this study, out of which 41 provided usable RNA
and/or 5hmC sequencing data (Figure 1A; Table S1, Supporting
Information). Of these patients, 19/46 (41%) achieved complete
remission (CR) after treatment, with 9/46 (20%) diagnosed as CR
but with incomplete count recovery (CRi), and 18/46 (39%) expe-
rienced treatment failure (TF). The overall response rate was 61%
(28/46). The results of this trial have been previously published.[6]

To identify gene expression programs that may confer sensi-
tivity to AZA-HiDAC-Mito treatment, we collected mononuclear
cells from bone marrow (BM) and/or peripheral blood (PB) prior
to AZA treatment (Day 0) and performed RNA-seq. Twenty-eight
patients had pre-treatment material available for RNA-seq. By
comparing the gene expression levels between responders (CR +
CRi, n = 16) and non-responders (n = 12), we identified 54 upreg-
ulated and 115 downregulated genes in responders (Figure 1B).
Unsupervised clustering analysis revealed that these differen-
tially expressed genes (DEGs) were capable of distinguishing re-
sponders from non-responders (Figure 1C), suggesting that the
transcriptional profile was tightly associated with treatment re-
sponse.

To shed light on the potential mechanism(s) of treatment
response, we performed an extended co-expression network
analysis by integrating protein association networks from
the STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) database.[14] Briefly, we first identified four
gene modules through co-expression analysis, including RAMP3
(signaling receptor activity), EFNA5 (G2M checkpoint), FLT3
(hematopoiesis), EPHB1 (ephrin receptor) for module 1–4,
respectively (Figure 1D). Genes within the same co-expression
module are highly correlated and probably have similar biolog-
ical functions. Next, we extended each gene module by adding
first-order neighbors in the STRING database to construct a
functional network. Enrichment analysis revealed that genes
in modules 3 and 4, which were downregulated in responders,
are enriched for pathways known to be involved in tumorigen-
esis and tumor progression, such as ephrin receptor signaling
pathway (Figure 1E).[15] In contrast, for the two modules that
were upregulated in responders, we observed that the functional
network for module 1 is enriched for cell-cell interaction and
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Figure 1. Differential expression analysis between responders and non-responders of AZA-HiDAC-Mito therapy. A) Diagram of study design, therapeutic
strategy, and data analysis workflow. RNA and DNA obtained from peripheral blood and bone marrow samples of 46 AML patients receiving AZA-HiDAC-
Mito therapy were used in this study (41 patients provided usable DNA/RNA samples). The figure in the table is the number of patients. B) Volcano plot
showing gene expression difference between responders and non-responders. Thirty-three BM and/or PB samples obtained from 28 patients were used.
p values were calculated with the Wald test and adjusted by the Benjamini-Hochberg method. padj, adjusted p value. Top 3 DEGs for both upregulated and
downregulated genes were labeled. C) Heatmap showing the expression levels of 169 DEGs in 33 AML samples collected at Day 0. Hierarchical clustering
was performed across genes and samples. D) Heatmap showing hierarchical clustering of the pairwise correlations among DEGs in 33 AML samples.
DEGs were grouped into four major modules. E) Functional enrichment for genes in each module-related network. The module-related network was
obtained from the STRING database by adding the directly interacting genes of the DEGs. The q value was adjusted p value by the Benjamini-Hochberg
method. F) GSEA to assess the enrichment of cell cycle signature in responders of AZA-HiDAC-Mito therapy. NES, normalized enrichment score; p value
was calculated with permutation test.

communication, while genes within the module 2 network are
involved in cell cycle and DNA synthesis.

Since both AZA and cytarabine are known to interfere with
DNA synthesis and preferentially eliminate cycling cells,[16] we
reasoned that activation of the cell cycle program may be asso-

ciated with response to AZA-HiDAC-Mito therapy. To this end,
we performed gene set enrichment analysis (GSEA) to evaluate
the enrichment of a curated cell cycle signature in responders
compared to non-responders.[17] We found that expression of the
cell cycle signature was highly enriched in responders, which

Adv. Sci. 2023, 10, 2300445 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2300445 (3 of 14)



www.advancedsciencenews.com www.advancedscience.com

suggests that patients with activated cell cycle program are
sensitive to AZA-HiDAC-Mito therapy (Figure 1F).

2.2. Elevated GMP-Like Malignant Cells with Active Cell Cycle
Program Predicted Treatment Response

The cycling status of AML malignant cells is known to be
heterogeneous.[16d,18] We next sought to determine the malig-
nant subsets that are in active cell cycle and likely sensitive to
AZA-HiDAC-Mito therapy. By analyzing the public single-cell
RNA sequencing (scRNA-seq) profiles of AML samples from 12
patients,[19] we compared six distinct subsets of malignant cells
and seven immune cell types (Figure 2A; Figure S1A, Supporting
Information). As expected, cell cycle signature was prominently
expressed in several malignant subsets (Figure 2B; Figure S1B,
Supporting Information). Notably, GMP-like cells exhibited the
highest expression of cell cycle signature among the malignant
subsets, while HSC-like and monocyte-like (Mono-like) malig-
nant cells exhibited the lowest expression of cell cycle signature.
Next, we applied the digital cytometry method, CIBERSORTx, to
deconvolute the pre-treatment RNA-seq samples and estimate
the abundance of each cell type based on the single-cell reference
profiles (Figure S1C, Supporting Information).[20] We observed a
positive correlation between the estimated abundance of GMP-
like cells and the overall expression of the cell cycle signature in
bulk RNA-seq samples, whereas there were negative correlations
for both HSC-like and Mono-like cells (Figure 2C). It is notewor-
thy that the HSC-like malignant cells were highly similar to pre-
viously defined leukemia stem cells (LSCs), which are known to
be in a quiescent and non-dividing state (Figure S1D, Supporting
Information).[21] These results indicate that the global cycling sta-
tus of AML malignant cells is closely related to the malignant cell
composition.

Next, we questioned whether the compositions of malignant
subsets were linked to treatment responses to AZA-HiDAC-Mito
therapy. Remarkably, GMP-like cells were more abundant in re-
sponders, while HSC-like cells were enriched in non-responders
(Figure 2D,E; Figure S1E, Supporting Information). This obser-
vation was further supported by the results of GSEA enrichment
analysis conducted on the previously reported GMP-like signa-
ture and LSC17 gene signature (Figure 2F,G).[19,21a] We also em-
ployed Gene Set Variation Analysis (GSVA) to establish a GMP
score based on the GMP-like signature for each sample, and com-
pared it with the well-established LSC17 score.[21a] Both signa-
tures exhibited AUC = 0.71 in distinguishing responders and
non-responders (Figure S1F, Supporting Information). Similar
performance was observed when using the relative fraction of
GMP-like cells or HSC-likes cells as an indicator (AUC = 0.68
and 0.77, respectively). Furthermore, combining these two cellu-
lar fractions using their difference resulted in superior perfor-
mance with an AUC value of 0.83 (Figure 2H). Specifically, a
malignant composition that is GMP-like-dominant predicts treat-
ment response, while an HSC-like-dominant malignant compo-
sition is associated with treatment failure (Figure S1G, Support-
ing Information). Taken together, our results highlight GMP-like
cells as the primary malignant subset that is sensitive to AZA-
HiDAC-Mito therapy owing to an active cell cycle program, and
the difference in cellular fractions between GMP-like and HSC-

like malignant subsets can serve as a predictive indicator of re-
sponders to AZA-HiDAC-Mito therapy.

2.3. AZA Treatment Induced Upregulation of Genes Related to
Natural Killer Cell Mediated Cytotoxicity in Responders

Much effort had been made to identify the transcriptional effects
upon epigenetic priming by AZA treatment in both solid tumors
and hematologic malignancies, providing insight into the mech-
anisms by which AZA treatment exerts its effects.[4a,b,22] Never-
theless, the in vivo transcriptional effects of AZA treatment in
AML and their association to clinical response to an AZA-based
therapy are still unclear. To address this, we compared gene ex-
pression levels between RNA-seq samples from Day 5 and Day
0. GSEA analysis on KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways revealed that AZA treatment induced up-
regulation of multiple pathways related to immune processes
and immune activation (Figure 3A). Specifically, natural killer
cell mediated cytotoxicity and T cell receptor signaling pathways
were only upregulated in responders, suggesting distinct effects
upon AZA treatment between responders and non-responders
(Figure 3B; Figure S2A, Supporting Information). We further cal-
culated gene-set enrichment scores per sample with GSVA, and
observed the pairwise upregulation of natural killer cell mediated
cytotoxicity pathway but not T cell receptor signaling pathway in
responders (Figure 3C; Figure S2B, Supporting Information). We
then mapped the transcriptional changes onto the KEGG path-
way using Pathview,[23] and observed a global upregulation of
components in natural killer cell mediated cytotoxicity pathway
in responders (Figure 3D; Figure S2C, Supporting Information).

2.4. Enrichment of NK Cells Predicted Favorable Clinical
Outcomes in AZA-Based Therapies

Previous studies reported that AZA treatment facilitated the tu-
mor recognition of AML cells by NK cells.[24] Our results pro-
vided in vivo evidence to support previous studies and further
indicated the involvement of NK cells in determining the treat-
ment response to such AZA-based therapy. To test whether the
baseline level of NK cells is associated with treatment response,
we analyzed the deconvolution result for immune subsets in pre-
treatment RNA-seq samples. Notably, responders had a signifi-
cantly higher proportion of NK cells (p = 0.0088) (Figure 4A,B;
Figure S3A, Supporting Information), which was further sup-
ported by the enrichment of a curated NK cell signature with nor-
malized enrichment score = 2.227, p = 0.002 (Figure 4C).[25] The
core enriched genes included NK cell receptor NCR1 (NKp46),
KLRC3, KLRD1, and NK cell cytotoxicity molecules: GZMH,
PRF1, GZMA, and NKG7. These findings underlined an impor-
tant role of NK cell abundance and activity in treatment response
to AZA-HiDAC-Mito therapy.

Furthermore, we tested whether the association of NK cell
abundance and treatment response is AZA-specific. Analyzing
RNA-seq samples from a historical cohort of AML patients re-
ceiving HiDAC-Mito only therapy revealed that neither the esti-
mated abundance of NK cells nor the expression of NK cell sig-
nature was correlated with response to HiDAC-Mito only ther-
apy (Figure S3B,C, Supporting Information).[6] We also assessed
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Figure 2. AML malignant composition correlated with treatment response. A) UMAP visualization of malignant subsets from the public single-
cell transcriptome (van Galen et al). Six subsets of malignant cells were included: hematopoietic stem cell-like (HSC-like), progenitor-like (Prog-
like), promonocyte-like (ProMono-like), monocyte-like (Mono-like), conventional dendritic cell-like (cDC-like), Granulocyte-macrophage-progenitor-like
(GMP-like). B) Boxplot showing the aggregated gene expression of cell cycle signature in each malignant subset per patients in the scRNA-seq dataset.
C) Pearson’s correlation between the estimated abundance of malignant subsets and the overall expression of cell cycle signature in pre-treatment
RNA-seq samples. D) Boxplot showing the estimated relative abundance of each malignant subset. p values were calculated with two-sided Student’s
t-test. Fractions of BM/PB samples from same patients were averaged. E) The relative abundance of each malignant subset in each pre-treatment sam-
ple. F,G) GSEA to assess the enrichment of GMP-like signature F) and LSC17 signature G) in responders of AZA-HiDAC-Mito therapy, comparing to
non-responders. NES, normalized enrichment score; p value was calculated with permutation test. H) Receiving operating curve (ROC) analysis: Using
relative fraction of GMP-like cells, HSC-like cells, or their combination (difference between the fractions of GMP-like cells and HSC-like cells) to predict
responders.
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Figure 3. Transcriptional changes upon AZA treatment for 5 days. A) Bubble plot showing the results of GSEA analysis on KEGG pathways by comparing
gene expression between Day 5 and Day 0. NES, normalized enrichment score. Top 10 enriched pathways in responders are shown. padj, adjusted p
value. NES, normalized enrichment score. B) GSEA to assess the enrichment of Natural killer cell mediated cytotoxicity pathway upon AZA treatment for
5 days in responders (top) and non-responders (bottom). NES, normalized enrichment score; p value was calculated with permutation test. C) Boxplot
showing GSVA scores of Natural killer cell mediated cytotoxicity pathway. Paired samples were used in comparison of Day 5 and Day 0. p values were
calculated with two-sided paired Student’s t-test. D) Pathview map showing the gene expression changes between Day 5 and Day 0 in responders in
Natural killer cell mediated cytotoxicity pathway. The mapped color indicates log2(fold change) of Day 5 versus Day 0.
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Figure 4. Immune landscape correlated with treatment response. A) Boxplot showing the estimated relative abundance of each immune subset. p
values were calculated with two-sided Student’s t-test. Fractions of BM/PB samples from same patients were averaged. B) The relative abundance of
each immune population in each sample from patients prior to AZA treatment. C) GSEA to assess the enrichment of a curated NK cell signature in
responders of AZA-HiDAC-Mito therapy, comparing to non-responders. NES, normalized enrichment score; p value was calculated with permutation
test. D) Kaplan-Meier curve of overall survival for patients receiving AZA treatment in Beat AML cohort. Patients were equally divided into two groups
based on the aggregated expression of a NK cell signature. p value was calculated with a two-tailed log rank test. E) Pearson’s correlation of cellular
fractions between HSC-like cells and NK cells in Day 0 samples. F) ROC curve for the performance of classifiers based on the cellular fraction of NK cells
or the combination of NK cells and GMP-like cells (NK + GMP-like).

the expression of known NK cell marker genes NCR1, KLRD1,
NKG7, and KLRC3, which were upregulated in responders of
AZA-HiDAC-Mito therapy but not HiDAC-Mito therapy, com-
pared to non-responders (Figure S3D, Supporting Information).
Nevertheless, when analyzing RNA-seq samples from patients
receiving AZA treatment in Beat AML cohort,[1c] we found that
both upregulation of NK cell signature and elevated NK cell abun-
dance is associated with better overall survival (Figure 4D; Figure
S3E, Supporting Information). In multivariate Cox regression
models, stratifying patients based on both methods retained sig-

nificance for overall survival when age, sex, and ELN2017 risk
classification were considered (Table S2, Supporting Informa-
tion). Additionally, for patients receiving decitabine, or standard
“7+3” chemotherapy (Cytarabine, Idarubicin) in the Beat AML
cohort, we observed no such associations (Figure S3F,G, Support-
ing Information). Therefore, our results highlight the involve-
ment of NK cells in determining the clinical outcomes of AZA-
based therapies, which may link to the in vivo effect of AZA treat-
ment in inducing genes related to natural killer cell mediated cy-
totoxicity.
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We next asked whether the abundance of NK cells was associ-
ated with the malignant composition. We found that the fraction
of NK cells inversely correlated with the fraction of HSC-like cells
(Figure 4E; Figure S3H, Supporting Information). Therefore, the
fractions of NK cells can also be combined with fractions of GMP-
like cells to classify responders and non-responders with an AUC
= 0.84, which is better than merely using the fractions of NK cells
(Figure 4F). Together, our findings establish that the malignant
composition and immune landscape could stratify patients with
different responses to AZA-HiDAC-Mito therapy.

2.5. AZA Treatment Induced Dose-Dependent 5hmC Changes
which were Prognostic

AZA treatment is known to affect the genome-wide distribu-
tion of DNA 5mC and 5hmC modifications, which have been
widely used for the diagnosis and prognosis of various types of
cancer.[13a–d] To understand the epigenetic modulation effect of
AZA treatment, we characterized genome-wide 5hmC profiles
for 120 BM and/or PB samples obtained from 40 patients at Day
0 and/or Day 5 through Nano-hmC-Seal.[26] There were only 19
patients that had both BM and PB samples at Day 0 and Day 5,
and we performed differential analysis on 5hmC levels between
Day 0 and Day 5 for each patient. We found that the differentially
hydroxy-methylated genes (DhMGs) between Day 0 and Day 5
were rarely shared among patients, and the intrinsic differences
at 5hmC patterns between patients far outweighed the effects of
AZA treatment (Figure S4A,B, Supporting Information). Never-
theless, we observed more DhMGs in patients receiving higher
dose of AZA, suggesting a dose-dependent epigenetic modula-
tion effect of AZA treatment (Figure 5A). We further used Spear-
man’s correlation to evaluate the global difference of 5hmC pro-
files between Day 0 and Day 5 (29 patients with paired samples
from BM were included). Indeed, a higher dose of AZA treatment
led to a more discriminated 5hmC profile, reflecting a higher
level of 5hmC alteration upon AZA treatment for 5 days (Figure
S4C, Supporting Information).

Notably, we found that patients with higher level of 5hmC al-
teration upon AZA treatment for 5 days (i.e., higher number of
DhMGs or lower correlation between Day 5 and Day 0) had longer
overall survival in both univariate and multivariable analysis that
incorporated age and sex features (Figure 5B; Figure S4D and
Table S3, Supporting Information). Taken together, the epige-
netic responsiveness to AZA treatment may be positively associ-
ated with patient survival, as reflected by the alteration on 5hmC
modifications.

2.6. Predicting the Treatment Response to AZA-HiDAC-Mito via a
5hmC-Based Machine Learning Model

Given that 5hmC levels are known to correlate with gene ex-
pression levels,[27] we wondered whether responders and non-
responders could be also distinguished at 5hmC level in a man-
ner similar to the RNA level. We performed differential hydrox-
ymethylation analysis on 62 pre-treatment 5hmC samples col-
lected from 40 patients (Figure 1A). The extent of differences at
5hmC levels positively correlated with differences at RNA levels,

especially for the DEGs (Figure S4E, Supporting Information).
Additionally, we evaluated the enrichment of gene signatures for
GMP-like cells, HSC-like cells, and NK cells with GSEA analysis
based on 5hmC levels, which exhibited consistent enrichment
patterns similar to RNA levels (Figure 5C). These data suggest
that 5hmC can also be used to distinguish responders and non-
responders, similar to RNA, and thus support 5hmC as a candi-
date biomarker for prediction of treatment response.

In comparison to RNA-based biomarkers, DNA-based bioma-
terials are far more stable during collection, handling, and trans-
portation. As implicated in tumorigenesis and disease progres-
sion, DNA 5hmC modifications have been widely used for the di-
agnosis and prognosis of various types of cancer.[13] We thus tried
to identify a 5hmC gene signature for prediction of treatment re-
sponse by employing the eXtreme Gradient Boosting (XGBoost)
machine learning algorithm to build a classifier model. Since
the 5hmC profiles from samples collected at Day 0 and Day 5
were highly analogous for the same patient at genome-wide level
(Figure S4B, Supporting Information), we included both Day 0
and Day 5 samples to enlarge the sample size. The 5hmC pro-
files were divided into a train set and test set based on sequencing
batches (80 samples from 22 patients sequenced in the first batch
were used as the train set; 40 samples from 18 patients sequenced
in the second batch were used as the test set). We initially trained
an XGBoost model with all genes on the train set and evaluated
its performance with patient-based five-fold cross validation.

The receiver operating characteristic (ROC) curve showed that
the 5hmC XGBoost classifier achieved AUC = 0.71 in cross vali-
dation (Figure 5D; Figure S4F, Supporting Information). By eval-
uating the F score for each gene, we identified 142 genes that
contributed to the model (Figure 5E). Top contributing genes in-
cluded S-phase kinase-associated protein 1 (SKP1), the compo-
nent of SKP1-CUL1-F-box-protein (SCF) complex that is involved
in the proteolysis of cell cycle regulators.[28] Using t-distributed
stochastic neighbor embedding (t-SNE) dimensionality reduc-
tion, the 5hmC levels of these 142 genes separate the respon-
ders and non-responders (Figure 5F). To further obtain a 5hmC
biomarker set with the best performance, we selected the genes
with the highest contribution to the model to re-build the clas-
sifier with train set samples. The signature composed from the
top 11 contributing genes (including SKP1, WNT8A, CYP2E1,
and NBPF9) achieved the best performance in cross validation
(Figure 5G; Figure S4G,H, Supporting Information), with an
AUC of 0.911 (specificity = 87.1% and sensitivity = 87.8%). The
test set also achieved a high AUC of 0.86 (AUC = 0.90 and AUC
= 0.82 for Day 0 and Day 5 samples in the test set, respectively;
Figure S4I, Supporting Information). The high accuracy in pre-
dicting Day 0 samples suggests that our 11-gene 5hmC signature
could serve as a promising pre-treatment biomarker to refine pa-
tient selection of AZA-HiDAC-Mito therapy.

Given the ease of collection and less invasive properties, pe-
ripheral blood samples are generally considered as a preferred
source for biomarker development in clinical applications. We
thus evaluated the agreement between PB and BM samples in
predicting treatment response. When performing unsupervised
hierarchical clustering on pre-treatment 5hmC samples based on
the contributing genes in XGBoost model, we found that BM
and PB samples from same patient exhibited high concordance
(Figure S5A, Supporting Information). Most paired BM and PB
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Figure 5. Identification of 5hmC gene signature for prediction of treatment response to AZA-HiDAC-Mito therapy. A) Boxplot showing the number of
identified DhMGs between Day 0 and Day 5 for patients treated with different AZA doses. Nineteen patients with paired Day 0 and Day 5 samples
from both BM and PB were selected (4 samples for each patient). p values were calculated with Wilcoxon rank sum test. B) Kaplan-Meier survival curve
for overall survival of 19 patients with paired Day 0 and Day 5 samples from both BM and PB. Patients were divided into two groups based on the
median of identified DhMGs number. p value was calculated with a two-tailed log rank test. C) 5hmC-based GSEA to assess the enrichment of GMP-like,
HSC-like, NK cell signature in responders of AZA-HiDAC-Mito therapy, comparing to non-responders. NES, normalized enrichment score; p value was
calculated with permutation test. D) ROC curve for the performance of the XGBoost classifier in cross validation for patients receiving AZA-HiDAC-Mito
therapy. The model was trained on 80 samples. E) Bar graph showing F scores of top contributing genes in the 5hmC-based XGBoost model. F) t-SNE
(t-distributed stochastic neighbor embedding) plot of samples from responders and non-responders based on 5hmC profiles of the top 142 contributing
genes from the 5hmC-based XGBoost model. G) ROC curve for the performance of the XGBoost classifier based on the 11-gene-5hmC signature. The
model was evaluated using patient-based five-fold cross validation (80 samples from 22 AML patients). 40 samples from 18 AML patients were used for
testing.
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samples clustered closely to each other, and successfully clus-
tered into the responder group or non-responder group. More-
over, as for the 11-gene-5hmC model, we observed comparable
AUC values for PB and BM samples in the test set (AUC =
0.84 and 0.86, respectively; Figure S5B, Supporting Information).
These results collectively support the feasibility of PB samples in
predicting treatment response to AZA-HiDAC-Mito therapy us-
ing the established 11-gene 5hmC signature.

3. Discussion

As the treatment of AML moves toward a subset specific ap-
proach with targeted agents and combination regimens, identi-
fying patients who may respond better to an HMA-based ther-
apy remains an unmet need. Previous studies have analyzed
DNA methylation profiling as a biomarker for response to HMA-
based treatment in patients with myelodysplastic syndrome or
AML. However, these studies have produced mixed results and
none have established an epigenetic predictor of responsive-
ness to HMAs.[29] These studies focused on global methyla-
tion using long interspersed nuclear element (LINE) methyla-
tion, methylation patterns in specific tumor suppressor genes,
and an aberrantly hypermethylated gene signature, but overall
there was no reliable significant predictor of treatment response.
Of note, these studies included other HMA combinations or
HMA monotherapy for multiple cycles, whereas our study uti-
lized AZA as epigenetic priming prior to cytotoxic therapy. In
a phase 1 study of epigenetic priming with decitabine prior to
cytotoxic therapy with cytarabine/daunorubicin in patients with
AML, pre-treatment and post-priming DNA methylation levels of
CDKN2B, LINE1, and HISTH2AA were not predictive of treat-
ment response.[30]

While overall 5hmC levels are found to vary among pa-
tients with AML and show an inverse correlation with patient
survival,[31] the feasibility of using 5hmC profiles to predict the
responsiveness to a particular treatment has yet to be assessed.
To our knowledge, our work is the first effort to identify a 5hmC
predictive biomarker for treatment response in AML. Although
5hmC profiling is investigational and not yet a part of the clinical
pre-treatment evaluation of patients with AML, it is a quick and
sensitive method, which requires only a limited amount of ge-
nomic DNA.[26] Using 5hmC profiling of peripheral blood and/or
bone marrow biopsy samples in AML patients treated with AZA-
HiDAC-Mito in a phase 1 clinical trial, we identified a pre-
treatment 11-gene 5hmC signature as a predictive biomarker to
identify patients who may benefit from AZA-HiDAC-Mito. Due
to small sample size, we were not able to investigate the effect of
cytogenetics and pathogenic mutations in the current model, and
it would be important to incorporate these prognostic features
along with the 5hmC signature in a larger prospective study.

In addition to biomarker identification, we also revealed mech-
anistic insights into the therapeutic response of AML patients to
AZA-HiDAC-Mito. Among responders, we found an increased
expression of genes involved in the cell cycle and DNA synthe-
sis, suggesting that increased numbers of actively cycling cells
may be associated with effective AZA-HiDAC-Mito response. In
line with this, GMP-like cells were speculated as a dominant pro-
liferating malignant subset that was associated with treatment

response. We further uncovered the in vivo effect of AZA treat-
ment in inducing genes related to NK cell mediated cytotoxic-
ity in responders. Clarifying whether this is a direct or indirect
effect of AZA towards NK cells requires successor studies. Fur-
thermore, analysis of patients receiving an AZA-based regimen
or non-AZA-based regimen revealed a unique role of NK cells in
determining the response to AZA treatment. A combination of
cellular fractions of GMP-like cells and NK cells can better predict
the treatment response to AZA-HiDAC-Mito therapy, suggest-
ing a combined effect of tumor-intrinsic state and immune mi-
croenvironment in governing the therapeutic response of AML
patients.

4. Conclusions

Collectively, our findings show that cellular compositions are as-
sociated with treatment responses, and DNA 5hmC patterns in
an 11-gene signature can be used as a pre-treatment biomarker
for AZA-HiDAC-Mito therapy, which may help select patients
who benefit from this regimen. The potential of this 5hmC gene
signature in predicting treatment response merits validation in
larger prospective trials as well as studies involving other novel
HMA-based combinations.

5. Experimental Section
Study Subjects: Detailed phase 1 trial design methods for this study

had been reported.[6] The study population included patients age ≥

18 years with high-risk AML and Eastern Cooperative Oncology Group
(ECOG) performance status 0–2. AML was defined by the 2008 crite-
ria of the World Health Organization (WHO).[32] Patients with high-risk
disease were included and defined as therapy related-AML (t-AML), re-
lapsed/refractory AML (RR-AML), de novo AML in patients age ≥ 60 years,
AML arising from myelodysplastic syndrome (MDS-AML), myeloprolifer-
ative neoplasms in blast phase (MPN-BP), and chronic myelomonocytic
myeloid leukemia (CMML-AML). This single-center trial was registered at
www.clinicaltrials.gov as NCT01839240. All participants provided written
informed consent.

Trial Design: Cohorts of three patients were treated in a 3 + 3 dose
escalation scheme. Patients received AZA at 37.5 mg m−2, 50 mg m−2, or
75 mg m−2 by subcutaneous administration (SC) or intravenous therapy
(IV) once daily on Days 1–5 followed by cytarabine 3000 mg m−2 given
IV over 4 h followed by mitoxantrone 30 mg m−2 given IV over 1 h once
each on Day 6 and Day 10. The maximum dose of AZA to be explored was
capped at 75 mg m−2. Cytarabine and mitoxantrone dose reductions were
made for patients age ≥ 70 by 33% to 2000 mg m−2 of cytarabine and
20 mg m−2 of mitoxantrone. A research related bone marrow aspirate was
performed pre-treatment/prior to AZA administration (Day 0) and after
AZA administration (Day 5). Mononuclear cells were extracted and sam-
ples were cryopreserved for future analysis. To evaluate the efficacy of this
regimen, a nadir marrow biopsy was performed on Day 17 and a biopsy to
assess remission status was done within 2 weeks of hematologic recovery
(defined as absolute neutrophil count (ANC) ≥ 1000 per μL and platelet
count ≥ 100 000 per μL), but no later than Day 42. Response criteria for
complete remission (CR), CR with incomplete count recovery (CRi), and
treatment failure (TF) were defined according to the 2010 ELN Working
Group recommendations.[33] The overall response rate was defined as CR
+ CRi, and these patients were defined as responders to treatment. Over-
all survival was defined as time from treatment to time of death. The data
cutoff date was November 1, 2017. The clinical results of the trial had been
published.[6]

DNA and RNA Isolation: DNA was extracted from bone marrow or
peripheral blood using the Gentra Puregene Cell kit (Qiagen, Valencia,
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CA) according to the manufacturer’s directions. RNA was extracted us-
ing TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA) according to
the manufacturer’s directions.

RNA Sequencing: mRNA was extracted from 1 μg of total RNA by using
Dynabeads mRNA Direct kit (Ambion). For each sample, 20 ng of mRNA
was used for library construction by using TruSeq stranded mRNA sam-
ple preparation kit (Illumina). Libraries were sequenced on Illumina Hiseq
4000.

Nano-hmC-Seal: Nano-hmC-Seal (5hmC-seq) was performed on 120
bone marrow (BM) and peripheral blood (PB) samples from 40 pa-
tients collected at Day 0 and/or Day 5, as previously described with mi-
nor changes.[26] Libraries were prepared with KAPA Hyperplus kit (KAPA
KK8515) using extracted genomic DNA from patient BM or PB mononu-
clear cells. Briefly, 50 ng genomic DNA in 14 μL H2O was fragmented at
37 °C for 20 min by addition of 2 μL of 10x KAPA Fragmentation Buffer
and 4 μL of KAPA Fragmentation Enzyme. The fragmented DNA was end-
polished at 65 °C for 30 min by adding 2.8 μL of End Repair & A-Tailing
Buffer and 1.2 μL of End Repair & A-Tailing Enzyme Mix. Three microliters
of 1.5 μm Adapter (Bioo Scientific NOVA-514103) were added followed by
12 μL of Ligation Buffer and 4 μL DNA Ligase. The mixture was incubated at
20 °C for 1 h. Libraries were then purified by DNA Clean and Concentrator
kit (Zymo D4013) and eluted in 20 μL H2O. 𝛽-GT labeling was then per-
formed by addition of 0.85 μL self-synthesized 3 mm N3-UDG and 2.5 μL
of T4-𝛽GT (Thermo EO0831) at 37 °C for 2 h. Azide labeled DNA libraries
were then purified by DNA Clean and Concentrator kit (Zymo D4013) and
eluted in 30 μL H2O. Libraries were further biotinylated by addition of 1 μL
4.5 mm (Sigma 760 749) DBCO-PEG4-Biotin and incubated at 37 °C for 2
h. Biotinylated DNA libraries were then purified by DNA Clean and Con-
centrator kit (Zymo D4013) and eluted in 30 μL H2O. The biotinylated DNA
was further enriched by 5 μL of M-270 Streptavidin beads (Thermo 65 305)
and incubated at room temperature for 30 min. The beads were washed
3 times with Wash Buffer (5 mm Tris-HCl (pH 7.5); 0.5 mm EDTA; 1 m
NaCl; 0.05% Tween 20) and resuspended in 20 μL H2O. Libraries were am-
plified with on-bead PCR by addition of 5 μL Primer Mix (KAPA KK8515)
and 25 μL of Enzyme Mix (KAPA KK8515) with following condition (98 ˚C
30 s; 98 ˚C 15 s; 60 ˚C 30 s; 72 ˚C 30 s; Repeat 14 cycles; 72 ˚C 1 min).
Post-amplification cleanup was performed by adding 0.9x Ampure beads
(Beckman Coulter A63880); beads were washed twice with 80% ethanol
and eluted in 50 μL H2O. Libraries were sequenced on Illumina NextSeq
500.

RNA-Seq Data Processing: The quality control for raw sequence data
was performed by FASTQC version 0.11.8.[34] The reads were then aligned
to the UCSC hg19 reference genome by STAR-2.5.3 software.[35] Gene
counts were analyzed by HOMER software.[36] BM and PB samples col-
lected at Day 0 from patients treated with AZA-HiDAC-Mito were used to
perform differential analysis. Differentially expressed genes between re-
sponders and non-responders were detected by DESeq2.[37] The thresh-
old of differentially expressed genes was set to p.adj ≤ 0.1 and |log2 Fold-
Change| ≥ 0.5. Clustering analysis was performed with pheatmap package
version 1.0.12. Annotation and genome files (Homo sapiens UCSC hg19)
were downloaded from iGenomes.

Gene Module and Pathway Analysis: For gene module analysis, Pear-
son’s correlation coefficients were first calculated between each pair of
differentially expressed genes (DEGs) based on log2-scaled normalized
expression by variance stabilizing transformation (vst) method. A hier-
archical clustering based on the Euclidean distance was then employed
to separate genes into four modules. STRING database was utilized
to extend gene modules by adding direct interacting genes that had a
mean expression over 3 Transcripts Per Million (TPM).[14] Functional en-
richment analysis was next performed with Metascape for each module
network.[38] For GSEA analysis, clusterProfiler was utilized.[39] Pathview
package was used for visualization of transcriptional changes in indi-
cated pathways. GSVA package was used for calculating gene-set enrich-
ment scores per sample with default settings except for “mx.diff = F”. For
patients receiving AZA-HiDAC-Mito therapy, log2-scaled TPM expression
was used; for public Beat AML cohort, the normalized expression ma-
trix from https://biodev.github.io/BeatAML2 was used. The LSC17 scores
were calculated per sample as the sum of the log2-transformed TPM val-

ues for the 17 genes weighted by the regression coefficients, as described
previously.[21a]

Digital Cytometry: Gene expression deconvolution was performed on
CIBERSORTx web portal with default setting. In brief, reference signa-
ture matrix was built by CIBERSORTx based on gene expression of 13,653
cells belonging to six malignant subsets (HSC-like, Prog-like, GMP-like,
ProMono-like, Mono-like, cDC-like), and 7 non-leukemic immune popula-
tions, including Mature B cell (B), Conventional dendritic cell (cDC), Cy-
totoxic T Lymphocyte (CTL), Monocyte, Plasma cell (Plasma), Naïve T cell
(T), and Natural Killer cell (NK). Bulk RNA-seq data were normalized with
TPM and then deconvoluted using S-mode batch correction and relative
mode. The inferred fractions were scaled to a sum of 1 for malignant sub-
sets or immune populations, respectively.

Survival Analysis: Kaplan-Meier survival analysis was calculated with
survival R package (version 3.1-7) and visualized by the survminer R pack-
age (version 0.4.6). In multivariable analysis, age and sex features were
incorporated into the Cox regression models. For Beat AML cohort, the
available ELN2017 risk classification was also considered.

5hmC-Seq Data Analysis: The quality control for raw sequence data
was performed by FASTQC version 0.11.8.[34] The 5hmC reads were then
mapped to the UCSC hg19 reference genome by STAR-2.5.3 software
with parameter “–alignIntronMax 1 –alignEndsType EndToEnd”. The de-
duplication was performed using the parameter “-tbp 5” in makeTagDi-
rectory of HOMER software, and the gene counts matrix was generated
by the HOMER’s analyzeRepeats. DESeq2 was utilized to identify differen-
tially hydroxy-methylated genes (DhMGs) upon AZA treatment (Day 5 vs
Day 0) under threshold p value <0.01 and |log2 FoldChange| ≥ 0.5.

Machine Learning Based on 5hmC-Seq Data: A total of 120 BM/PB
samples were collected from 40 patients for 5hmC profiling. The first batch
of sequenced samples consisted of 80 samples obtained from 22 patients
(47 samples from 13 responders and 33 samples from 9 non-responders),
which were selected at random and without consideration of their treat-
ment response status, to serve as the train set. The remaining 40 samples
obtained from 18 patients were sequenced in the second batch and served
as the test set (28 samples from 12 responders and 12 samples from 6
non-responders). The responders were set as case observations (positive
label), and non-responders were set as control observations (negative la-
bel) for the machine learning algorithm. The detailed patient id and clinical
information of both train set and test set can be found in Table S1 (Sup-
porting Information). Rlog-normalized 5hmC levels for each gene were
used to build classifier by XGBoost with python API (version 3.6.6). Prob-
abilities estimation was then generated by “predict_proba” method. The
performance was evaluated by patient-based five-fold cross validation. The
importance of each gene (F-score) was calculated by “get_fscore” func-
tion. Top 11 genes with highest F score were selected to rebuild the clas-
sifier. To set up a negative control for the machine learning models, the
response status of patients were randomly shuffled in the train set, and
then the XGBoost models were trained on either all genes or just the top
11 contributing genes.

Statistical Analyses: All statistical analyses were performed in R 3.6.0
software. The Pearson’s correlation was used unless specified otherwise.
For comparison of responders and non-responders, two-tailed unpaired
Student’s t tests or Wilcoxon rank sum tests were performed. For compar-
ison of paired Day 0 and Day 5 samples, two-tailed paired Student’s t tests
were used. For Kaplan-Meier survival curves, the p values were calculated
using two-tailed log rank tests. Multivariable Cox models for overall sur-
vival were used to adjust for potential confounders including age and sex.
Statistical significance was set at p < 0.05. All boxplots indicate median
(center), 25th and 75th percentiles (boundaries of the box), and minimum
and maximum (whiskers).
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