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Efficient Metabolic Fingerprinting of Follicular Fluid
Encodes Ovarian Reserve and Fertility

Jiao Wu, Chunmei Liang, Xin Wang, Yida Huang, Wanshan Liu, Ruimin Wang, Jing Cao,
Xun Su, Tao Yin, Xiaolei Wang, Zhikang Zhang, Lingchao Shen, Danyang Li, Weiwei Zou,
Ji Wu, Lihua Qiu, Wen Di, Yunxia Cao,* Dongmei Ji,* and Kun Qian*

Ovarian reserve (OR) and fertility are critical in women’s healthcare. Clinical
methods for encoding OR and fertility rely on the combination of tests, which
cannot serve as a multi-functional platform with limited information from
specific biofluids. Herein, metabolic fingerprinting of follicular fluid (MFFF)
from follicles is performed, using particle-assisted laser desorption/ionization
mass spectrometry (PALDI-MS) to encode OR and fertility. PALDI-MS allows
efficient MFFF, showing fast speed (≈30 s), high sensitivity (≈60 fmol), and
desirable reproducibility (coefficients of variation <15%). Further, machine
learning of MFFF is applied to diagnose diminished OR (area under the curve
of 0.929) and identify high-quality oocytes/embryos (p < 0.05) by a single
PALDI-MS test. Meanwhile, metabolic biomarkers from MFFF are identified,
which also determine oocyte/embryo quality (p < 0.05) from the sampling
follicles toward fertility prediction in clinics. This approach offers a powerful
platform in women’s healthcare, not limited to OR and fertility.

1. Introduction

Ovarian reserve (OR) and fertility reflect reproductive potential,
which is critical in women’s healthcare.[1] Precise encoding of OR
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and fertility is vital in determining the
appropriate treatments, affecting 10–32%
of women at reproductive age, based on
the estimates from the National Society for
Assisted Reproductive Technology (SART)
system in the United States.[2] Current
analytical methods in clinics rely on a
combination of tests including biochemical
analysis and ultrasound imaging.[3] These
methods are based on the selected protein
biomarkers (such as follicle-stimulating
hormone [FSH] and antimüllerian hor-
mone [AMH]) or physical measurements
(antral follicular count [AFC]), which cannot
serve as a multi-functional platform with
limited information from specific biofluids
like follicular fluid (FF).[4] Accordingly,
a single test that offers comprehensive
metabolic information would be desirable
in encoding OR and fertility, to engage var-
ious clinical applications toward women’s
healthcare.

The selection of biomarkers from biofluids marks a turn-
ing point in improving diagnostics, particularly for OR and
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fertility.[5] In selecting biomarkers, differing from nucleic acids
and proteins,[6] the metabolites serve as end-products of path-
ways, allowing the characterization of biological and pathological
processes in real time.[7] Notably, most biomarkers of the OR and
fertility are hormones (e.g., FSH and AMH) in the blood circulat-
ing in the whole body, which affords indirect evaluation by relying
on feedback from the pituitary or follicles in the ovary.[8] For com-
parison, FF secreted by follicles in ovarian is directly related to the
variation of OR, oocyte developmental competence, and embryo
viability.[9] Thus, new panels of metabolic biomarkers in FF hold
promise for encoding OR and fertility, considering the function
of metabolites at the end of pathways. To date, the available anal-
yses using metabolic biomarkers in FF are still preliminary for
encoding OR and fertility, only dealing with small cohorts (≈40–
150) and single functions like the diagnosis of diminished OR
(dOR).[9,10] Therefore, new panels of metabolic biomarkers with
multi-functions are needed to be constructed in a well-defined
cohort to improve the diagnostic accuracy and predictive perfor-
mance, as the next-generation tool.

Mass spectrometry (MS) is a fundamental technique for
metabolic biomarker detection that allows for the measurement
of compounds in a label-free manner.[11] Conventional MS tech-
niques using chromatography (e.g., liquid chromatography, LC
or gas chromatography, GC) require pretreatment and enrich-
ment of samples (30–60 min/sample) to overcome the high com-
plexity of biofluids and low abundance of metabolites (down to
approximately pmol), hindering its widespread applications.[12]

Importantly, laser desorption/ionization (LDI) MS enables effi-
cient analysis of biofluids with minimal sample pretreatment
(approximately min/sample) and high sensitivity (approximately
pmol), by using defined matrix materials on the microarray chip
to selectively trap metabolites.[13] To date, protocols based on LDI
MS for metabolic fingerprinting have been utilized to detect a
wide range of biofluids (e.g., serum, urine, tear, cerebrospinal
fluid, and aqueous humor).[5a,6b,14] Despite this, the protocol us-
ing LDI MS for metabolic fingerprinting of FF (MFFF) has not
been developed. Moreover, LDI MS-based metabolic fingerprint-
ing has been applied to investigate a range of diseases such as
cancers, infectious diseases, and cardiovascular/cerebrovascular
diseases.[15] However, the specific application of LDI MS-based
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metabolic fingerprinting for encoding OR and fertility using
MFFF remains a significant challenge. Therefore, MFFF using
LDI MS would offer an efficient platform to characterize OR and
fertility, underpinning women’s healthcare.

Herein, we performed MFFF from follicles using particle-
assisted laser desorption/ionization mass spectrometry (PALDI-
MS) to encode OR and fertility (Scheme 1). PALDI-MS allowed
efficient MFFF, showing fast speed (≈30 s), high sensitivity
(≈60 fmol), and desirable reproducibility (coefficients of variation
[CVs] < 15%). Further, we achieved a precise diagnosis of dOR
(area under the curve [AUC] of 0.929) and identification of high-
quality oocytes/embryos (p < 0.05) using machine learning of
MFFF detected by a single PALDI-MS test. Meanwhile, we iden-
tified metabolic biomarkers from MFFF, which also determined
oocyte/embryo quality (p < 0.05) from the sampling follicles to-
ward fertility prediction in clinics. Therefore, our work would ad-
vance the encoding of OR and fertility for women’s healthcare.

2. Results and Discussion

2.1. Metabolite Detection through PALDI-MS

We developed the PALDI-MS for fast, sensitive, reproducible
records of MFFF by utilizing specific particles. The particles were
prepared from a solve-thermal method,[12] which obtained about
2 g of products per batch for large-scale use (capable of 2 × 106

PALDI-MS tests, inset of Figure 1a). The synthesized particles
possessed a polycrystalline structure corresponding to the Fe3O4
crystal structure (Joint Committee on Powder Diffraction Stan-
dards [JCPDS]:99-0073), as confirmed by X-ray diffraction (XRD)
analysis (Figure S1a, Supporting Information).

For fast speed, we achieved metabolite detection through a
microarray chip with automatic scanning mode and direct anal-
ysis of samples with minimum pretreatment. We detected the
metabolites at a speed of ≈3 s per sample (2 s detection by 2000
shots with the laser frequency of 1000 Hz and 1 s interval among
samples), using a 384-microarray chip through the automatic
scanning mode (Figure 1a). Further, we were able to directly con-
duct PALDI-MS analysis of biofluid samples due to the use of
particles. The particles with a uniform size (polydispersity index:
0.01) of ≈200 nm consisted of nanocrystals (≈4.5 nm), forming
rough cavities on the surface to trap small metabolites (Figure 1b
and Figure S1b–e, Supporting Information). Moreover, for sam-
ple pretreatment, we detected more metabolites in FF through
the dilution process (≈10 s) with a peak number of 445, compared
to deproteinization treatment (≈15 min) with a peak number of
293 (p < 0.05, Figure 1c), due to the loss of metabolites during
the deproteinization treatment (Figure S1f, Supporting Informa-
tion). Importantly, we achieved the minimum sample pretreat-
ment for FF detection with a facile dilution process, owing to
the high salt (0.5 m NaCl) and protein (bovine serum albumin,
BSA, 5 mg mL−1) tolerance of PALDI-MS (Figure S1g,h, Support-
ing Information). Accordingly, we demonstrated the fast speed of
PALDI-MS for small metabolite detection within ≈30 s per sam-
ple for the whole experiment, through a microarray chip and di-
rect analysis of samples with minimum pretreatment.

For sensitive detection, we assessed the detection performance
of PALDI-MS for small metabolites in standard solution and
biofluids. Due to the preferential trapping of small metabolites
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Scheme 1. Schematic of MFFF protocol for encoding OR and fertility. The protocol comprised two parts: the acquisition of MFFF based on PALDI-MS
and subsequent analysis of MFFF for encoding OR and fertility. a) For the acquisition of MFFF based on PALDI-MS, FF samples were first collected from
enrolled subjects. Subsequently, ≈100 nL of raw FF samples and 1 μL of particle suspension were loaded onto the microarray chip, followed by the LDI
MS detection. MFFF was obtained from the native MS spectra of each subject. b) For the analysis of MFFF, machine learning algorithms were used to
achieve a precise diagnosis of dOR. Further, we determined the quality of oocytes/embryos for dOR subjects.

through particles, the limit of detection (LOD) using particles has
remarkably improved by four orders of magnitude (down to ≈60
fmol, Figure 1d and Figure S2 and Tables S1 and S2, Supporting
Information) for detecting alanine (Ala), arginine (Arg), glucose
(Glc), and sucrose (Suc), compared to the traditional organic ma-
trices such as 𝛼-cyano-4-hydroxy-cinnamic acid (CHCA) and 2,5-
dihydroxybenzoic acid (DHB). The total ion count (TIC) for the
standard mixture (including 10 ng mL−1 Ala, Arg, Glc, and Suc)
showed 2–3 orders of magnitude enhancement using particles,
in comparison with CHCA and DHB (Figure 1e). Subsequently,
we evaluated the trapping performance for small metabolites in
prepared solutions by mixing particles with the typical metabo-
lite (Glc) and protein (BSA), respectively. We achieved molec-
ular trapping ratios of 5.4 for Glc (typical small metabolite,
m/z < 400 Da) and 2.5 for BSA (typical large molecule, m/z >

10,000 Da), by calculating the signal intensities of carbon element
on the surface of particle-molecule hybrids to the background in
ten randomly selected area (5/5, surface/background, Figure 1f
and Figure S3a,b and Table S3, Supporting Information), demon-
strating the superior trapping performance for small metabolites.
Further, to determine the minimum sample volume for MFFF,
we evaluated the cosine similarity scores of spectra obtained from
FF samples and their respective water dilutions at 2–100 folds
(Figure 1g and Figure S3c, Supporting Information). The scores
were all above 0.78 by utilizing 25–1000 nL of raw FF samples
with up to 40-fold dilution, attributed to the UV light absorp-
tance at the wavelength of 355 nm and the laser energy transi-
tion efficiency of the particles (Figure S3d, Supporting Informa-
tion). Therefore, we validated the high detection sensitivity of the
PALDI-MS with a LOD of ≈60 fmol in standard solution and the
minimal consumption of 25 nL of FF for small metabolite detec-
tion.

For analytical reproducibility, we detected the standard so-
lution containing three standard metabolites (including lysine
[Lys], Glc, and Suc). The CVs using particles were found <3%
for signal intensities at m/z values of 169.09 [Lys+Na]+, 203.05

[Glc+Na]+, and 365.11 [Suc+Na]+. Specifically, the CVs ranged
from 2.4% to 2.9% (Figure 1h), indicating the desirable repro-
ducibility of PALDI-MS due to the uniform crystallization of par-
ticles with arithmetic mean height (Sa) of 0.251 μm (Figure S4a,b,
Supporting Information). In contrast, the CVs were 50.2% to
387.3% using CHCA (Sa of 1.725 μm) and DHB (Sa of 7.471 μm)
as the matrix (Figure S4c,d, Supporting Information). Further,
we calculated the median CVs of m/z features extracted from FF
samples. We obtained median CVs of 13.4% and 10.6% for nor-
mal ovarian reserve (nOR) and dOR samples, in five independent
tests of each sample (Figure 1i). Thus, these results from both
standard mixture (CVs of 2.4–2.9%) and real-case biofluids (me-
dian CVs of 10.6–13.4%) indicated that our PALDI-MS method
would be a highly promising diagnostic tool for large-scale clini-
cal applications.

Attempts to profile metabolites using various methodolo-
gies focused primarily on two techniques, nuclear magnetic
resonance (NMR) and MS. NMR, which was based on the elec-
tromagnetic properties of metabolites, required an acquisition
time of ≈4–5 min and a large sample volume of approximately
hundreds of microliters to elucidate the structure of metabolic
components.[16] Parallelly, for conventional MS, rigorous sample
pretreatment (e.g., enrichment and deproteinization of ≈15 min)
and large sample volume (≈10–400 uL) were required to exclude
the presence of a high abundance of proteins and salts, thus
reducing the effect of sample complexity.[17] In this study, we
applied ferric oxide particles as the matrix to enhance detection
sensitivity and reproducibility. The homogeneous spatial distri-
bution of matrix-sample on the chip led to high reproducibility
of mass signals, enhancing the analytical reproducibility for
metabolite detection.[14a] Thus, we demonstrated that PALDI-
MS allowed efficient MFFF with an analytical speed of ≈30 s
per sample for the entire experiment by the microarray design
and direct analysis of the FF samples. Further, considering the
high sensitivity for metabolite detection (LOD of ≈60 fmol for
standard solutions and minimal consumption of 25 nL biofluid)
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Figure 1. Characterization of the PALDI-MS. a) Digital images of the microarray chip with 384 sample spots and particle solution dispersed by water
in a 600 μL tube for the insert image. The distance between the centers of two spots on the chip was 4.5 mm. b) Scanning electron microscopy (SEM)
image and transmission electron microscopy (TEM) image of particles (inset) showing the surface roughness of the particles. The scale bars for SEM
and TEM images were 100 nm. c) The comparison for sample pretreatment of dilution and deproteinization, displaying more metabolites detected by
dilution treatment. *** represented p < 0.001. d) The intensities of metabolites detected using particles, CHCA and DHB as the matrix, and typical mass
spectra (insert) of 1.12 nmol Ala. The standard deviation (s.d.) of three tests was obtained as an error bar. e) The TIC of mass spectra for detecting
standard mixture (including 10 ng mL−1 Glc, Suc, Ala, and Arg) using particles, CHCA, and DHB as the matrix. The error bars represented the s.d.
of three replicates. *** represented p < 0.001. f) Molecular trapping ratios for Glc and BSA using particles as the matrix through elemental mapping
results showing the selective trapping of particles for metabolites. The error bars represented ± s.d. *** represented p < 0.001. g) Cosine similarity
scores of mass spectra from raw FF and its dilutions with dilution folds of 2–100 using 10–500 nL of raw FF samples. The error bars showed the s.d. of
three samples. h) CVs of intensities for a standard mixture containing Lys, Glc, and Suc in 15 tests, showing the high reproducibility of PALDI-MS using
particle as the matrix. i) The CVs of intensities for FF samples from nOR and dOR subjects with five independent tests. The error bars represented ± s.d.

and desirable reproducibility (<15%), our platform for MFFF
would serve as a powerful tool in encoding OR and fertility.

2.2. Characterization of OR and Fertility Using MFFF

In the case-control design, FF samples were selected from a OR
biobank with 520 subjects at the Reproductive Center of the First
Affiliated Hospital of Anhui Medical University in China (Figure
2a). Of these, we selected 344 FF samples including 141 dOR sub-
jects and 203 nOR subjects. Notably, for the dOR group, we used
a combination of test results, including FSH, AMH, AFC, the
number of high-quality oocytes (HQO), and the number of high-
quality embryos (HQE), to verify all subjects in this study (see
Experimental Section for detail and Tables S4 and S5, Support-
ing Information). At the time of recruitment, we recorded the
baseline information, including clinical parameters and medical
history. For the nOR group, enrollment of participants was con-
ducted based on the criteria as women 1) with complete clinical
information, 2) without thyroid dysfunction, 3) without chromo-

some abnormalities, and 4) with no cancellation of the IVF cycle.
All FF samples were collected on the day of oocyte retrieval to
ensure the standard collection of the samples. Therefore, given
the strict criteria for selecting dOR and nOR groups, the FF sam-
ples in this cohort would be representative of encoding OR and
fertility.

Further, we constructed a metabolic database of FF for encod-
ing OR and fertility based on PALDI-MS. The mass spectra of
FF samples were obtained with TIC of ≈8.34–8.53 × 107 at the
m/z range of 100–400 Da (Figure 2b). We collected ≈120, 000
datapoints from the raw mass spectrum of each FF sample due to
the high resolution (0.005 Da) of PALDI-MS. Notably, the typical
mass spectra showed high similarity levels with more than 95%
of FF samples having scores over 0.85 in each group (Figure 2c),
which suggested its reliability and potential for diagnostic and
predictive use. Moreover, the heatmap visualization of MFFF con-
taining 304 m/z features was achieved by detecting and aligning
peaks from the native data ranging from 100 to 400 Da, forming
the blueprint of MFFF including 141 dOR and 203 nOR sam-
ples (Figure 2d). Through unsupervised clustering of principal
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Figure 2. Characterization of OR and fertility using MFFF. a) Flowchart for the enrollment of subjects, highlighting the strict selection of 344 subjects out
of 520 for inclusion in the study. Notably, the MFFF was performed on all 344 FF samples collected. b) Representative mass spectra of FF from dOR and
nOR samples, showing TIC of ≈8.34–8.53 × 107 at m/z of 100–400 Da. c) Frequency distribution of intragroup similarity scores of typical spectra from
FF of the dOR group (50 samples) and nOR group (50 samples), indicating high levels of intra-group similarity scores with 95% of FF samples having
scores >0.85. d) Heatmap visualization of MFFF including 304 features from 141 dOR and 203 nOR samples. The FF samples were diluted at tenfolds
using water. The color bars represented intensities corrected by logarithms. e) Unsupervised clustering by PCA revealing rough separation between dOR
(cyan dots) and nOR (purple dots) groups.

component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE), MFFF of OR samples showed rough sep-
aration between dOR and nOR samples (Figure 2e and Figure
S5a, Supporting Information), implying the need to introduce
advanced machine learning algorithms to differentiate dOR
from nOR.

The success of the case-control study was largely dependent
on the sample size and data quality.[18] For sample size, a total
of 344 well-defined subjects were enrolled in this study to en-
code OR using FF samples in Figure 2 and Tables S4 and S5,
Supporting Information (see Experimental Section for details). A
power analysis of ten samples (5/5, dOR/nOR) was conducted as
a preliminary study to determine the minimum sample size that
would allow us to perform machine learning significantly. With
100 samples per group (100/100, dOR/nOR) and a false discov-
ery rate (FDR) of 0.10 (Figure S5b, Supporting Information), we
can obtain a predictive power of >0.82, indicating the reliability
of the subsequent machine learning results.

For data quality, sample selection and data acquisition were
crucial. As the fluid surrounding the oocyte within the ovary, FF
composition provided insights into physiological signaling pro-
cesses and served as a real-time indicator of the ovarian state,
demonstrating its potential as a predictor of OR and fertility.[19]

Furthermore, FF was the byproduct of oocyte retrieval, allowing
for acquisition in a non-invasive manner.[20] For data acquisition,
we received ≈124, 000 datapoints at a mass resolution of 0.005 Da
and extracted 304 m/z features for each sample. Moreover, more
than 95% of FF samples showed similarity scores higher than

0.85 of intra-groups, demonstrating the high quality and consis-
tency of the metabolic data. Therefore, we constructed a robust
database recording metabolic information in FF from 344 sub-
jects for the following metabolic analysis of FF.

2.3. Machine Learning of MFFF for dOR Diagnosis and Fertility
Prediction

We performed machine learning of MFFF for encoding OR and
fertility. A total of 275 subjects (111/164, dOR/nOR) were en-
rolled and randomly allocated to the discovery cohort for ten-
fold cross-validation (Figure 3a). The age in the discovery cohort
was matched with no significant difference between the dOR
and nOR groups (p > 0.05, Table S6, Supporting Information).
The independent validation cohort was constructed with the re-
maining 69 subjects (30/39, dOR/nOR). Subsequently, we con-
ducted model building using four algorithms (ridge regression
[RR], neural network [NN], support vector machine [SVM], and
random forest [RF]) for dOR diagnosis. Analysis of the model per-
formance was carried out in terms of AUC, accuracy (Acc), sensi-
tivity (Sen), precision (Pre), and F1 score (F1, harmonic mean of
Sen and Pre, Figure 3b and Table S7, Supporting Information).
All four algorithms achieved AUC ≥ 0.79, indicating the diag-
nostic potential of MFFF for dOR. Importantly, RR had a signifi-
cantly better AUC of 0.905 with a 95% confidence interval (CI) of
0.870–0.940 in comparison to NN (AUC of 0.856 with 95% CI of
0.812–0.900), SVM (AUC of 0.847 with 95% CI of 0.801–0.893),
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Figure 3. Encoding of OR and fertility by machine learning of MFFF. a) A study design based on machine learning to diagnose dOR. There were 275 FF
samples (111/164, dOR/nOR) included in the discovery cohort for cross-validation. An independent validation cohort was used to assess the optimized
model (30/39, dOR/nOR). b) The model performance of RR, NN, SVM, and RF for dOR diagnosis in terms of AUC, Sen, Pre, Acc, and F1. A min-max
normalization was used to normalize these parameters. c) The ROC curves of dOR diagnosis in the discovery cohort (111/164, dOR/nOR, blue line) and
the independent validation cohort (30/39, dOR/nOR, orange line). d) The sample-level plot depicting the probability of RR in the discovery cohort for
differentiating dOR (111, purple dots) from nOR (164, cyan dots). e) Fertility information (the number of subjects with HQO and HQE) of the enrolled
subjects (141/203, dOR/nOR). f) The probability of the HQO group and no oocyte group, showing a significant difference in predicting oocyte quality
(p < 0.05). The p-value was calculated by a two-tailed t-test. * represented p < 0.05. g) The probability of HQE group and no embryo group, displaying
a significant difference in predicting embryo quality (p < 0.05). The p-value was calculated by a two-tailed t-test. * represented p < 0.05.

and RF (AUC of 0.796 with 95% CI of 0.744–0.849) in the discov-
ery cohort (p < 0.05 by Delong test, Figure 3b). Our results were
consistently replicated in the independent validation cohort with
an AUC of 0.929 (95% CI of 0.867–0.991, Figure 3c and Table
S8, Supporting Information). Moreover, we performed a permu-
tation test yielding p < 0.0002 (Figure S5c, Supporting Informa-
tion), demonstrating the efficacy of the RR model in dOR diagno-
sis without overfitting. Further, we generated sample-level plots
to depict the predictive probability for differentiating dOR sam-
ples from nOR samples (Figure 3d and Figure S5d, Supporting
Information). The above results from the RR algorithm in the dis-
covery cohort (AUC of 0.905) and independent validation cohort
(AUC of 0.929) demonstrated the diagnostic capacity of machine
learning using MFFF for dOR diagnosis.

To further investigate the predictive capability of MFFF for fer-
tility, we classified the dOR subjects who underwent IVF into the
HQO group and HQE group according to fertility information.
There were 139 subjects (123/16, HQO group/no oocyte group,
80/43, HQE group/no embryo group) after excluding the subjects
without oocyte information (Figure 3e). Scatter plot analysis re-
vealed a statistically significant difference in the average probabil-
ities between the HQO and no oocyte groups (p< 0.05, Figure 3f).
In parallel, FSH levels exhibited a statistically significant differ-
ence (p < 0.05, Figure S6a, Supporting Information), while AFC
levels displayed no significant difference (Figure S6b, Supporting
Information). Furthermore, for the prediction of HQE, the HQE

group exhibited a lower probability than the group with no em-
bryo (p< 0.05, Figure 3g), demonstrating the predictive capability
of MFFF for embryo quality. In contrast, the FSH and AFC both
showed no significant difference between the HQE group and
the no embryo group (Figure S6c,d, Supporting Information).
Therefore, we constructed a robust multi-functional platform for
dOR diagnosis (AUC of 0.905–0.929) and fertility prediction (de-
termining HQO and HQE with p < 0.05) using machine learning
of MFFF, thus providing an efficient tool for encoding OR and
fertility toward clinical applications.

Accurate encoding of the disease was essential for choos-
ing the treatment strategies and slowing down the disease’s
progression.[14a] Importantly, there is no single test yet to encode
OR and fertility, covering DOR diagnosis and HQO/HQE deter-
mination. Current analytical methods for encoding OR and fer-
tility, requiring a combination of multiple tests (e.g., FSH, AMH,
and AFC), are limited for clinical applications due to the inherent
features lacking enough information from the specific biofluids
in the ovary. Specifically, with an AUC of <0.70 for OR encod-
ing, the diagnostic performance of FSH limited their reliability
owing to intracycle or intercycle variability of FSH.[21] Consider-
ing that AMH was circulating in the blood and lacks an inter-
national test standard, the diagnostic AUC of AMH was limited
to 0.63–0.78, and thus it is challenging to encode OR using the
sole biomarker of AMH.[4a,22] In parallel, the examination of AFC
needed to count the primary medial follicles under ultrasound on
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Figure 4. Biomarker panel construction and related pathway analysis. a) Feature number (orange line) and AUC of RR (red line) calculated at various
thresholds of RR rank score in the discovery cohort. Blue dotted lines indicated the optimized AUC of 0.919 at the threshold of 0.25. b) Intensity heatmap
of 7 m/z features showing distinct expression levels between dOR and nOR. The color bars represented intensities corrected by logarithms. c) The violin
plot displaying the intensity levels of identified biomarkers for dOR and nOR. A two-tailed t-test was used to determine the p values (* represented p <

0.05, ** represented p < 0.005, *** represented p < 0.001). The biomarker intensities were normalized. d) The ROC curves for the biomarker panel with
an AUC of 0.849, superior to the single biomarker with an AUC of 0.571–0.803 (p < 0.05 by Delong test). e) The comparison of probability for the HQO
group and no oocyte group in predicting oocyte quality using constructed biomarker panel (* represented p < 0.05). A two-tailed t-test was conducted
to calculate the p values. f) The comparison of probability for the HQE group and no embryo group in predicting embryo quality using constructed
biomarker panel (* represented p < 0.05). A two-tailed t-test was conducted to calculate the p values. g) The potential pathways associated with dOR
and nOR. The size and color of the circles represented the p-value and pathway impact, respectively.

the day of 2–5 of the menstrual cycle by experienced doctors, af-
fording AUC < 0.75.[23] Moreover, for the prediction of fertility,
predictors using sole biomarkers (e.g., AFC and FSH) showed
poor prediction performance for HQO and HQE with no signif-
icant difference (p > 0.05, Figure S6, Supporting Information).

For comparison, the MFFF realized efficient encoding of OR
and fertility by a single test (Figure 3). The machine learning
of MFFF showed superior results (AUC of 0.929) for dOR di-
agnosis than previous studies using conventional and metabolic
biomarkers (AUC of ≈0.63–0.85), owing to the advanced inter-
preting of MFFF by machine learning.[4a,9,24] Notably, our method
also showed predictive potential to determine HQO and HQE
(p < 0.05) with a single test. Therefore, our platform would be
a multi-functional platform that effectively utilized MFFF to en-
code OR and fertility, providing an effective alternative to existing
tools in clinical settings.

2.4. Biomarker Panel Construction and Related Pathway Analysis

We developed a metabolic biomarker panel through feature se-
lection and identified related metabolic pathways, toward clini-
cal application for encoding OR and fertility. Specifically, we op-
timized the AUC of the RR model by setting various thresholds
of RR rank score in the discovery cohort (Figure 4a). The AUC
reached 0.919 with an RR rank score of 0.25, higher than the
AUC values (0.686–0.905) in other thresholds. There were 121
m/z features selected from MFFF with the optimized AUC, from
which 7 m/z features were selected as promising candidates for
biomarker identification using the criteria of mean intensity (Ī)
> 3000 and p < 0.05. The unsupervised clustering analysis by the
selected 7 m/z features showed a distinct intensity level between
dOR and nOR (Figure 4b), demonstrating the capability of these
features for dOR diagnosis.
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Subsequently, we identified lactic acid (LA), succinic acid
(SA), pyruvic acid (PA), Glc, and fructose 6-phosphate/glucose
6-phosphate (F6P/G6P) as the biomarker panel from the se-
lected m/z features. The biomarkers were further validated us-
ing Fourier-transform ion-cyclotron resonance mass spectrome-
try (FT-ICR MS, Table S9, Supporting Information) and LC-MS
(Table S10, Supporting Information). Compared to nOR group,
the LA, Glc, and F6P/G6P were over-expressed (p < 0.001), while
SA and PA were down-expressed (p < 0.05) in the dOR group
(Figure 3c). The constructed biomarker panel showed promising
diagnostic performance with an AUC of 0.849 (95% CI: 0.809-
0.890), superior to the single biomarker with an AUC of 0.571–
0.803 (Figure 4d and Table S11, Supporting Information). To fur-
ther evaluate the biomarker panel for predicting fertility, we cal-
culated the probability of the machine learning model trained
by the biomarker panel for differentiating HQO and HQE. We
found a significant difference in probability between HQO and
no oocyte groups (p < 0.05, Figure 4e). The probability of HQE
and no embryos groups also exhibited significant differences as
well (p < 0.05, Figure 4f). Therefore, we validated the constructed
biomarker panel as an indicator for encoding OR (AUC of 0.849)
and fertility (p < 0.05 for determining HQO and HQE).

We also conducted metabolic pathway analysis correlated to
the constructed biomarker panel. Four pathways related to OR
and fertility were screened with pathway impact (PI) > 0, in-
cluding 1) pyruvate metabolism (PI of 0.21), 2) starch and su-
crose metabolism (PI of 0.14), 3) glycolysis/gluconeogenesis (PI
of 0.10), and 4) citrate cycle (PI of 0.08, Figure 4g). Specifically, in
pyruvate metabolism, the abnormal expression of LA and PA af-
fects the quality and maturation of the oocyte, thus elevating the
risk of dOR and infertility.[25] For starch and sucrose metabolism,
the alternations in G6P levels have the potential to disrupt the in-
tegrity of DNA in the oocyte through the nucleotide production
process. In the pathway of glycolysis/gluconeogenesis, the Glc
and PA are of paramount importance in facilitating energy sup-
ply for oocyte development and maturation, and any dysfunction
in this pathway could impact ovarian function.[26] Moreover, high
levels of LA may impair follicle growth and maturation, leading
to dOR and a reduced number of oocytes.[27] In the citrate cy-
cle, the altered SA and PA could reduce adenosine triphosphate
(ATP) production, thereby negatively impacting oocyte develop-
ment, maturation, and ovulation.[28] The above pathway analysis
using metabolites as the basis can help to provide a comprehen-
sive understanding of OR and fertility and insights into the re-
productive potential before transplantation.

Molecular biomarkers, including nucleic acids, proteins, and
metabolites in specific biofluids, were increasingly used in diag-
nostic applications, due to their accuracy and convenience for
clinical use.[29] Conventionally, reports relying on the upstream
biomarkers of nucleic acids and proteins showed diagnostic AUC
of 0.63–0.82 for DOR diagnosis based on signal amplification or
biochemical reaction, which owned low analytical speed of min-
utes to hours and sample volume of ≈30–100 μL.[5a,22b,30] In par-
allel, the analyses using downstream metabolic biomarkers for
OR and fertility were still preliminary, owing to the limited num-
ber of subjects (≈40–150) and lack of multi-functional tools, espe-
cially for specific biofluid of FF.[9,10] In our work, we constructed
a biomarker panel for encoding OR and fertility using metabo-
lites in FF from a cohort of 344 subjects, providing satisfactory

performance with an AUC of 0.849 in a label-free manner. More-
over, our platform based on PALDI-MS allowed MFFF with fast
analytical speed (≈30 s) and trace sample volume (down to 25 nL).
Therefore, we built an efficient platform to detect FF metabolites
with multi-function, toward rapid and accurate encoding OR and
fertility.

3. Conclusion

For the future perspective of this work, the performance of
metabolic biomarkers would be further enhanced by incorpo-
rating additional biomarkers into a multi-modal database. More-
over, biological validations could be conducted to understand the
underlying mechanism and could lead to the development of new
therapeutic strategies to improve fertility outcomes.

In summary, we performed efficient MFFF using PALDI-MS
and constructed a biomarker panel for encoding OR and fertility.
We achieved efficient MFFF with fast speed (≈30 s), high sensi-
tivity (≈60 fmol), and desirable reproducibility (CVs < 15%) by
PALDI-MS. Further, we applied machine learning of MFFF to
diagnose dOR with an AUC of 0.929 and identify high-quality
oocytes/embryos (p < 0.05) by a single PALDI-MS test. Subse-
quently, we constructed a biomarker panel showing an AUC of
0.849 for dOR diagnosis and effective determination of high-
quality oocytes/embryos (p < 0.05). Our work would provide a
powerful tool for women’s healthcare including but not limited
to OR and fertility.

4. Experimental Section
Chemicals and Reagents: In this study, the chemicals and reagents in-

cluded: 1) matrix materials, 2) standard metabolites, and 3) other reagents
and chemicals.

For the matrix materials, the particles were prepared using high-purity
iron chloride hexahydrate (FeCl3·6H2O, 99%), trisodium citrate dihydrate
(99.5%), sodium acetate anhydrous (99%), ethylene glycol (99.5%), and
ethanol absolute (99.7%), all of which were procured from Sinopharm
Chemical Reagent Beijing Co., Ltd. (Beijing, China). The organic matrices
of CHCA and DHB were purchased from Sigma-Aldrich (St. Louis, MO,
USA).

The standard metabolites of amino acids and sugars, including Ala
(98%), Val (98%), Lys (98%), Arg (98%), Glc (99.5%), and Suc (99%),
were ordered from Sigma-Aldrich (St. Louis, MO, USA).

For other reagents and chemicals, sodium chloride (NaCl, 99.5%) and
BSA (98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Acetonitrile (ACN, 99%) was procured from Aladdin Reagent (Shang-
hai, China). Methanol (HPLC) was obtained from ThermoFisher Scientific
(Waltham, USA). Trifluoroacetic acid (TFA, 99.5%) was purchased from
Macklin Biochemical Co., Ltd. (Shanghai, China). All experiments were
conducted using purified water (18.2 MΩ cm) generated by a Millipore
Milli-Q system (Milli-Q, Millipore, GmbH).

Preparation of Particles: A hydrothermal method was used for the
large-scale synthesis of particles according to previous work.[5a,12b,14a]

Specifically, trisodium citrate dihydrate and iron chloride hexahydrate were
first dissolved in ethylene glycol with shaking. Then sodium acetate was
added to the above mixture under ultrasonic vibration treatment. The re-
sulting mixture was then placed in the autoclave for hydrothermal treat-
ment at 200 °C. After a 10 h reaction, the solid particles were washed us-
ing ethanol absolute and purified water. Finally, the obtained particles were
dried at 60 °C and saved for later use.

Characterization of the Particles: Transmission electron microscopy
(TEM), high-resolution TEM (HRTEM), and elemental mapping analysis
were conducted using JEOL JEM-2100F (JEOL Ltd., Japan) by dispensing
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3 μL aqueous solution of particles or molecule-particle hybrids onto a cop-
per grid. The scanning electron microscopy (SEM) images were collected
using S-4800 (Hitachi Ltd., Japan) by depositing 1.5 μL of the aqueous so-
lution of particles on a silicon wafer. The bright-field images for the charac-
terization of crystallization were captured by Eclipse Ti (Nikon Ltd., Japan).
The confocal scanning images were performed using VK-X3000 (KEYENCE
Ltd., Japan). The microarray was imaged using a P40 Pro smartphone
(Huawei Technologies Co., Ltd., China).

Study Population: This work designed a case-control study of women
who underwent at least one fresh cycle of IVF or intracytoplasmic sperm
injection (ICSI) at the Reproductive Center of the First Affiliated Hospital
of Anhui Medical University in China from July 2020 until now. Case
groups were defined as follows: 1) The year of non-pregnant was more
than 1 year; 2) at least two of the following criteria were met for dOR
diagnosis: FSH was greater than 10 IU L−1; AFC was less than 5; AMH was
lower than 1.1 ng mL−1. Patients with any of the following conditions were
excluded from the control group: 1) incomplete clinical information; 2)
thyroid dysfunction; 3) chromosome abnormalities; 4) cancellation of IVF
cycle.

A total of 344 FF samples from 520 subjects aged 20–50 years were
collected in this study. Among the 344 samples, there were 203 dOR
samples and 141 dOR samples. After excluding the subjects without
oocyte information, there were 123 subjects with HQO and 16 subjects
without oocytes. Of the 123 patients who underwent IVF, 80 obtained
HQE, and 43 failed to get embryos. The study was approved by the
Ethical Committee of Anhui Medical University (PJ2020-07-22). Oral and
written consent was obtained from all subjects. The study complied with
the Declaration of Helsinki and involved medical research with human
subjects.

Collection of FF Samples: FF was collected on the day of oocyte
retrieval.[20] The FF from the largest follicle was meticulously collected into
a 15 mL centrifuge tube. The collected FF sample was centrifugated at a
rate of 2000 revolutions per minute for 15 min, after which the resulting
supernatant was carefully segregated into 1 mL aliquots. Then, the su-
pernatant was stored at an ultra-low temperature of −80 °C until further
analysis.

Statistical Analysis: For the age match of dOR and nOR subjects, a
two-tailed t-test was conducted using Microsoft Excel (version 2021). No
statistically significant difference was found between the dOR and nOR
groups in the discovery cohort. The similarity scores and Delong test were
conducted through MATLAB (version R2022a, The Math Works, USA) us-
ing homemade code.

For the determination of the minimum sample size in machine learn-
ing, a power analysis was conducted on the website of MetaboAnalyst 5.0
(https://www.metaboanalyst.ca/). The MFFF of ten samples (5/5, dOR/
nOR) was randomly chosen for the power analysis to calculate the signif-
icant sample size with an FDR of 0.1. The significant levels for p-values
were set to 0.05.

Metabolic Analysis of Standard Metabolites: The organic matrices of
CHCA and DHB were dispersed in a solution of TA30 consisting of ACN
and water (3:7, v/v) with 0.1% TFA, at a concentration of 10 mg mL−1.
For matrix preparation, 1 mg mL−1 particle solution was obtained by dis-
persing the particles in water. The aqueous solutions were prepared for
standard metabolite detection by dissolving small molecules in water with
1 mg mL−1. In a typical detection of salt and protein tolerance, the stan-
dard metabolites, including Val, Lys, Arg, and Glc, were mixed with 0.5 m
NaCl or 5 mg mL−1 BSA for MS analysis.

To determine LOD, the typical metabolites (Glc, Suc, Ala, Arg) at the
concentration from 5E-05 to 1 mg mL−1 were detected.[31] Then the
linear regression analysis of intensities and related concentration data
was performed to acquire the regression equation. The calibration curves
were obtained for typical metabolites using particles, CHCA, and DHB
as the matrix. The LOD of the particle was calculated using the slope
of the calibration curve and the signal-to-noise ratio (S/N) of 3. The
LOD of CHCA and DHB were calculated using metabolite peaks with
S/N > 3, due to the R2 values of regression equation for CHCA and DHB
being < 0.8.

Metabolic Analysis of FF Samples: The FF samples were detected di-
rectly with minimum sample pretreatment. Specifically, the FF samples
were diluted at tenfolds using water after the pretreatment optimization.
In a typical process of metabolic fingerprinting, 1 μL of diluted FF sample
was deposited onto a microarray chip. Then 1 μL of the particle solution
with a concentration of 1 mg mL−1 was distributed on the dried FF sample.

The mass spectra of metabolites based on PALDI-MS were recorded
by Bruker Autoflex MALDI TOF/TOF mass spectrometer (Brucker Dalton-
ics, Bremen, Germany) in the positive ion mode, with Nd:YAG lasers of
355 nm and a laser moving diameter of 2000 um.[32] During the detection
process, the pulse laser was optimized at a frequency of 1000 Hz with 2000
shots. The instrument’s delay time and acceleration voltage were 150 ns
and 120 kV, respectively. Further, the biomarker was identified through the
Solarix 7.0T (FT-ICR MS, Brucker Daltonics, Germany) and LC-MS analysis
using Q Exactive plus (ThermoFisher Scientific, USA).

For conducting FT-ICR MS, the collected FF samples were diluted using
water at tenfolds. Then, 1 μL of the diluted FF samples were dropped on
the micro-array chip to dry at room temperature. The matrix solution of
the particle was dropped on the dried sample for the following FT-ICR MS
analysis.

For conducting LC-MS, the FF samples were pretreated using the fol-
lowing steps: protein precipitation, supernatant collection, and reconsti-
tution. 200 μL of organic solvent (methanol/ACN, 1/1, v/v) was added to
50 μL of collected FF samples, followed by placing the mixture in a refriger-
ator at −20 °C for 2 h to precipitate the proteins. Subsequently, the mixture
was centrifuged at 12 000 rpm for 15 min. Then the supernatant of the mix-
ture was transferred into a clean microcentrifuge tube and dried using a
vacuum concentrator. The dried samples were reconstituted in a methanol
solution (methanol/water, 3/7, v/v), vortexed for 3 min, and centrifuged
at 12 000 rpm for 15 min to remove insoluble components. Finally, the
supernatant was collected for the following LC-MS analysis.

The pathway analysis was conducted on MetaboAnalyst 5.0 (https:
//www.metaboanalyst.ca/).[33] Typically, the metabolite sets, including se-
lected biomarkers, were analyzed according to the library of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database using a hypergeometric
test on MetaboAnalyst 5.0.

Machine Learning of MFFF: To facilitate the machine learning of MFFF,
unsupervised analysis was initially employed to assess the discriminative
performance between dOR and nOR. The unsupervised analysis of PCA
and t-SNE was utilized to visualize the MFFF data of all FF samples.

For the dataset dividing, the dataset was divided into the discovery co-
hort and validation cohort in a random manner, with a ratio of ≈4:1 (275
subjects/69 subjects, discovery cohort/validation cohort) for all clinical
subjects.

Subsequently, to evaluate the dOR diagnostic performance of MFFF,
four machine learning algorithms, including RR, NN, SVM, and RF, were
utilized for the model building in the discovery cohort and validation co-
hort. For parameters choosing, to select the optimal parameters, the ma-
chine learning models were trained on the 304 features of each FF sample
and evaluated characterization performance in terms of AUC, Sen, Pre,
Acc, and F1 score. Then, the predicted probability of dOR for each ma-
chine learning model was computed and measured AUC using ROC of the
average predicted probability and the real label. The Sen, Pre, Acc, and F1
score were determined by comparing the predicted labels averaged across
all samples with the actual labels by a probability threshold of 0.5. Machine
learning of the MFFF was performed by the software of Orange (version
3.33.0, Slovenia).

Biomarker Panel Construction: To construct the biomarker panel, mul-
tiple selection parameters were utilized including the RR rank score, p-
value, and mean intensities of each m/z. Typically, the performance of the
RR model was optimized by setting various thresholds of RR rank score in
the discovery cohort. The RR score was ultimately set as 0.25 to achieve
the optimal AUC. Subsequently, the m/z features were selected according
to the following criteria: 1) RR rank score > 0.25, 2) mean intensity (Ī)
> 3000, and 3) p < 0.05. The selected features were identified using LC-
MS, FT-ICR MS, and database of human metabolome database (HMDB,
https://hmdb.ca/) for the biomarker panel construction.
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