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Abstract
Purpose The extent of glenohumeral bone loss seen in anterior shoulder dislocations plays a major role in guiding 
surgical management of these patients. The need for accurate and reliable preoperative assessment of bone loss on 
imaging studies is therefore of paramount importance to orthopedic surgeons. This article will focus on the tools 
that are available to clinicians for quantifying glenoid bone loss with a focus on emerging trends and research in 
order to describe current practices.
Recent findings Recent evidence supports the use of 3D CT as the most optimal method for quantifying bone loss 
on the glenoid and humerus. New trends in the use of 3D and ZTE MRI represent exciting alternatives to CT imag-
ing, although they are not widely used and require further investigation. Contemporary thinking surrounding the 
glenoid track concept and the symbiotic relationship between glenoid and humeral bone loss on shoulder stabil-
ity has transformed our understanding of these lesions and has inspired a new focus of study for radiologists and 
orthopedist alike.
Summary Although a number of different advanced imaging modalities are utilized to detect and quantify glenohumeral 
bone loss in practice, the current literature supports 3D CT imaging to provide the most reliable and accurate assessments. 
The emergence of the glenoid track concept for glenoid and humeral head bone loss has inspired a new area of study for 
researchers that presents exciting opportunities for the development of a deeper understanding of glenohumeral instability 
in the future. Ultimately, however, the heterogeneity of literature, which speaks to the diverse practices that exist across the 
world, limits any firm conclusions from being drawn.
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Introduction

Traumatic anterior shoulder dislocations are a known 
cause of glenohumeral instability. These dislocation 
events can cause significant osseous trauma in the form 
of glenoid and humeral head bone loss. The size of these 
Bankart and Hill-Sachs lesions, respectively, is a risk 
factor for recurrent instability and is critical in guiding 
appropriate management of these patients, which ranges 
from conservative management with graduated physical 
therapy for smaller lesions to complex reconstructive 

techniques, including Laterjet transfers and distal tib-
ial allograft reconstructions for larger, more devastat-
ing defects. This treatment paradigm places heightened 
awareness on the need for accurate evaluation and meas-
urement of bone loss [1, 2].

The instruments available for evaluating these deficits 
have evolved over the years. Historical tools like plain radi-
ographs were unreliable and inconsistent and have given 
way to more precise advanced imaging techniques, includ-
ing computed tomography (CT) and magnetic resonance 
imaging (MRI). While the methods that exist for measur-
ing glenoid bone loss on advanced imaging have reasonable 
historical support in the literature, limited evidence exists 
for guidance of imaging of humeral head bone loss. The 
recent concept of the glenoid track and on-track and off-track 
Hill-Sachs lesions has highlighted the interconnectedness of 
bipolar bone loss suggesting that assessment of bone deficits 
in shoulder instability necessitates an evaluation of both in 

 * Ryan R. Thacher 
 Thacherr@hss.edu

1 Department of Orthopaedic Surgery, Hospital for Special 
Surgery, 535 East 70Th Street, New York, NY 10021, USA

2 Department of Radiology, Hospital for Special Surgery, 535 
East 70Th Street, New York, NY 10021, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s12178-023-09852-0&domain=pdf


420 Current Reviews in Musculoskeletal Medicine (2023) 16:419–431

1 3

tandem. This review will focus on current imaging modali-
ties used for evaluating bone loss in anterior shoulder insta-
bility with an emphasis on more contemporary approaches, 
in order to describe the current state of the field.

Glenoid Bone Loss: Modalities 
and Techniques

Historical Tools: Radiography and Arthroscopy

Prior to the emergence of advanced imaging techniques, 
plain radiographs represented the primary imaging tool 
available for scrutinizing bony anatomy and estimating 
glenoid injuries. Studies dating back to the 1970s were 
published using plain radiographs to identify glenoid 
bone lesions and correlate them with clinical shoulder 
instability. [3, 4] Other studies attempted to correlate 
estimates of the percentage of bone loss seen on plain 
radiographs with shoulder stability and need for bone 
augmentation with Bankart repairs. [5] While there has 
been some renewed interest over the past 5–10 years in 
the use of radiographs to quantify glenoid bone lesions 
due to their widespread availability, low radiation burden, 
and affordability, this modality remains largely a screen-
ing tool used to identify Bankart and Hill-Sachs lesions 
to guide advanced imaging [6–9, 10•, 11].

Intraoperative arthroscopic measurement of glenoid 
bone loss has also been described. These techniques use 
the glenoid bare spot (GBS) (Fig. 1), a critical landmark 
defined as the point at the center of the inferior glenoid, 
to measure bone loss. [12, 13] Ultimately, studies have 
questioned the validity of this method on the basis that the 
GBS is not reliably identified arthroscopically, and when 
it is, it is not consistently seen in the center of the inferior 
glenoid. [14–17] This has led to inaccuracy and inconsist-
ency in measurements. [18, 19] Nonetheless, arthroscopic 
measurements of glenoid bone loss remain relevant as they 
continue to be used frequently in studies comparing differ-
ent imaging modalities [20–22].

CT Imaging

Computed tomography (CT) scan has long been the pre-
ferred and most widely utilized method for measuring 
glenoid bone loss. CT imaging provides excellent detail 
of bony anatomy allowing for clear and exact measure-
ments of the glenoid. Several different measurement 
techniques for calculating glenoid bone loss have been 
proposed in the literature. For this review, these tech-
niques may be classified into linear or surface area meas-
urements [2, 10•, 23–28, 31] and statistical shape models 
that provide an equation to estimate bone loss. [28, 29] 

These approaches, which were initially designed for 2D 
CT, are applied to both 2D and 3D CT and MRI measure-
ments, so a firm grasp of their underpinnings is critical 
to any analysis of glenoid bone loss.

Linear Models

Linear-based methods are advantageous since they are con-
venient and can be quickly applied using standard radio-
graphic software. These methods of glenoid bone loss meas-
urement typically use an “en face” view of the glenoid to 
measure the width of the glenoid defect, and this value is 
then compared to another “constant” such as the longitudinal 
glenoid axis or a best-fit circle [11, 30–32].

The simplest linear method in the literature involves 
comparisons of the glenoid width to the glenoid length. 
Described by Griffith et al. using 2D-CT, the “Griffith 
Index” describes the ratio between glenoid length (a line 
connecting the supraglenoid tubercle to the infraglenoid 
tubercle, “A”) and glenoid width (a line at the widest point 
of the glenoid perpendicular to the line representing gle-
noid length, “B”) (Fig. 2). The normal ratio (B/A) is 0.7, 

Fig. 1  The Glenoid bare spot is located in the center of the inferior 
glenoid, which is estimated as a perfect circle formed from the con-
tours of the inferior aspect of the glenoid. This landmark, which has 
been used to measure glenoid bone loss, has come under scrutiny for 
its lack of reproducibility. (From Saintmard B, Lecouvet F, Rubini A, 
Dubuc JE. Is the bare spot a valid landmark for glenoid evaluation in 
arthroscopic Bankart surgery? Acta Orthop Belg. 2009;75(6):736–42. 
Reprinted with permission according to BOAI open access policy)
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and an injured glenoid ratio is less than 0.7. [30] Using this 
method, the width-to-length (W/L) ratio and glenoid defect 
length, when expressed as functions of glenoid diameter, 
were most predictive of glenoid bone loss and recurrent 
instability, respectively. [30, 33] Further, validation against 
an arthroscopic “gold standard” showed a sensitivity and 
specificity of detecting glenoid bone loss with CT as 93% 
and 78%, respectively [19].

In contrast, the vast majority of linear methods described 
in the literature report the comparison of the glenoid width 
or length to a circle of best-fit. [11, 25, 31, 32, 34, 35] The 
simplest iteration of these calculations is the “Glenoid 
Index,” described by Chuang et al. [36] Using a circle of 
best-fit on the uninjured glenoid as the reference for the 
antero-posterior glenoid width, the authors compare the 
ratio of the glenoid width-to-length (essentially the “Grif-
fith Index”) between injured and uninjured sides to predict 
the necessity of bony repair. A number of other variations 
exist, all utilizing a variation of the circle of best fit for the 
injured glenoid. Individually, these various methods have 
been shown to be reproducible, though in small sample sizes 
with low levels of evidence [24–26, 33].

Overall, the validity and accuracy of linear-based meth-
ods of measuring glenoid bone loss remain in question. 
Concerns center around the notion that linear methods 

inaccurately approximate the inferior glenoid as a square, 
where reductions in glenoid width translate linearly into 
glenoid bone loss, as opposed to the more accurate real-
ity of a radius-squared relationship. [37] Additionally, lin-
ear methods may underestimate defect size, especially in 
the case when there is bone loss in multiple planes (i.e., 
anterior-inferior).

Surface Area Models

Surface area-based methods measure the area of the gle-
noid bony defect, which is then divided by the area of a 
best-fit circle, resulting in a percentage defect size. [27, 
38] These techniques require specialized software that 
allows the user to freehand trace the glenoid defect in 
order to obtain its area, which has limited its widespread 
availability. [39] The most commonly used surface area 
measurement technique is the Pico method described by 
Baudi et al., which originally used 2D-CT to calculate 
bone loss as the area of the bony Bankart fragment divided 
by the area of the circle of best-fit (Fig. 3). [40] While 
this technique often uses the contralateral, uninjured gle-
noid as a template, the intact posterior inferior aspect of 
the ipsilateral glenoid can be used as a template for the 
glenoid best-fit circle with reasonable accuracy in cases 

Fig. 2  Examples of linear 
methods for measuring glenoid 
bone loss. In the Griffith Index 
(upper two images), the ratio of 
glenoid length:glenoid width is 
less in the injured glenoid C:A 
when compared to the uninjured 
glenoid B:A. In the Cheung 
glenoid index, a circle of best-fit 
on the uninjured glenoid is used 
as a reference for the AP width
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where imaging of the contralateral shoulder is not avail-
able. This technique has the advantage of not being influ-
enced by the position or morphologic features of glenoid 
bone loss, which can affect the accuracy of glenoid width 
or radial measurements. [23, 38, 41, 42] The PICO method 
and other surface area techniques have since been repro-
duced using other modalities, including 3D CT with good 
intra- and interobserver reliability [27].

Statistical Modeling

Recent studies have queried the use of statistical and regres-
sion modeling in measurements of glenoid bone loss. These 
methods leverage the correlation between glenoid height 
and width to predict native glenoid width, which can then 
be used to estimate the percentage of bone loss. Owens 
et. al reported an MRI-based prediction of intact glenoid 
width based solely on the measurement of glenoid height. 
[29] Giles et al. validated this work using CT and similarly 
derived a method using glenoid height and width measure-
ments combined with a CT-specific regression analysis to 
predict native glenoid width. [28] In the aforementioned 
studies, the developed models showed strong correlation 
when analyzed by sex. However, statistical modeling meth-
ods for glenoid bone loss have thus far been limited in sam-
ple size and therefore are not widely used.

Comparison of Methods

While linear-based models are the most widely used, the 
literature supports the use of surface area measurements 
as demonstrating superior reliability to linear and statisti-
cal modeling methods. [43, 44•, 45] A laboratory study 
of two sawbone models of anterior and anteroinferior 

glenoid defects by Bois et al. found that the Pico sur-
face area method was more accurate and reliable than 
linear techniques at quantifying glenoid bone loss. [46] A 
cadaveric study by Arenas-Miquelez et al. analyzed bone 
defects created in 6 fresh-frozen human shoulders using 
2D and 3D CT en face images. Two linear techniques, 2 
surface techniques, and 1 statistical shape model formula 
were subsequently used to quantify glenoid bone loss. Of 
the five techniques used, a surface technique was found 
to be superior with regard to combined consistency and 
accuracy for measuring glenoid bone loss. When account-
ing for consistency alone, the statistical shape model for-
mula was found to be superior albeit prone to overestima-
tion [47].

The superiority of surface area measurements was 
also corroborated by several clinical studies. In a study 
by Bakshi et. al, thirty patients with anterior shoulder 
instability underwent preoperative bilateral shoulder CT 
scans followed by three-dimensional CT reconstruction 
with humeral head subtraction. Glenoid bone loss was 
measured with the surface area and linear methods of 
measurement, and linear measurements were found to 
significantly overestimate bone loss compared to surface 
area measurements. [37] Similarly, a retrospective study 
of 125 patients with anterior glenoid bone loss found that 
measurements of surface area had the greatest interob-
server reliability when compared to linear methods. [44•] 
Finally, a review of glenoid bone loss by Saliken et al. 
found that in 32 studies evaluating glenoid bone loss, the 
Pico surface area method was the most accurate and reli-
able method for quantifying glenoid bone loss.[48] Ulti-
mately, the discrepancies between linear and surface area 
methods have been shown to have maximal discordance 
in the range of 15–25% bone loss, reflecting a clinically 

Fig. 3  In this application of the surface-based PICO method, the 
areas between the injured and the uninjured contralateral glenoids are 
compared. The defect is traced using freehand software and bone loss 
is presented as a percentage of the uninjured side. (from Saliken DJ, 
Bornes TD, Bouliane MJ, Sheps DM, Beaupre LA. Imaging methods 

for quantifying glenoid and Hill-Sachs bone loss in traumatic insta-
bility of the shoulder: a scoping review. BMC Musculoskelet Disord. 
2015;16:164. Reprinted with permission according to open access 
policy of BMC journal)
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significant difference that must be reconciled in order to 
appropriately indicate patients for soft-tissue versus bony 
procedures [37].

2D vs. 3D CT

These various measurement techniques have been applied 
to both 2-dimensional and 3-dimensional CT images. [19, 
27, 30, 36, 43, 46, 49–54] Axial 2-D CT scans are the 
most widely studied imaging modality and have repeat-
edly been shown to be helpful for the evaluation of the 
glenohumeral joint. [30, 50, 55] In 2D CT imaging, the 
acquisition of images in the coronal, sagittal, and axial 
planes facilitates the visualization of established land-
marks for glenoid bone loss measurement. The biggest 
critique of 2D CT imaging stems from the difficulty 
obtaining a consistent en face view of the glenoid. With-
out multiplanar reconstruction, a 2D CT must be obtained 
in exactly the plane of view desired, i.e., along the axis of 
the glenoid surface, in order to obtain the proper measure-
ment of its size. Any inconsistency in the version of the 
glenoid can significantly alter any measurements obtained 
ultimately limiting interobserver reliability.

3D CT with multiplanar reconstruction allows for 
manipulation of the CT imaging and digital subtraction 
of the humeral head generating an unobstructed en face 
view of the glenoid (Fig. 4). This modality eliminates 
the issues surrounding inconsistent orientation of the 
glenoid for measurement on 2D CT and has been shown 
to increase interrater agreement for the analysis of gle-
noid morphology and preoperative planning. [56•] As 
compared to 2D-CT, the benefits of 3D CT also include 
decreased scan duration, higher resolution imaging recon-
structions, and improved cortical and topographic evalu-
ation, though these benefits come at the expense of a 
higher-dose of ionizing radiation [57].

Comparison of CT Methods

The majority of current studies support the use of CT with 
3D reconstruction as the method of choice for evaluation of 
glenoid bone loss over 2D CT. [43, 44•, 45, 46, 58, 59•, 60] 
There is limited evidence in the literature that 2D-CT may 
be comparable to 3D-CT; a study by Magarelli et al. found 
that 2D and 3D scans were similar in identifying the size 
of the glenoid defect using surface-area techniques. [55] In 
comparison, the study by Bois found that 2D measurements 
were not valid and should not be used. [46] Similarly, a study 
by Lacheta with 52 patients comparing 2D and 3D CT found 
that 3D CT scans were more accurate and had better intrao-
bserver agreement overall compared to 2D scans. [58] In a 
study with 100 patients overall, Kubicka et al. found that 3D 
CT was more reliable with less intraobserver error compared 
to 2D CT. [59•] These studies further reinforce the superior-
ity of 3D CT over 2D CT for the quantification of glenoid 
bone loss.

MRI Imaging

Recently, increased interest has emerged surrounding the 
use of magnetic resonance imaging (MRI) to perform 
measurements of glenoid bone loss. The introduction of 3 T 
(tesla) magnets has greatly improved the spatial resolution 
of MRI as well as its acquisition speed improving the user 
experience and ability to scrutinize bony detail. Critically, 
MRI holds a number of advantages over CT scan. For one, 
patients who experience traumatic shoulder dislocations 
will often undergo MRI imaging for evaluation of labral 
and other soft tissue pathology as part of standard of care. 
The ability to simultaneously evaluate bony sequelae with-
out needing a second advanced imaging study would be 
both cost effective and efficient. Perhaps more importantly, 
MRI avoids radiation exposure for patients, which mitigates 
potential health risks.

Fig. 4  3D CT reconstructions with humeral head subtraction demon-
strate an en face view of the glenoid surface

25mm

46mm

90.0°

Fig. 5  Glenoid measurements made using an en face view on 
T1-weighted MRI scan
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MRI-based studies have leveraged the same techniques 
employed in CT imaging, largely relying on linear-based 
methods, to evaluate bone loss (Fig. 5). The vast majority 
of literature has compared MRI-based measurements to CT 
scan, both 2D and 3D, with overall mixed results. A num-
ber of studies have demonstrated results from MRI that are 
comparable to 2D CT scan in quantifying glenoid bone loss. 
[10•, 20, 61–63] In a series of 22 patients, Friedman et al. 
demonstrated moderate correlation between length-to-height 
ratio measurements across the glenoid in MRI and CT, 
although they acknowledged that further research needed 
to be conducted to validate the technique. [62] Sgroi et al. 
found similar results in their study, which compared MRI to 
2D CT, AP radiographs, and West Point radiographs, sug-
gesting MRI and CT were equivalent in terms of accuracy 
and reliability. [10•] In a larger study of 176 patients with 
anterior shoulder instability by Lee et al., MRI was found 
to be nearly as accurate as 2D CT, especially when using 
glenoid width rather than best-fit circle area to perform the 
calculations. [20] Moroder et al., however, found MRI to be 
significantly less sensitive (35%) than CT (100%) in detect-
ing significant glenoid bone defects using a best-fit circle 
technique [35].

While studies suggest reasonable efficacy of MRI com-
pared to 2D CT, it performs less favorably overall when 
compared to 3D CT. The exception is a cadaveric study by 
Gyftopolous comparing MRI to 2D and 3D CT in a series 
of 18 specimens with glenoid bone loss using the best-fit 
circle method. They identified a very small (1.3% maximum) 
expected difference in measurements using the various tech-
niques, although they concede there is a large learning curve 
for mastering the technique on MRI. [63] In contrast, Weber 
et al. showed that 2D MRI has decreased accuracy and worse 
interrater reliability for estimating glenoid bone loss when 
compared to 3D CT. [64] Rerko et al. illustrated that 3D CT 
was a superior imaging modality for assessing glenoid bone 
loss than 2D CT, MRI and plain radiographs. [45] Sugaya 
suggested that the benefits of 3D CT include vital preopera-
tive anatomic information beyond simple degree of bone loss 
that makes it the most optimal study for preoperative workup 
of shoulder instability. [65] Nonetheless, it is relevant to note 
that heightened interest in the use of MRI for these bone loss 
measurements has led to MRI-specific formulas designed to 
quantify the degree of bone loss [29, 66].

3D MRI

More recently, the use of 3-Dimensional MRI has gained 
popularity as a new tool for evaluating glenoid bone loss in 
anterior shoulder instability. [21, 67–73, 74•] Similar to 3D 
CT scans, 3D MRI technology uses special MRI sequences 
and computer software programs to produce 3D renderings 
of the 2D MRI data. While these reconstructions use precise 

computer technology to improve the accuracy of the images 
of these 3D structures, the technological requirements and 
expertise required to execute it properly do currently limit 
its widespread use.

Early studies showed 3D MRI fared favorably in terms 
of accuracy when compared to bare spot arthroscopy. [21] 
Subsequent studies like the work by Tian et al. demon-
strated the potential of 3D MRI by illustrating similar 
accuracy and consistency of glenoid bone loss measure-
ment when compared to 2D CT. [72, 73] The vast major-
ity of 3D MRI studies in this area, however, have focused 
on comparing its efficacy to what is considered by many 
to be the gold standard for glenoid bone loss measure-
ment: 3D CT. Vopat et al. demonstrated that 3D MRI 
using the best fit circle technique and 3D CT were equiva-
lent in measuring glenoid bone loss. [67] Lansdown et al. 
similarly confirmed the above in a study of 16 patients. 
They found the difference in bone loss identified on 3D 
MRI and 3D CT ranged from 0 to 6%, although they noted 
that these advanced techniques require specific software 
and the knowledge and experience of how to manipulate 
the data properly. [70] Lander et al. reaffirmed the results 
seen above and also performed a cost analysis demon-
strating how the use of 3D MRI when eliminating the 
need for CT scan with secondary reconstruction could 
lead to a 1.67 times reduction in cost. Finally, Stillwa-
ter et al. showed that 3D MRI could not only accurately 
assess glenoid bone loss, but also any Hill-Sachs lesion 
present, which has been demonstrated to be a crucial ele-
ment of overall shoulder stability [68].

Zero‑Echo Time MRI

New research has investigated the use of zero-echo time 
MRI (ZTE) as an alternative to CT for evaluation of bone. 
This unique sequence setup leverages a very short T2 signal 
from trabecular and cortical bone which, when combined 
with the proton density weighting of the ZTE sequence, 
leads to less contrast between soft tissues. Subsequent gray-
scale inversion leads to superior contrast between soft tis-
sues and cortical bone comparable to CT scan (Fig. 6). [75] 
This MRI sequence has been used for enhanced imaging 
of the brain and skull and has been validated for the use 
of imaging in the hip and femoroacetabular impingement. 
[76, 77] Recently, these techniques have been used in the 
identification of glenoid pathology in shoulder instability. 
[78••, 79] Nevertheless, concerns remain surrounding the 
spatial resolution of this technique. Moreover, ZTE format-
ting requires skilled MRI technicians and radiologists well-
versed in its use, which may limit its use on a broad level. 
[75] It represents an exciting new frontier in musculoskeletal 
imaging and osseous pathology, in particular, and will surely 
see continued interest in the coming years.
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Humeral Head Bone Loss: Evaluation 
of the Hill‑Sachs Lesion

Studies have shown that Hill-Sachs lesions are present in 
greater than 67% of patients who sustain anterior shoulder 
dislocations and may be found in up to 100% of patients 
with anterior shoulder instability. [80–83] Despite this, 
the literature on surrounding quantification of Hill-Sachs 

lesions and clinical correlations lags behind that which we 
see for glenoid bone loss. Plain radiographs are most com-
monly used for diagnosis, including special views such as 
the Stryker notch, West point, and Bernageau views, due 
to their affordability and usefulness as screening tools. Not 
surprisingly, their reliability and accuracy have been ques-
tioned, in certain cases missing more than half of clinically 
relevant Hill-Sachs lesions [83, 84].

Fig. 6  Four different axial 
images of the shoulder dem-
onstrate excellent imaging of 
the bony structures: A CT; B 
ZTE MRI 1.0 mm; C ZTE MRI 
.8 mm; D ZTE MRI .7 mm 
(from de Mello RAF, Ma YJ, 
Ashir A, Jerban S, Hoenecke 
H, Carl M, et al. Three-
Dimensional Zero Echo Time 
Magnetic Resonance Imaging 
Versus 3-Dimensional Com-
puted Tomography for Glenoid 
Bone Assessment. Arthroscopy. 
2020;36(9):2391–400. Printed 
with permission)

Fig. 7  The width and depth of 
Hill-Sachs lesions can be meas-
ured on CT imaging. These are 
often presented as a percentage 
of the humeral head diameter 
(D)

L W

D
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Advanced imaging modalities have allowed for more spe-
cific quantification of these lesions. The majority of studies 
have sought to measure lesion depth, width, and length in 
order to characterize the dimensions of the defects (Fig. 7). 
For example, a study by Cho et al. used 3D reconstructions 
of CT imaging to compare the size, location, and orientation 
of Hill-Sachs defects between engaging and non-engaging 
lesions. In their method, separate axial and coronal images 
were visualized in the slice where the lesion appeared larg-
est. Virtual circles were drawn with the outline of the articu-
lar surface of the humeral head. Width was then defined as 
the distance between the ends of the lesion, and depth was 
the longest length between the nadir of the lesion and the 
outer arc of the circle. These values were then represented 
as a percentage of the diameter of the entire humeral head. 
Other angle measurements, including the Hill-Sachs angle, 
defined as the angle formed between a line down the lon-
gitudinal axis of the humeral shaft the axis of the deepest 
groove of the lesion, were also drawn in order to define the 
orientation and location of the defects. They showed that the 
size of engaging Hill-Sachs lesions was significantly larger 
than that of non-engaging lesions on both axial and coronal 
images, and lesions with larger Hill-Sachs angles were asso-
ciated with engaging lesions [85].

While studies using a number of different imaging modal-
ities have been published attempting to quantify humeral 
head bone loss, including MRI, magnetic resonance arthrog-
raphy, and 2D CT, 3D CT is widely regarded as the superior 
imaging medium to detect and quantify the lesions. [78••, 
85–91] Ultimately, further studies are needed to define a 
gold standard for imaging modality and measuring technique 
for these defects.

Bipolar Bone Loss and the Glenoid Track

While clinicians have long recognized the influence of both 
glenoid and humeral head bone loss on anterior shoulder 
instability, these two concepts were traditionally evaluated 
more or less independently. Only recently have we begun 
to appreciate the complex interplay between bony Bankart 
lesions and Hill-Sachs defects of the posterosuperior 
humeral head. [2, 92] Careful analysis of both components 
in tandem is necessary for any evaluation of glenohumeral 
instability moving forward [12, 93].

On the glenoid side, consensus agrees that anteroinferior 
bone loss > 25% of the inferior glenoid diameter is consid-
ered “critical” and ultimately warrants fixation with bone 
grafting. [94••, 95, 96] To facilitate discussion of significant 
humeral head bone loss, the concept of the glenoid track was 
defined, which is the area on the humeral head that makes 
contact with the glenoid with the arm in full external rotation 

from 0 to 60 degrees of abduction. The medial border of the 
glenoid track has been shown in MRI studies to be con-
sistently located approximately 18 mm medial to the rota-
tor cuff footprint and represents approximately 83% of the 
glenoid width. [97] Hill-Sachs lesions that extend beyond 
the borders of the glenoid track are at risk for engaging, or 
making contact, with the anterior rim of the glenoid with 
the shoulder in external rotation and abduction. However, 
importantly, in the setting of glenoid bone loss, the width 
of the glenoid track is reduced by the width of the glenoid 
defect. In this way, the impact of the humeral head lesion 
on overall stability depends on bipolar bone loss. Hill-Sachs 
lesions were coined as either on-track or off-track based on 
whether or not the lesion engages. On-track lesions do not 
engage, whereas off-track lesions engage [94••, 98].

The presence of an off-track Hill-Sachs lesion is a risk 
factor for recurrence of anterior glenohumeral instability fol-
lowing arthroscopic Bankart repair. [99, 100] In addition, 
studies have suggested that on-track versus off-track lesion 
status is able to better predict recurrent anterior instabil-
ity over traditional glenoid bone loss measurement on MRI. 
[101] Ultimately, both the degree of glenoid bone loss and 
the on-track versus off-track status of the Hill-Sachs defect 
are critical in guiding surgical management and have led to 
the development of surgical treatment algorithms for man-
aging bipolar bone loss in shoulder instability [94••, 102].

Role for Advanced Imaging in Evaluating On‑Track 
versus Off‑Track Lesions

Proper identification and quantification of bipolar bone loss 
are crucial for effective management of these patients. Both 
MRI and CT scan have been used to perform these meas-
urements; however, three-dimensional CT scans appear to 
be the most reliable method by which to assess the on-track 
versus off-track status of a Hill-Sachs lesion. [89, 103–105] 
Regardless of modality used, many authors advocate using 
the contralateral glenoid to establish normal width, given 
that there is minimal side-to-side difference. [94••, 102, 
106] The defect size (d) is then calculated as the difference 
between the contralateral intact glenoid width (D) minus the 
injured glenoid width [94••].

The glenoid track measures 83% of the glenoid width of 
the intact glenoid (D). In cases of glenoid bone loss, the size 
of the glenoid defect (d) is subtracted from the glenoid track, 
and the glenoid track measures: 0.83*D − d (Fig. 8). [94••] 
To determine if a lesion is on-track versus off-track, a line 
is drawn from the medial border of the rotator cuff footprint 
on the humeral head to a distance measuring 83% of the 
glenoid width minus the size of the bony glenoid defect, or 
the glenoid track. If the Hill-Sachs lesion extends medial 
to the medial border of the glenoid track, then the lesion 
is considered off-track or engaging. If the medial border of 
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the Hill-Sachs lesion lies lateral to the medial border of the 
glenoid track, then the lesion is on-track and will not engage.

A similar method to evaluate the on-track versus off-
track of a Hill-Sachs lesion is to measure the Hill-Sachs 
Interval. The Hill-Sachs Interval is the sum of the width 
of the Hill-Sachs lesion and the size of the bone bridge 
between the lateral border of the Hill-Sachs lesion and the 
medial border of the rotator cuff footprint. If the Hill-Sachs 
Interval is larger than the glenoid track, then the lesion is 
off-track, and if the Hill-Sachs Interval is smaller than the 
glenoid track, the lesion is on-track. [94••] Proper radio-
logic evaluation of the on-track or off-track status of the 
Hill-Sachs lesion is paramount for preoperative planning 
for these patients.

Conclusion

Accurate assessment of glenoid and humeral head bone 
loss is a crucial factor in guiding management for patients 
with post-traumatic shoulder instability. The literature sur-
rounding glenoid bone loss measurement is more robust 
than that of the humeral head and, despite its heterogene-
ity, suggests that 3D CT is the most reliable and accurate 
tool for bone loss quantification, especially when using 
surface area-based methods. 3D and ZTE MRI represent 
exciting alternatives to CT imaging that may ultimately 
obviate the need for concomitant CT scan, leading to 
reduced health care costs and decreased radiation expo-
sure. Widespread use of these modalities remains limited 
at this time due to specific software programs and tech-
nical expertise needed to execute them. Humeral head 
defects are similarly best detected and measured on 3D 
CT scan, with most techniques designed to measure the 
width and depth of the Hill Sachs lesions as a percentage 
of entire humeral head.

New research has illustrated the interconnectedness of 
bone defects on both the glenoid and humeral head. The 
concept of the glenoid track and the on-track/off-track 
nature of the Hill-Sachs lesion, which is intimately associ-
ated with the size of the osseous Bankart lesion, has shifted 
the paradigm of radiographic evaluation of anterior shoul-
der instability. Ultimately, further high quality research 
studies evaluating the specificity, sensitivity, and intra- and 
interobserver reliability of these different measurement 
techniques are needed to establish a true gold standard.
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