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Deep transfer learning for inter-chain
contact predictions of transmembrane
protein complexes

Peicong Lin1, Yumeng Yan 1, Huanyu Tao1 & Sheng-You Huang 1

Membrane proteins are encoded by approximately a quarter of human genes.
Inter-chain residue-residue contact information is important for structure
prediction of membrane protein complexes and valuable for understanding
theirmolecularmechanism. Althoughmany deep learningmethods have been
proposed to predict the intra-protein contacts or helix-helix interactions in
membrane proteins, it is still challenging to accurately predict their inter-chain
contacts due to the limited number of transmembrane proteins. Addressing
the challenge, here we develop a deep transfer learningmethod for predicting
inter-chain contacts of transmembrane protein complexes, named DeepTMP,
by taking advantage of the knowledge pre-trained from a large data set of non-
transmembrane proteins. DeepTMP utilizes a geometric triangle-aware mod-
ule to capture the correct inter-chain interaction from the coevolution infor-
mation generated by protein language models. DeepTMP is extensively
evaluated on a test set of 52 self-associated transmembrane protein com-
plexes, and compared with state-of-the-art methods including DeepHomo2.0,
CDPred, GLINTER, DeepHomo, and DNCON2_Inter. It is shown that DeepTMP
considerably improves the precision of inter-chain contact prediction and
outperforms the existing approaches in both accuracy and robustness.

Membrane proteins (MPs) play diverse roles and essential functions in
living cells including molecular transporters, ion channels, signal
receptors, immune response, and enzymes. It is estimated that up to
approximately a quarter of the human genome encodes membrane
proteins, which constitute about half of current drug targets1–3. Fre-
quently, transmembrane proteins (TMPs) assemble to form symmetric
homo-oligomers to perform their specific biological functions by
interacting with themselves under the drive of hydrophobic interac-
tion and hydrogen bond networks4,5. For example, most of the single-
spanning homo-oligomeric transmembrane complexes are stabilized
by the hydrogen bonds6, and the transmembrane region of polytopic
membrane proteins would consist of hydrophobic segments with
regular secondary structures7. However, the experimental determina-
tion of transmembrane protein complex structures is challenging,
primarily due to the influence of the complicated membrane envir-
onment and the large size of these proteins. Therefore, it is highly

desirable to develop computationalmethods for predicting the homo-
oligomeric structures of TMPs and providing molecular interaction
insights.

Many statistical and deep learning-based methods have been
developed to predict protein structures or intra-protein contacts8–17.
Although those methods can accurately predict the intra-protein con-
tacts of soluble proteins, the corresponding precision for TMPs is still
not satisfactory due to the different structural characteristics and
physicochemical environments between soluble proteins and TMPs.
Hence, some methods have been proposed to address the specific
structures of TMPs18–20. Sincemost regions of TMPs are composed of α-
helical structures which aremainly driven by hydrophobic interactions,
several approaches usemachine learning-basedmethods to predict the
helix-helix contacts21–24. In addition, utilizing co-evolutionary informa-
tion, Wang et al. also proposed a deep learning-based method to pre-
dict the reside-residue contacts for guiding ab initio folding of
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membrane proteins25. Although these methods improve the prediction
of membrane protein monomer structures, it is needed to develop
computational methods for addressing the oligomeric structures of
TMPs and investigating their molecular interactions.

Motivated by the success of intra-protein contact predictions in
monomer structure prediction26–28, various advanced deep learning
methods have been developed to predict the inter-chain contacts for
protein complexes29–40. Our previous work, DeepHomo29, utilizes
sequence and structure features to predict inter-chain contacts with
ResNet2 architectures41. With the progress of protein language mod-
els, DeepHomo2.030, GLINTER37, and CDPred40 apply the embedding
vector and multi-head attention features from the ESM-MSA-1b
model42 to capture the interfacial interaction. However, these deep
learning-based methods are only trained on the data set of mainly
soluble proteins, which are different from the TMPs. Therefore, it is
urgent to specially develop a deep learningmodel to predict the inter-
chain contacts for the homo-oligomers of TMPs.

However, compared with thousands of soluble protein com-
plexes, the number of transmembrane protein complexes is rather
limited. For example, there are only <350 non-redundant homo-oli-
gomeric transmembrane protein complexes in the PDBTMdatabase43,
which poses a major obstacle to direct training on transmembrane
proteins. Addressing the challenge, we here develop a deep transfer
learningmethod to predict the inter-chain contacts of transmembrane
proteins, namedDeepTMP, whichfirst trains an initialmodel on a large
number of soluble proteins and then transfers it to transmembrane
proteins by utilizing the features of protein language model and the
geometric triangle-aware module. Compared with the common
ResNet and attention mechanism, the geometric triangle module can
efficiently consider the many-body effect and reduce the geometric
inconsistency, which helps the pre-trained model to more effectively

capture the interfacial interaction from the evolution information
generatedby the ESM-MSA-1bmodel andbetter predict the inter-chain
contacts of TMPs.

Results
The overview of DeepTMP
Figure 1 shows an overview of DeepTMP, which is composed of two
main stages. The first stage is to train an initial model on a large data set
of homodimers which mainly consist of soluble protein complexes. The
second is a transfer learning stage that fine-tunes the initial model on a
small set of transmembrane protein complexes. As shown in Fig. 1a, the
inputs of DeepTMP are monomer structures and the corresponding
Multiple Sequence Alignment (MSA). Then, the evolutionary conserva-
tion and coevolution information are calculated from the MSA. In
addition, the sequence representation and multi-head attention matrix
are also generated by a protein language model. Meanwhile, the intra-
protein distance map is extracted from the monomer structure. Given
the preprocessed input features, the integrated features for receptor,
ligand, and complex are fed into theResNet-Inceptionmodule to extract
the high-order intra-protein interactions for the receptor and ligand,
and the inter-chain interaction for the complex. Then, we apply a geo-
metric triangle-aware module to the inter-chain interaction, which
considers themany-body effects by utilizing an attentionmechanismon
pair representations of three residues that satisfy the geometric con-
sistency. Finally, the inter-chain contacts are predicted from the hidden
representations of the complex.

Performance of DeepTMP on transmembrane proteins
DeepTMP was extensively evaluated on a diverse test set of 52 TMP
homo-oligomers from the PDBTMdatabase with the experimental and
the AlphaFold2-predicted monomer structures (Supplementary

Fig. 1 | The framework of the DeepTMP. a The overview of the deep learning
network. The input features are composed of receptor, ligand and complex fea-
tures. The features of receptor are the same as ligand which includes PSSM, DCA,
ESM-MSA-1b and intra-protein distance features. The features of complex exclude

distance information. b The transfer learning protocol that includes the two stages
of initial training and transfer learning. c The ResNet-Inception module. d The
triangle-aware module that includes one triangle update, two triangle self-atten-
tion, and one transition.
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Data 1). Table 1 lists the average precisions for the top 1, 10, 25, 50, L/10,
L/5, and L predicted inter-chain contacts, where L is the length of
monomer sequence.Here, theprecision is defined as thepercentageof
the true contacts among the considered top predicted contacts.

It can be seen from the table that DeepTMP achieves a high per-
formance for different numbers of top predicted contacts. With the
input of experimental monomer structures, DeepTMP yields high
precisions of 82.7%, 82.3%, 81.1%, 79.4%, 82.0%, 80.1%, and 68.4% when
the top 1, 10, 25, 50, L/10, L/5, and L predicted inter-chain contacts are
considered, respectively. In addition, it is often unavailable to access
the experimental monomer structures in practical scenarios. There-
fore, we also evaluated DeepTMP on the test set of 52 cases using the
AlphaFold2-predicted monomer structures as input, whose results are
also listed in Table 1. It can be seen from the table that DeepTMP still
maintains a higher performance for the input of AlphaFold2-predicted
monomer structures. Specifically, DeepTMP gives the precisions of
76.9%, 76.5%, 74.8%, 71.9%, 75.3%, 72.5%, and 62.3% for the top 1, 10, 25,
50, L/10, L/5, and L predicted inter-chain contacts. These results
demonstrate the robustness of DeepTMP with both experimental and
predicted monomer structures. Given the similar trend of DeepTMP
with experimental and predicted monomer structures, we will only
discuss the results with the input of experimentalmonomer structures
in this study, unless otherwise specified.

Transfer learning improves initial training
Transfer learning uses the knowledge from an initial model trained on
large amounts of data and applies it to a related but different task with
limited data. Although the membrane proteins are encoded by
~20–30% of human genes and play crucial roles in a wide range of
biological processes, it is difficult to solve their structures by experi-
ments because of their membrane environment. Hence, transfer
learning can be an effective approach for the inter-chain contact pre-
diction of transmembrane protein complexes. In addition, some stu-
dies reveal that lipid binding is not essential for the oligomerization of
transmembrane proteins44 and the residues involved in the trans-
membrane oligomer interface are mostly similar to those of soluble
protein interfaces45. Therefore, the initial training model on a large set
of soluble protein complexes provides a generally transferable
knowledge for predicting inter-chain contacts of transmembrane
protein complexes.

Table 1 lists the average precisions of the initial training model
(IT_Model) that is trained on a large data set of soluble protein com-
plexes, for several numbers of top inter-chain contacts on the test set
of 52 cases (Supplementary Data 2). It can be seen from the table that
DeepTMP achieves a considerable improvement of >23% compared
with IT_Model for different numbers of predicted contacts. Figure 2a

shows the violin plots of the top 10 and top L precisions for DeepTMP
and IT_Model. It is shown that DeepTMP obtains a median of 100% in
the top 10 precisions, which outperforms that of IT_Model. In addition,
DeepTMP has a lower gap between the 25th and 75th percentiles,
comparedwith IT_Modelwhere the 25th percentile of IT_Model is close
to 0. This indicates that DeepTMP is more stable and accurate than
IT_Model in predicting the inter-chain contacts of transmembrane
protein complexes.

Figure 2b shows the top L precisions of DeepTMPversus IT_Model
for all the cases in the test set. It can be seen from the figure that
DeepTMP achieves a better performance than IT_Model for 40 of 52
cases. Figure 2c shows the top L precision gap between DeepTMP and
IT_Model versus the percentage of transmembrane region for each
target. Here, the sequence belonging to the transmembrane region is
obtained from the PDBTM database, which is defined by the TMDET
algorithm46. It can be seen from the figure that DeepTMP achieves a
significant improvement in precision formost of the targets across the
whole percentages of transmembrane regions. Such a trend can be
understood because our transfer learning has been trained to improve
the accuracy of DeepTMP from the IT_Model for all the targets with
different transmembrane proportions. These results demonstrate the
necessity of transfer learning and the robustness of DeepTMP.

Figure 2d shows the average improvement of DeepTMP over
IT_Model for top L precision as a function of the number of chains for
each target. It can be seen from the figure that as the number of chains
increases, the precision is improvedmore and remains a relatively high
improvement after reaching a certain level. Specifically, the improve-
ments are 8.5%, 17.4%, 39.5%, 41.5%, 66.2%, 49.0%, 44.6%, and 62.6% for
the eight chainnumber ranges, respectively. This phenomenonmaybe
understood as follows. The IT_Model is only trained with homodimers,
while DeepTMP is trained with different symmetries of transmem-
braneprotein complexes consisting of different numbers of chains.On
one hand, IT_Model does not learn the high-order symmetric inter-
chain interactions during the training process. On the other hand, the
formation of homo-oligomers with more chains would generate a
more negative entropy47. Tomaintain the stability of the assembly, it is
expected that its sequence should be more evolutionarily conserved
than homodimers.

Transfer learning outperforms direct training
To investigate the importance of the dataset of soluble protein com-
plexes, we directly trained a model on the training set of transmem-
brane protein complexes with the same network and hyper-
parameters as DeepTMP, named the direct training model (DT_Mo-
del). Table 1 lists the average precisions of DT_Model for several
numbers of top predicted contacts on the test set of 52 targets

Table 1 | Comparison of DeepTMP with other state-of-the-art methods

Method Top 1 Top 10 Top 25 Top 50 Top L/10 Top L/5 Top L

DeepTMP 82.7 (76.9) 82.3 (76.5) 81.1 (74.8) 79.4 (71.9) 82.0 (75.3) 80.1 (72.5) 68.4 (62.3)

CDPred 55.8 (46.2) 48.5 (49.6) 48.4 (49.2) 45.9 (46.5) 48.6 (49.0) 45.6 (44.8) 33.8 (35.3)

DeepHomo2.0 50.0 (46.2) 48.7 (46.7) 47.2 (44.9) 43.3 (41.1) 44.0 (42.0) 41.1 (38.7) 31.8 (27.2)

GLINTER 44.4 (40.0) 38.0 (36.4) 38.3 (36.6) 34.3 (32.8) 39.9 (36.0) 36.4 (34.7) 27.7 (27.4)

DeepHomo 28.8 (23.1) 27.7 (23.3) 24.8 (20.5) 22.0 (19.2) 23.2 (18.7) 21.4 (18.4) 15.7 (12.1)

DNCON2_Inter 13.7 (13.7) 13.3 (13.1) 12.0 (13.0) 11.7 (13.0) 12.5 (12.8) 11.4 (12.7) 7.9 (8.3)

DeepHomo2_TMP 63.5 (61.5) 65.0 (63.3) 63.0 (59.7) 60.9 (56.2) 60.6 (57.1) 58.5 (55.9) 45.9 (40.9)

IT_Model 59.6 (57.7) 56.3 (55.8) 54.8 (53.8) 52.3 (51.0) 53.9 (52.9) 52.4 (50.9) 42.0 (39.3)

DT_Model 51.9 (55.8) 53.5 (53.3) 53.4 (53.2) 50.2 (49.0) 50.4 (51.5) 49.9 (47.9) 38.5 (37.4)

Theprecisions (%) ofDeepTMP,CDPred,DeepHomo2.0,GLINTER,DeepHomo,andDNCON2_Inter arebasedon the test set of 52 transmembraneproteincomplexeswhen theexperimentalmonomer
structures (predicted monomer structures by AlphaFold2) are used as input. For reference, the table also lists the results of the transfer learning model using the network architecture of
DeepHomo2.0 (DeepHomo2_TMP), the initial training model (IT_Model) on the large data set of soluble protein complexes, and the direct training model (DT_Model) on the small data set of
transmembrane protein complexes. The numbers in bold fonts indicate the best performances for the corresponding categories.
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(Supplementary Data 2). The corresponding comparison between
DeepTMP andDT_Model for top 10 and Lprecisions is shown in Fig. 3a.
DeepTMP exhibits an improvement of ~30% across different numbers
of predicted contacts in comparison with DT_Model. The precisions of
DeepTMP maintain a higher level. This indicates that it is difficult for
DT_Model to directly learn the inter-chain interaction of transmem-
brane protein complexes from a small training set.

Figure 3b shows the top L precisions of DeepTMP versus those of
DT_Model. It can be seen from the figure that DeepTMP gives a better
performance than DT_Model for 44 of 52 test cases. Figure 3c shows
the top L precision improvement of DeepTMP over DT_Model versus
the proportion of transmembrane regions. It can be seen from the
figure that DeepTMP achieves a considerable improvement over
DT_Model for the majority of the cases for different percentages of
transmembrane regions. The improvement is much more prominent
when the percentage of transmembrane region becomes smaller for a
target. This can be understood because the targets with smaller
transmembrane proportions will be more like soluble proteins which
are not considered by DT_Model. These results suggest that the
improvement may be due to the abundant similar interactions
between soluble and transmembrane protein complexes, such as the
interfacial hydrophobic interactions. It is apparent that DeepTMP can
effectively retain the similar interaction knowledge between soluble
and transmembrane protein complexes through the transfer learning

protocol, but DT_Model fails to do so because it is only trained on the
small set of transmembrane proteins.

To verify whether IT_Model and DT_Model learn the character-
istics of soluble and transmembrane proteins, respectively, we com-
pare the precisions of IT_Model and DT_Model for the top L predicted
contacts, as shown in Fig. 3d. Overall, the performances of the two
methods are comparable, albeit with a discernible advantage for one
method over the other depending on the performance of IT_Model.
Specifically, DT_Model has a lower precision than IT_Model for the
targets where IT_Model has a relatively high precision (above ∼60%),
while DT_Model obtains a better performance than IT_Model on those
targets where IT_Model has a relatively low precision (below ∼40%).
Such a trend can be understood as follows. For the targets where the
IT_Model has a high performance, their inter-chain interactions would
be more like those of soluble proteins. As such, DT_Model would
perform less satisfactorily on these targets because it is only trained on
transmembrane proteins. In contrast, for the targets where the
IT_Model has a low performance, their inter-chain interactions would
be more impacted by the membrane environment. Therefore, it is
expected that DT_Model performs better than IT_Model on these
transmembrane protein complexes. The different advantages of
IT_Model and DT_Model ensure the robustness of DeepTMP in
improving the inter-chain contact predictions of transmembrane
protein complexes through a transfer learning strategy.

Fig. 2 | Comparison of DeepTMP and initial training model (IT_Model). a The
violin plots of the top 10 and L precisions for DeepTMP and the initial training
model (IT_Model) on n = 52 cases in the TMP test set. The box plot inside the violin
displays the 25th and 75th percentiles of the data, and the dot indicates themedian.
The whiskers extend to the highest and lowest values within 1.5 times the

interquartile range of the data. b The top L precisions of DeepTMP versus those of
IT_Model for all 52 test cases. c The gap of top L precision between DeepTMP and
IT_Model versus the percentage of transmembrane region on the test set of 52
targets. d The gap of top L precision betweenDeepTMP and IT_Model as a function
of the number of chains in each target.
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Comparison with other methods
We compared DeepTMP with other inter-chain contact predictors
including CDPred, DeepHomo2.0, GLINTER, DeepHomo, and DNCO-
N2_Inter on the test set of 52 targets with experimental and
AlphaFold2-predicted monomer structures, respectively. Specifically,
we downloaded the programs of the methods other than Dee-
pHomo2.0 and DeepHomo from their official web sites, and then ran
the programs locally using their default parameters. It is noted that
GLINTER only gave the results for 45 targets for the TMP test set
because it can only handle the targets with a sequence length of <500.
Table 1 lists the average precisions of the fivemethods for the top 1, 10,
25, 50, L/10, L/5, and L predicted inter-chain contacts on the test set of
52 targets (Supplementary Data 1).

It can be seen from the table that DeepTMP significantly outper-
forms the other five methods for different numbers of predicted
contacts. Specifically, DeepTMP achieves a precision of 82.3% for the
top 10 predicted inter-chain contacts with the input of experimental
monomer structures, which is much >48.7% for DeepHomo2.0, 48.5%
for CDPred, 38.0% for GLINTER, 27.7% for DeepHomo, and 13.3% for
DNCON2_Inter. Similar trend can also be observed for the input of
AlphaFold2-predicted monomer structures. Specifically, DeepTMP
gives the precisions of 76.5% and 62.3% for top 10 and L predicted
contacts, which are considerably >49.6% and 35.3% for CDPred, 46.7%
and 27.2% for DeepHomo2.0, 36.4% and 27.4% for GLINTER, 23.3% and

12.1% for DeepHomo, and 13.1% and 8.3% for DNCON2_Inter. Given the
difference in structure characteristics between soluble and trans-
membrane protein complexes, it is expected that DeepTMP performs
better than DeepHomo2.0, CDPred, DeepHomo, and DNCON2_Inter
which are mainly trained on soluble protein complexes. This can also
be understood because DeepTMP extracts the high-order repre-
sentations of transmembrane protein complexes through transfer
learning and learns the interaction knowledge of both two soluble and
transmembrane protein systems.

Figure 4a shows a comparison of the top L precisions of
DeepTMP, CDPred, DeepHomo2.0, GLINTER, DeepHomo, and
DNCON2_Inter in terms ofmedian, 25th, and 75th percentiles. It can be
seen from the figure that DeepTMP achieves the highest median top L
precision among the six methods. In addition, it is also noted that the
25th percentile of DeepTMP is higher than the 75th percentile of the
other methods. This suggests that DeepTMP is more accurate and
robust than the other methods in inter-chain contact predictions on
transmembrane protein complexes. Figure 4b shows the top L preci-
sions of DeepTMP versus those of CDPred, DeepHomo2.0, GLINTER,
DeepHomo, andDNCON2_Inter for the 52 cases in the test set. It canbe
seen from the figure that DeepTMP achieves a significantly better
performance than the other five methods for most of the test cases.
Specifically, DeepTMP performs better than CDPred for 47 of 52 cases,
better than DeepHomo2.0 for 46 of 52 cases, better than GLINTER for

Fig. 3 | Comparison of DeepTMP and direct training model (DT_Model). a The
violin plots of the top 10 and L precisions for DeepTMP and the direct training
model (DT_Model) onn = 52 cases in theTMP test set. The boxplot inside the violin
displays the 25th and 75th percentiles of the data, and the dot indicates themedian.
The whiskers extend to the highest and lowest values within 1.5 times the

interquartile range of the data. b The top L precisions of DeepTMP versus those of
DT_Model for all 52 test cases. c The gap of top L precision between DeepTMP and
DT_Model versus the percentage of transmembrane region on the test set of 52
targets. d The top L precisions of IT_Model versus those of DT_Model for all 52
transmembrane protein complexes in the test set.
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41 of 45 cases, better than DeepHomo for 47 of 52 cases, and better
than DNCON2_Inter for 46 of 52 cases. These results indicate that
DeepTMP can more accurately predict the inter-chain contacts of
transmembrane protein complexes.

Figure 4c shows an example of transmembrane protein complex
(PDB ID: 5TIN) with the predicted inter-chain contacts by four meth-
ods. Although the helix-helix interactions in the transmembrane
region belong to the hydrophobic interactions whichmaybe similar to
those at the interface of soluble protein complexes, CDPred, Dee-
pHomo2.0, and GLINTER still cannot well predict the inter-chain
contacts. In contrast, DeepTMP obtains high precisions of 100% and
87% for top 10 and top L predictions, respectively. This demonstrates
that DeepTMP can correctly capture the hydrophobic interaction
knowledge at the interface of transmembrane protein complexes
which is affected by the lipid environment.

To further examine the robustness of DeepTMP, we also eval-
uated the performance of DeepTMP on the 296 soluble dimeric pro-
teins from the test set of DeepHomo2.0, and compared itwith CDPred,
DeepHomo2.0, GLINTER and DeepHomo. Supplementary Table 1 lists
the corresponding precisions for the top 1, 10, 25, 50, L/10, L/5, and L
predicted inter-chain contacts on the test set of 296 soluble dimers
(Supplementary Data 3). It can be seen from the table that DeepTMP
still maintains a good performance and obtains the precisions of 71.2%
and 65.1% for top 10 and L predicted contacts on these soluble

proteins, which are comparable to the precisions for CDPred and sig-
nificantly higher than those for the other methods. This suggests that
DeepTMP can well retain the learned inter-chain contact knowledge of
soluble protein complexes from the initial training stage during
transfer learning to transmembrane protein complexes.

Analysis of feature importance
The number of interfacial contacts in a protein complex is an impor-
tant feature of its inter-chain interaction. Here, the contact density is
used to characterize the interface. Specifically, the number of inter-
chain contacts isfirst obtained fromthemaximum interface in a target.
Then, the contact density is calculated as follows,

ContactDensity =
sum contactsð Þ

2L
ð1Þ

where L is the sequence length of monomer structure for transmem-
brane protein complexes. Figure 5a shows the top L precisions of the
six methods versus the contact density in different ranges on the TMP
test set. It can be seen from the figure that DeepTMP achieves the best
performance for different contact densities among all the tested
methods. In general, there is an uptrend of precision when the contact
density increases, as expected. Since most transmembrane protein
complexes are composed of a large number of amino acids, it is

Fig. 4 | Comparison of DeepTMP and the stat-of-the-art methods. a The violin
plots of top L precisions by DeepTMP, CDPred, DeepHomo2.0, GLINTER, Dee-
pHomo and DNCON2_Inter on n = 52 cases in the TMP test set. The box plot inside
the violin displays the 25th and 75th percentiles of the data, and the dot indicates
the median. The whiskers extend to the highest and lowest values within 1.5 times
the interquartile range of the data.bThe top L precisions of DeepTMP versus those

of CDPred, DeepHomo2.0, GLINTER, DeepHomo, and DNCON2_Inter on the test
set. c The 3D structures of 5TIN with predicted inter-chain contacts by DeepTMP,
CDPred, DeepHomo2.0, and GLINTER. The correct (incorrect) predicted contacts
are colored in green (red). The parts between two dashed lines are the trans-
membrane regions.
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difficult to capture the small portion of interfacial interactions.
Nevertheless, even at a low contact density, DeepTMPobtained a top L
precision of 30%, which is significantly higher than the other methods
(Supplementary Data 4a).

We further investigated the influence of the depth of MSA on the
performances of DeepTMP and other five methods. The effective
sequence numberMeff is used to quantify the depth ofMSA. Specifically,
we used a sequence identity of 70% to calculate theMeff on the TMP test
set and set seven reasonable intervals. Figure 5b shows the corre-
sponding top L precisions of the six methods in different ranges of MSA
depth. It can be seen from the figure that DeepTMP also achieves the
best performance among the six methods. Even at a lower value of
ln(Meff) < 4.0, DeepTMP is capable of achieving a top L precision of over
55%, which is comparable to the best performance of the other meth-
ods, surpassing most of the other methods by a significant margin.

Interestingly, the targets with the ln(Meff) from 6.0 to 7.0 have a
relatively lower precision for all methods (Fig. 5b). Further examina-
tion reveals that two alpha targets (PDB IDs: 4JKV and 5GUF) in this
MSA range have low contact density of 0.343 and 0.324 (Supplemen-
tary Data 4a), which makes it hard to correctly predict the inter-chain
contacts. Similarly, another alpha target 4OR2 also has a contact
density of 0.325, which leads to a relatively low average precision for
the ln(Meff) from 7.0 to 7.25. If we excluded these three targets from

the test set, the precisions will always increase with the increase of
ln(Meff). Another reason for such an abnormal phenomenon is that we
usedhhfilter to screen the sequences of the originalMSA for extracting
the ESM-MSA-1b features, which often leads to a drop in the number of
effective sequences for ESM-MSA-1b. Therefore, we have instead
adopted the number of effective sequences for ESM-MSA-1b to mea-
sure the depth of MSA. With this correction, the precision indeed
increases with the number of effective homologous sequences (Sup-
plementary Data 4a).

The searched sequence database is one critical factor impacting
the MSA. Therefore, we have also evaluated DeepTMP using the Big
Fantastic Database (BFD) instead of the original UniRef_2020_03
database. Figure 5c shows a comparisonofDeepTMPwithUniRef, BFD,
and BFD+UniRef databases in terms of precisions on the test set of 52
targets (Supplementary Data 4b and Supplementary Data 4c). Inter-
estingly, DeepTMP/BFD yields a slightly lower performance than the
baselineDeepTMP/UniRefmodel, although theDeepTMP/UniRef+BFD
model recovers the lost performance. Specifically, DeepTMP/BFD
gives the precisions of 77.5% and 65.6% for top 10 and L contacts,
compared with 82.3% and 68.4% for DeepTMP/UniRef, and 80.4% and
67.5% for DeepTMP/UniRef+BFD (Supplementary Data 4b). The reason
for such difference would be attributed to the different preparation
methods between UniRef and BFD databases, which will result in

Fig. 5 | Analysis of feature importance. a The top L precisions of DeepTMP,
CDPred, DeepHomo2.0, GLINTER, DeepHomo, and DNCON2_Inter in different
ranges of contact density. b The top L precisions of DeepTMP, CDPred, Dee-
pHomo2.0, GLINTER, DeepHomo, and DNCON2_Inter in different ranges of
ln(Meff). c Comparison of the precisions for DeepTMP using UniRef, BFD, and

UniRef+BFD sequence databases, respectively. d The precisions of the baseline
model (i.e. DeepTMP) versus three ablation models including No_Module
(i.e. DeepHomo2_TMP), No_TMP (i.e. IT_Model), and No_Module+TMP
(i.e. DeepHomo2.0).
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different MSAs for the same query. It is also revealed that DeepTMP/
BFD is quite complementary to DeepTMP/UniRef. Specifically, out of
the 52 targets, DeepTMP/BFD performs better for 22 cases, DeepTMP/
UniRef performs better for 24 cases, and both models perform com-
parably for 6 cases (Supplementary Data 4b).

Compared with other methods like DeepHomo2.0, DeepTMP has
two additional types of important features. One is the use of Resnet-
Inception and geometric triangle-aware modules in the network
architecture, and the other is the inclusion of transmembrane protein
complexes in the training set. To investigate their roles in DeepTMP,
we have retrained a model using the same network as DeepHomo2.0
and the same training procedure as DeepTMP, named DeepHo-
mo2_TMP. Figure 5d shows a comparison of the baseline model (i.e.
DeepTMP) and three ablation models including No_Module (i.e. Dee-
pHomo2_TMP), No_TMP (i.e. IT_Model), and No_Module+TMP (i.e.
DeepHomo2.0) on the test set of 52 targets (Supplementary Data 5). It
can be seen from the figure that all the ablation models give a lower
performance than the baseline model, as expected. However, com-
pared with the baseline, the No_TMP model has a larger performance
drop than theNo_Modulemodel. For example, DeepTMP (i.e. baseline)
gives a precision of 82.0% for top L/10 contacts, compared with 53.9%
for IT_Model (No_TMP), 60.6% for DeepHomo2_TMP (i.e. No_Module),
and 44.0% for DeepHomo2.0 (i.e. No_Module+TMP). These results
suggest that the transmembrane protein complexes contribute more
to the performance of DeepTMP than the Resnet-Inception and geo-
metric triangle-aware modules.

Table 1 also shows that even the IT_Model yields a better perfor-
mance than the other methods including CDPred, DeepHomo2.0,
GLINTER, DeepHomo, and DNCON2_Inter, although these models are
all trained on soluble protein complexes. Such phenomenon can be
understood as follows. Compared with the other methods, the
IT_Model implements the Resnet-Inception and geometric triangle-
aware modules in the network. On one hand, the Resnet-Inception
module can capture long-range interaction by increasing the effective
receptive field. On the other hand, the geometric triangle-aware
module is also able to consider many-body effects by utilizing an
attention mechanism on pair representations of three residues that
satisfy the geometric consistency. As such, the IT_Model has a better
ability to capture the inter-chain contacts than the other methods.

Impact on protein topology
There are 75/12/13, 25/7/3, and 38/3/11 cases for alpha/beta/alpha+beta
topologies in the training, validation, and test sets, respectively.
Although alpha-helix and beta-barrel transmembrane proteins span
and interact with lipid bilayer through hydrophobic interactions, their
topologies, function, and interaction mechanism are different. Most
transmembrane protein complexes belong to the alpha-helix category,
where the alpha-helical domains are mostly hydrophobic and non-
polar. Therefore, the intra-protein and inter-chain interactions are
similar and hydrophobic for the alpha-helix transmembrane proteins.
However, the outside surface of beta-barrel is non-polar, and the inside
channel is hydrophilic, which is different from those of alpha-helix
transmembrane proteins. Therefore, it is valuable to investigate the
impact of different topologies of transmembrane protein complexes
on inter-chain contact predictions.

Figure 6a shows the top 10, 25, L/5, and L precisions of DeepTMP
for alpha, beta, and alpha+beta targets in the test set of 52 trans-
membrane protein complexes. It can be seen from the figure that
DeepTMP obtains a better performance on the targets with beta and
alpha+beta topologies than on those with alpha topology. Specifically,
DeepTMP obtains the precisions of 76.6% and 62.1% for top 10 and L
precisions on the targets with alpha topology, compared with 100%
and 87.9% for beta-topology targets, and 97.3% and 85.0% for alpha
+beta-topology targets. To investigate how the topology of the train-
ing set impacts the performances of different topologies, we retrained

a model using the alpha-transmembrane proteins only, named
DeepTMPα, and then evaluated DeepTMPα on alpha, beta, and alpha
+beta targets (Supplementary Data 6). Interestingly, DeepTMPα does
not perform the best on those alpha targets (Fig. 6b). Similar trend in
the performances of different topologies for DeepTMP can be
observed for DeepTMPα. Namely, DeepTMPα achieves the best per-
formance on beta targets, followed by alpha+beta and alpha targets
(Fig. 6a, b). Specifically, DeepTMPα obtains the precisions of 58.2%,
74.5%, and 76.9% for top L predicted contacts on the alpha, beta and
alpha+beta targets, respectively (Supplementary Table 2).

This topology-dependent phenomenon may be understood as
follows. Generally, beta-barrel transmembrane proteins play a crucial
role in transporting cargo and signaling across biological membranes.
The efficient execution of these functions necessitates the formation of
multi-chain structures with a barrel-like architecture, which may lead to
a large interacting interface. Thus, we calculated the average contact
density of the two kinds of topologies. It is found that the targets with
alpha and beta topologies have 1.33 and 2.33 contact densities,
respectively. Therefore, it is expected to predict inter-chain contacts on
the beta-topology targets more easily. In addition, beta-barrels often
exist in the outermembranes of Gram-negative bacteria and chloroplast
and mitochondria48. If the MSA of beta-barrel transmembrane protein
complexes displays a greater degree of conservation, it is expected to
have an enhanced prediction of inter-chain contacts on such kind of
topology. Hence, we simply employ an entropy formula as a straight-
forward measurement of the MSA conservation. Specifically, the aver-
age entropy for each target is calculated as follows,

H = � 1
N

XN
i

Xnaa

j

p j
i log pj

i

� �
ð2Þ

whereN is the number of amino acids in the sequence of a target, naa is
the 20 standard amino acids, and pj

i represents the observed fre-
quency of amino acid type j at the i-th position.

Figure 6c shows the distribution of average entropy on the three
types of topologies for the test set of 52 targets (Supplementary
Data 7). It can be seen from the figure that the targets with beta
topology have a higher sequence conservation. Therefore, it is
expected to predict the inter-chain contact with a better performance
on beta topology. Similarly, the targets with alpha+beta topology
mostly form the ion channel and beta barrel channel according to the
secondary structures of their transmembrane regions. Considering the
contact density and sequence conservation, the target of alpha+beta
topology is expected to obtain a better performance than that of alpha
topology. In addition, we also calculated the precisions of the other
methods on three types of topologies. Specifically, DeepTMP achieves
the topLprecisions of 62.1%, 87.9%, and85.0%onalpha, beta and alpha
+beta topologies, respectively, which significantly outperform the
precisions of 36.6%, 22.5%, and 27.2% for CDPred, 30.7%, 28.4%, and
36.3% for DeepHomo2.0, 23.2%, 37.1%, and 39.4% for GLINTER, and
14.2%, 5.0% and 23.7% for DeepHomo (Supplementary Data 1a). This
suggests that DeepTMP learned the different characteristics for dif-
ferent topologies of transmembrane protein complexes, and can
robustly predict their inter-chain interactions.

Transmembrane proteins consist of three different regions,
including extracellular (Extra), transmembrane (TM), and cyto-
plasmic (Cyto) segments. Among these three categories, the trans-
membrane segment is embedded in the lipid bilayer, while
extracellular and cytoplasmic segments are located in water and
belong to soluble parts. Given the different physiochemical envir-
onments of extracellular, transmembrane, and cytoplasmic regions,
we have calculated the precisions of DeepTMP for the three topol-
ogies of transmembrane proteins on the 52 targets (Supplementary
Data 8), where the positions of TM regions are defined according to
the PDBTM database43. The corresponding results are shown in
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Fig. 6d and listed in Supplementary Table 3. It can be seen from the
figure that DeepTMP achieves the overall best performance with a
top L precision of 72.1% for the cytoplasmic region, followed by
66.0% for the transmembrane and 61.7% for the extracellular regions.
These results suggest that the inter-chain contacts for both trans-
membrane and non-transmembrane regions would be evolutionarily
conserved in the formation of transmembrane protein complexes
and thus can be well predicted by DeepTMP.

Prediction of oligomeric state
DeepTMP is developed to predict the inter-chain contacts of trans-
membrane protein complexes. Another critical challenge in the field is
to predict the oligomeric state of a protein. To examine whether
DeepTMP can be used for such purpose, we have investigated the
maximum predicted contact probabilities of 50 monomers and 52
oligomers from our test set. Here, the 50 monomeric transmembrane
proteins are obtained from the PDBTM database43 according to the
following criteria: (i) The protein only has one chain; (ii) The length of
sequence is <800. Then, weused theMMseqs2with an E-value of 0.1 to
remove the overlappedmonomeric transmembrane proteins with our
TMP test set. Finally, we used a sequence identity cutoff of 40% to
cluster the remained monomeric transmembrane proteins and ran-
domly selected 50 monomer targets.

Figure 7a shows the box plots of the average maximum contact
probabilities for 50 monomeric and 52 oligomeric transmembrane
proteins (Supplementary Data 9). It can be seen from the Fig. 7a that
compared with the monomers, the oligomers tend to have a higher
maximum contact probability. On average, the oligomers have an
average maximum contact probability of 0.86, which is significantly
>0.64 for the 50monomers. This suggests that DeepTMP can to some
extent distinguish between monomers and oligomers (dimer, trimer,
etc.) according to the maximum contact probability. In addition,
among the oligomers, although the complexes with three or more
subunits have comparablemaximumcontact probabilities, they have a
higher maximum contact probability than the dimers (Fig. 7b). This
means that DeepTMP can to some extent distinguish between dimers
and the complexes with three or more subunits, but may not distin-
guish between the oligomeric states of those complexes with three or
more subunits.

Figure 7c shows the success rates for the prediction of monomeric
and oligomeric states by DeepTMP as a function of the contact prob-
ability threshold. Here, a successful prediction for amonomer is defined
if its maximum contact probability is lower than the contact probability
threshold, while a successful prediction for an oligomer means that its
maximum contact probability is higher than the contact probability
threshold. It can be seen from the figure that with the increase of

Fig. 6 | Impact of protein topology. a The top 10, 25, L/5, and L precisions of
DeepTMP for the targets with alpha, beta, and alpha+beta topologies. b The top 10,
25, L/5, and L precisions of DeepTMPα that is trained on alpha transmembrane
proteins only, for the targets with alpha, beta, and alpha+beta topologies. c The
average entropies of the targets for three types of topologies including n = 38

alpha, 3 beta, and 11 alpha+beta cases. The vertical bars represent themean, and the
lines are error bars (standard deviations). The outliers are plotted as circle. d The
top 10, 25, L/5, and L precisions of DeepTMP for extracellular (Extra), transmem-
brane (TM), and cytoplasmic (Cyto) regions of transmembrane protein.
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contact probability threshold, the success rate for monomers becomes
higher, while the success rate for oligomers becomes lower. When they
meet at the contact probability threshold of around 0.77, both mono-
mers and oligomers achieve a relatively high success rate. Therefore, the
contact probability threshold of 0.77 may be used as a criterion to
distinguish between monomers and oligomers. Similarly, the contact
probability threshold of 0.97 can be used as a criterion to distinguish
between dimers and oligomers with three or more subunits. Figure 7d
shows the precisions of predicted contacts for oligomers and the false
positive rates of predicted contacts for monomers by DeepTMP as a
function of the contact probability on the 50 monomers and 52 oligo-
mers. It can be seen from the figure that DeepTMP yields a high preci-
sion of 95.8% for oligomers and a very low false positive rate of 2.01% for
monomers within top L predicted contacts at the contact probability
threshold of 0.77, suggesting the potential of DeepTMP in distinguish-
ing between monomers and oligomers.

Case study
Figure 8a–c shows the predicted inter-chain contact maps by DeepTMP
on three selected transmembrane protein targets, 6UWM, 1UUN, and
5SVK. For comparison, the corresponding contact maps for AlphaFold-
Multimer (AFM) and native complexes are also given in the figure. Here,
the contact probability map for AFM is converted from the predicted
inter-chain distances in the AFMmodel with the best “iptm+ptm” score.

It can be seen from the figure that DeepTMP obtains a better prediction
with the precisions of 62.7%, 68.5%, and 93.1% for the top L contacts on
these three targets, respectively, compared with 36.6%, 52.2%, and
89.0% for AFM. In addition, compared with the ground-truth contact
map, DeepTMP also shows a good complementarity to AFM in terms of
predicted inter-chain contacts. In other words, DeepTMP is able to
predict correct contacts that are failed by AFM. For example, within the
top 100predicted contacts, DeepTMPalone gives the correct prediction
for 42 and 49 contacts, AFM alone gives the correct prediction for 24
and 12 contacts, and bothmodels give the correct prediction for 34 and
26 contacts on targets 1UUN and 6UWM, respectively.

With the predicted inter-chain contacts, we also constructed the
complex structure of transmembrane proteins by using our protein-
protein docking program HSYMDOCK49. Specifically, the putative
binding models are first sampled and then evaluated by our iterative
knowledge-based scoring function ITScorePP50. The predicted inter-
chain contacts by DeepTMP are integrated into the scoring process as
follows30:

Econt =

E0, if rij ≤8:0Å

E0 × 1� rij�8:0
4:0

� �
, if 8:0 Å< rij ≤ 12:0Å

0:0, if rij > 12:0Å

8>>><>>>: ð3Þ

Fig. 7 | Prediction of the oligomeric state. a The average maximum predicted
contact probabilities for n = 50 monomers from the PDBTM database and n = 52
oligomers in the TMP test set. The vertical bars represent the mean, and the lines
are error bars (standarddeviations). Theoutliers are plottedas circle.bThe average
maximum predicted contact probabilities for different oligomeric states for n = 52
transmembrane protein complexes in the test set. The vertical bars represent the

mean, and the lines are error bars (1.5 times standard error). c The success rates in
predicting the oligomeric states of monomer versus oligomer, and dimer versus
oligomer>2 as a function of contact probability threshold. d The precisions for
oligomers (solid lines) and the false positive rates formonomers (dashed lines) as a
function of contact probability threshold.
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where rij is the distance between two contacting residues. The E0
represents an empirical constraint energy between two residues for a
predicted contact and is set to −100.0 kcal/mol30. Similar to Dee-
pHomo2.0, we only considered the top 10 predicted contacts with a

contact probability threshold of >0.65 tominimize the number of false
positive contacts. Tomimic real experiments, we used the AlphaFold2-
predictedmonomer structure as input for docking. Figure 8d, e shows
the docked complex structures with and without including the

w/ contacts w/o contacts w/ contacts w/o contacts
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Fig. 8 | Examples of predicted inter-chain contact maps and contact-assisted
docking. a–c The predicted inter-chain contact maps by DeepTMP, AlphaFold-
Multimer (AFM), and ground-truth of native complexes for three example targets,
6UWM (a), 1UUN (b), and 5SVK (c). For reference, the native structures of three

targets are also shown on the left. d, e The top predicted complex structures of our
protein-protein docking program HSYMDOCKwith (left panels) and without (right
panels) using the predicted inter-chain contacts by DeepTMP on two targets, 4K7R
(d) and 2JAF (e). The upper row is the top view and the lower row is the side view.
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predicted contacts by DeepTMP using our HSYMDOCK program on
two targets, 4K7R and 2JAF. It can be seen from the figure that with
inclusion of predicted inter-chain contacts, HSYMDOCK is able to
construct the correct complex structures with high TM-scores of 0.89
and 0.96 for targets 4K7R and 2JAF, respectively. By contrast, without
considering the inter-chain contacts, HSYMDOCK leads to wrongly
predicted complex structures with low TM-scores of 0.46 and 0.47 for
the two targets, respectively. These results suggest the value of
DeepTMP in building complex structures.

Discussion
In this study, we have developed a transfer learning-based method for
predicting the inter-chain contacts of transmembrane protein com-
plexes by transferring the knowledge gained from the initial training
model which is trained on a large data set of soluble protein com-
plexes. DeepTMP is extensively evaluated on the TMP test sets of 52
transmembrane protein complexes, and compared with the other five
methods includingDeepHomo2.0, CDPred, GLINTER, DeepHomo, and
DNCON2_Inter. It is shown that DeepTMP achieves the best perfor-
mance among the compared methods and predicts the inter-chain
contacts with the precisions of 82.2% and 68.4% for the top 10 and L
predicted contacts, respectively, compared with 48.7% and 31.8% for
DeepHomo2.0, 48.5% and 33.8% for CDPred, 38.0% and 27.7% for
GLINTER, 27.7% and 15.7% for DeepHomo, and 13.3% and 7.9% for
DNCON2_Inter on the test set. These results demonstrate the accuracy
and robustness of DeepTMP. The better performance of DeepTMP
than the other methods is attributed to not only the use of Resnet-
Inception and geometric triangle-aware modules in the network
architecture but also the inclusion of transmembrane protein com-
plexes in the training set.

In addition, we also compare DeepTMP with the initial training
model (IT_Model) to demonstrate the importance of transfer learning.
Through the comparison of the different impacting factors including
the proportion of transmembrane regions and the order of symmetry, it
is found that DeepTMP can retain the similar physical interaction
learned from the pre-trained model such as interfacial hydrophobic
interactions, and capture the characteristics of transmembrane protein
complexes. Furthermore, we directly train a deep learning-based model
without transfer learning on the TMP training set and compare it with
DeepTMP to illustrate the importance of the pre-trainedmodel. We also
investigate the impact of different features to verify the robustness of
DeepTMP. Moreover, we study the performance of DeepTMP on dif-
ferent topologies which have different mechanisms of interactions and
structural characteristics, comparedwith the othermethods. It is shown
that DeepTMP can effectively predict the correct inter-chain contacts
regardless of topologies. Finally, it is revealed that DeepTMP is to some
extent able to distinguish between monomers and oligomers as well as
between dimers and higher-order complexes according to the max-
imum predicted contact probability. It is anticipated that DeepTMP will
serve as an indispensable tool for the inter-chain contact prediction of
homo-oligomeric transmembrane proteins.

Methods
The overall framework of DeepTMP
Figure 1 shows the overall framework of DeepTMP, which is composed
of four important components: (1) The encoding features of DeepTMP
including sequence and structure features. (2) The implementation of
ResNet-Inception module. (3) The triangle-aware module including
triangular update, triangular self-attention and transition layer. (4) The
transfer learning module for transmembrane protein complexes.

The input features and ground truth
The input of DeepTMP includes sequence and structure features. For
the sequence features which are part of the features used by the Dee-
pHomo2.0, it contains the position-specific scoring matrix (PSSM)

feature, two types of direct co-evolution features calculated by
CCMpred51, and the sequence representation and multi-head attention
matrix generated by protein language model ESM-MSA-1b. The struc-
ture feature only includes the intra-protein distance map calculated
from the monomer structure of the homo-oligomeric transmembrane
proteins.

The above sequence features are all produced from the multiple
sequence alignment (MSA). Specifically, we first generate the corre-
spondingMSA by searching the sequence database. Since we focus on
the inter-chain interaction on homo-oligomeric transmembrane pro-
teins composed of identical sequences in this study, we only need to
run the HHblits software to search the homologous sequences of the
monomer sequence. For the hyperparameter of HHblits52, we set the
maximum pairwise sequence identity to 99% for the Uni-
Ref30_2020_03 database53 and applied an E-value of 0.001. Then, the
PSSM matrix was calculated by the LoadHMM script in the RaptorX-
Contact package13, with a dimension of L×20, where L is the length of
monomer sequence. Afterwards, the raw scores and average product
correction of direct coupling analysis (DCA-DI and DCA-APC) were
calculated by CCMpred, with a dimension of L×L×1 for each of them.
Finally, we used the hhfilter54 to select the most diverse sequence with
the diff 512 option for the MSA. The filtered 512 sequences in the MSA
are fed to the pre-trained ESM-MSA-1b model to generate the ESM-
MSA-1b vector embedding and ESM-MSA-1b row attentions, with the
dimensions of L×768 and L×L×144, respectively. It is noted that the
above features are generated from the MSA of monomer sequence.
Since it is trivial for homo-oligomers to generate the paired MSA, we
used the monomer MSA to substitute the paired MSA of complexes
and generated the same features.

For the structure feature of monomer structures, we applied the
radial basis function to convert the intra-protein distance ofmonomer
as input features55. The formulation is described as follows:

f dð Þ= e� d�dk
σ

� �2 ð4Þ

where d is the intra-protein distance. dk is a hyperparameter, which
ranges from 2 to 22 Å and is divided into 64 bins with a variance
σ = 0.3125 Å.

For the ground truth of inter-chain contactmap, we defined a pair
of residues from different chains as being contacted if any two heavy
atoms of the two residues are within 8 Å. Since the indistinguishability
of the chains in the homo-oligomeric transmembrane proteins, we
have implemented symmetrical operations during the evaluation of
inter-chain contact predictions.

The implementation of ResNet-inception module
Previous methods use ResNet module to avoid the explosion of gra-
dient and a large kernel size to capture the long-range interaction
between two residues. Recently, severalmethods combine ResNet and
Inception to increase the effective receptive field of the network with
fewer parameters56,57. As such, before the triangle-aware module, we
use four ResNet-Inception modules to preliminarily capture the intra-
protein and inter-chain interaction.

The application of triangle-aware module
The state-of-the-art AlphaFold258 proposes the evoformer module
including the intra-molecular triangular multiplication update and tri-
angular self-attention, which can reduce the unsatisfied region by the
geometric triangular inequality. Therefore, we have also applied
the triangle-aware module after the ResNet-Inceptionmodule to reduce
the geometric inconsistency and more effectively capture the correct
inter-chain interactions. The triangle-aware module includes a triangle
update, two triangle self-attention, and a transition layer (Fig. 1d).

The triangle-aware module requires three kinds of input features
including receptor, ligand, and complex features, which are the
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corresponding output hidden features generated by the last ResNet-
Inception module. The receptor features are the same as ligand fea-
tures due to the fact that homo-oligomeric TMPs have identical
sequences. In addition, the architecture can also be applied to the case
of heterodimer. In that case, the receptor, ligand, and complex fea-
tures are represented as rij 2 RL1 × L1 ×d , lij 2 RL2 × L2 ×d and
zij 2 RL1 × L2 ×d , where d is a hyperparameter with a value of 64.
Therefore, we also used an inter-molecular triangle multiplicative
mechanism to update the interchain residue-residue interaction by
treating one monomer as the receptor and the other as the ligand.
Namely, if residue A of the receptor contacts with residue C of the
ligand, the residue B away from residue A in the receptor will not
contact with residue C due to the distance constraint.

The triangle update utilizes an attention mechanism on the pair
representations of three residues to enforce that the pair representa-
tion satisfies the geometric triangle inequality. The detailed formula-
tions of the triangle update are as follows.

z0 kð Þ
ij =Linear ϕ z kð Þ

ij

� �� �
; z00 kð Þ

ij =Linear ϕ z kð Þ
ij
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ð5Þ

r0ij =Linear ϕ rij
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; l0ij =Linear ϕ lij
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r0imz
0 kð Þ
mj +

XL
n = 1

z00 kð Þ
in l0nj

 !
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� �
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where k is the number of blocks in the triangle update (zð1Þij = zij), the
function ofϕ is a sigmoid function followedby a linear transformation,
and the function of φ is a layernorm function followed by a linear
transformation.

Next, the triangle self-attention is applied with an attention
mechanism to calculate the relative strength of the interaction
between the pairs of residues. First, we used amulti-head attention on
the row dimension which considers the pair representations between
one residue of the receptor with all residues of the ligand. The corre-
sponding formulation is described as follows,
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where qij, kij, vij is the linear transformation of the output from the
triangle update, d is the intra-protein distance, and λ is set to 8Å.
Second, we also updated the pair representation in the column
dimension. In addition, weused theNaccess program59 to calculate the
solvent-accessible surface area of the monomer and defined the
surface residues. Then, we used the maskmechanism like transformer
for the surface residues in the triangle update and triangle self-
attention.

After that, we used the transition layer which includes two layers
of linear transformation, to update the pair representation _z kð Þ

ij as the
input of the next triangle-aware block.

Transfer learning
The transmembrane protein complexes have similar physical interac-
tions with soluble protein complexes in the interface, such as hydro-
phobic interactions. For example, the helix-helix interaction regions in
transmembrane protein complexes are similar to those found in the
interface of soluble proteins45. However, the transmembrane protein
complexes have different structural and evolutionary characteristics
from soluble protein complexes due to the membrane environment.
Therefore, a deep learning-based model trained on abundant soluble
protein complexes, which learns the common physical interactions,
will be suitable as the initial trainingmodel for transfer learning. In this
study, we used a large data set of homo-oligomers with C2-symmetry
screened fromour previouswork to train the initialmodel. Afterwards,
we employed transfer learning to extract the effective information of
transmembrane protein complexes for the pre-trained model on a
small training set of transmembrane protein complexes (Fig. 1d).
Generally, transfer learning methods utilize two kinds of fine-turning
approaches. One is that the weights of some specific layers are frozen
and the retrained weights are fine-tuned in the training process. The
other is the whole weights of the pre-trained model are fine-tuned
without a frozen operator. Here, we trained our transfer learning
model without any frozen layers, which achieved a better
performance60.

Data sets
The data sets for initial training were obtained from our previous
DeepHomo study29. Specifically, DeepHomo collected all the homo-
oligomeric proteins with C2-symmetry type in the PDB and clustered
them with sequence and structure criteria into a data set with 4132
non-redundant homo-dimeric complex structures. We used the same
training and validation sets for the initial training of DeepTMP.

The data sets for transfer learning were obtained by down-
loading the structures from the Protein Data Bank of Trans-
membrane Proteins (PDBTM) on January 2021, which contains
5692 transmembrane protein complexes. Since we focus on the
homo-oligomers of TMPs, the heterologous proteins in the
PDBTM were excluded, resulting in 2226 structures. In addition, it
is noted that some structures from the PDBTM only have one
chain even though they are annotated with high-order symme-
tries. Therefore, we also removed those target structures and
obtained 2020 complexes. Furthermore, we filtered their biolo-
gical assembles with the following criteria: (i) The chain number
of complexes is equal to the order of symmetry; (ii) Any pair of
chains in the assembly share >99% sequence identity. Finally, the
remained 1907 complexes were clustered by MMseqs2 with a
sequence identity cutoff of 30%61,62, which resulted in 322 clus-
ters. For each cluster, the complex with the best resolution was
chosen as the representative. In addition, we excluded the com-
plexes with a monomer sequence length of >1024 because the
ESM-MSA-1b pre-trained model is limited with a maximum protein
sequence length of 1024. Thus, we had a final data set of 309
complexes which were randomly divided into 185, 62, and
62 structures for the training, validation, and test set, respec-
tively. Since our initial training data set is filtered by the interface,
we also excluded those partial structures from the test set using
the following structure criteria: (i) The maximum area of the
interface between any pair of chains in the complex is <500 Å2; (ii)
The number of contacts in the interface is <10. After being filtered
by those criteria, there were 52 transmembrane protein com-
plexes in the final test set (Supplementary Data 10).

Since we used the MMseqs2 to remove the redundant sequence
on the homodimer data set and the TMP data set separately, it may
have some redundant sequences between the training/valid data set of
homodimers and the test set of TMPs. Therefore, we used the
MMseqs2 with an E-value of 0.1 to remove the redundant sequences
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from the training and valid sets of homodimers for the initial model,
which results in 3079 and 271 targets in the two sets, respectively
(Supplementary Data 10). In addition, we also used an E-value of 0.1 to
remove the redundant sequence between the TMP training/valid sets
and the TMP test set. As a result, the final training and valid sets for
transfer learning contain 100 and 38 transmembrane homo-oligomers,
respectively (Supplementary Data 10).

Implementation and training
For the initial training model, we used the Focal Loss as the loss
function. We trained the model by using the Adam optimizer with
pytorch (v1.8.0) and python (v3.7.0) on A100 GPU. For other hyper-
parameters,weused amini-batch size of 1, a learning rate of 0.001, and
a dropout rate of 0.1. Since the triangle self-attention layer would
occupy a large GPU memory, we set a maximum length of 256 amino
acids in the training process due to the GPU memory limitation. Spe-
cifically, for the target proteins with a sequence length of >256 resi-
dues, we used a window of 256 and a stride of 1 to scan the sequence
and collect the fragments which have the maximum inter-chain con-
tacts. After that, we randomly chose one cropped sequence to repre-
sent the protein sequence. For the transfer learning stage, we loaded
the initial training model and re-trained the network with the trans-
membrane protein complexes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are available from the
corresponding author upon request. A full list with the links of soluble
and transmembrane proteins used in this study is available in Sup-
plementary Data 11. The sequence database of Uniref30_2020_03 used
in this study is available at https://www.uniprot.org/help/uniref/. The
sequencedatabase of Big Fantastic Database (BFD) used in this study is
available at [https://bfd.mmseqs.com/]. The source data underlying
Figs. 2, 3, 4a, b, 5, 6, 7, Table 1 and Supplementary Tables 1, 2, 3 are
provided in the Source Data file. Source data are provided with
this paper.

Code availability
The DeepTMP package is freely available for academic or non-
commercial at [http://huanglab.phys.hust.edu.cn/DeepTMP/].
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