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Metformin escape in prostate cancer by activating the PTGR1
transcriptional program through a novel super-enhancer
Jianheng Ye1, Shanghua Cai1,2,3, Yuanfa Feng1,2, Jinchuang Li1, Zhiduan Cai1, Yulin Deng2, Ren Liu1, Xuejin Zhu1, Jianming Lu 1,
Yangjia Zhuo1, Yingke Liang1, Jianjiang Xie1, Yanqiong Zhang 4, Huichan He2, Zhaodong Han1✉, Zhenyu Jia 5,6✉ and
Weide Zhong1,2,3,7✉

The therapeutic efficacy of metformin in prostate cancer (PCa) appears uncertain based on various clinical trials. Metformin
treatment failure may be attributed to the high frequency of transcriptional dysregulation, which leads to drug resistance. However,
the underlying mechanism is still unclear. In this study, we found evidences that metformin resistance in PCa cells may be linked to
cell cycle reactivation. Super-enhancers (SEs), crucial regulatory elements, have been shown to be associated with drug resistance in
various cancers. Our analysis of SEs in metformin-resistant (MetR) PCa cells revealed a correlation with Prostaglandin Reductase 1
(PTGR1) expression, which was identified as significantly increased in a cluster of cells with metformin resistance through single-cell
transcriptome sequencing. Our functional experiments showed that PTGR1 overexpression accelerated cell cycle progression by
promoting progression from the G0/G1 to the S and G2/M phases, resulting in reduced sensitivity to metformin. Additionally, we
identified key transcription factors that significantly increase PTGR1 expression, such as SRF and RUNX3, providing potential new
targets to address metformin resistance in PCa. In conclusion, our study sheds new light on the cellular mechanism underlying
metformin resistance and the regulation of the SE-TFs-PTGR1 axis, offering potential avenues to enhance metformin’s therapeutic
efficacy in PCa.
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INTRODUCTION
Prostate cancer (PCa) is the most common male malignant tumor
and the second leading cause of cancer death in the United
States.1 To date, PCa therapy still faces great challenges due to
the heterogeneous nature of the disease. Although PCa patients
receiving androgen deprivation therapy (ADT), surgery, radiation
and chemotherapy tend to have a lower risk of recurrence and
better survival outcomes,2 manifestations of metabolic syndrome,
such as obesity, insulin resistance and impaired glucose
tolerance, often occur following treatment which eventually
causes drug resistance and distal metastasis.3 To maintain a
sufficient energy supply for PCa cells, alterations in cellular
metabolism continue to occur during the progression from
prostate intraepithelial neoplasia to metastasis. For example,
healthy prostate cells utilize citrate to synthesize prostatic fluid so
that the tricarboxylic acid (TCA) cycle is largely inhibited.4 In
contrast, the energy production in aggressive PCa cells is
accomplished mainly through the TCA cycle and oxidative
phosphorylation (OXPHOS).4 However, OXPHOS level has been
reported to be decreased while glycolytic activity is compensa-
torily increased in metastatic PCa cells.5 Taken together, the
previous studies indicated that PCa may rely on distinct metabolic

pathways for energy production at various stages, providing
potential targets for precision therapy.
Metformin is a first-line oral hypoglycemic drug derived from

extracts of the herb Galega officinalis. Accumulating studies have
indicated that metformin may be a potential candidate adjuvant
therapeutic agent for PCa due to its multiple anticancer effects,
satisfactory tolerance in humans, and low cost.6–8 Metformin not
only exerts excellent glucose-lowering effects, but also suppresses
cancer growth by inducing G0/G1 arrest and decreasing OXPHOS
level to modulate tumor cell metabolism.7–9 Although accumulat-
ing clinical data have demonstrated the association between
metformin treatment and favorable outcomes in PCa patients,10–14

it has been reported that certain patients fail to respond to
metformin.15–18 This is consistent with a previous study that
preliminary demonstrated resistance to metformin treatment in
various cancers due to tumor heterogeneity.19 Therefore, we
hypothesized that a subpopulation of PCa patients may develop
metformin resistance after a period of treatment and aimed to
find insights into the underlying mechanism.
Specific phenotypes of a certain cancer, including acquired drug

resistance stemming from gradual adaptation to extracellular
stimulation, may be associated with unique genomic
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characteristics. Other studies have suggested that epigenetic
alterations may be the precipitating factor of metformin resistance
in different cancers.19 In addition, such alterations mainly occur in
a preexisting cluster of cancer cells called drug-tolerant persister
(DTP) cells,20 some of which may undergo reversible cell cycle
arrest to acquire drug resistance.21 The proliferation of DTP cells
can be activated from dormancy after exposure to anticancer
agents through transcriptional rewriting programs.20,21 Young et
al. identified clusters of extensive genomic domains occupied by
master transcription factors and the mediator complex in
embryonic stem cells (ESCs), which they named “super-enhancers”
(SEs). These domains are distinctive due to their extensive DNA
regions and strong correlation with the key identity of ESCs.22 SEs
are usually identified using ChIP-seq and are characterized by an
extremely high degree of enrichment of transcriptional coactiva-
tors, including Mediator (Med1), and chromatin marks.23 Recent
studies have shown that SEs play a crucial role in maintaining
cancer cell identity and are essential for resistance to multiple
cancer treatments.24–27 In PCa, a novel SE activated by androgen
receptor was identified as a potential cause of resistance to
antiandrogen therapy due to its ability to abnormally activate
choline metabolism.25 Therefore, we aimed to explore the role of
SEs and their targeted genes in the develop of metformin
resistance in PCa by using ChIP-seq and other experiments.
In this study, we generated two in vitro metformin-resistant

(MetR) cell models using PCa cell lines, i.e., DU145 and 22RV1.
Interestingly, after 30 days of drug withdrawal, these MetR cells
regained metformin sensitivity, suggesting that metformin resis-
tance may be a temporary nonmutational cell phenotype.
Through our experiments and RNA-seq analysis, we found that
metformin resistance in prostate cancer cells may be linked to
changes in the cell cycle and metabolic reprogramming.
Furthermore, our single-cell transcriptome sequencing results
revealed that the key gene Prostaglandin Reductase 1 (PTGR1)
was upregulated in a cluster of DU145-MetR cells which is
associated with metformin resistance. H3K27ac ChIP-Seq data and
other experiments indicated that a novel SE located upstream of
PTGR1 and bound by the key transcription factors SRF and RUNX3
may be associated with the upregulation of PTGR1. We demon-
strated that PTGR1 exerts an antagonizing effect on metformin
treatment by interfering with cell cycle arrest which may be
related to the role of E2F3. Our experiments for the first time
showed that: (1) this SE increased PTGR1 expression in DU145-
MetR cells when bound by SRF and RUNX3, and (2) elevated
expression of PTGR1 accelerated cell cycle progression by
promoting the progression from the G0/G1 to the S and G2/M
phases, reducing the inhibitory effect of metformin on PCa.

RESULTS
Development of metformin resistance in PCa cells after long-term
treatment
Although metformin has been demonstrated to have a cancer-
prevention effect, how PCa cells respond to long-term metformin
exposure has rarely been explored. Here, we first tried to construct
the metformin-resistant PCa cell model (MetR) by continuously
treating DU145 and 22RV1 cells, which have distinct characteristics
and genetic backgrounds, with the corresponding half-maximal
inhibitory concentration (IC50) of the agent. CCK-8 assays, clone
formation assays, and studies in subcutaneous xenograft tumor
models showed that treated DU145 cells and 22RV1 cells were
resistant to metformin after a long period of exposure (Fig. 1a–d).
Metformin resistance was suggested to be associated with
transcriptional programs that may induce reversible cell cycle
arrest.19,21,28 Our clone formation assay showed that MetR cells
restored metformin sensitivity after thirty days of drug withdrawal
(Fig. 1e, f), for example, the proliferation rate of these MetR cells
eventually became similar to that of wild-type (WT) cells. These

results indicated that metformin resistance in PCa cells is likely to
be a transient phenotype. This is in agreement with previous
studies, which indicated that metformin resistance may be
associated with reversible cell cycle arrest.19,21,28 Furthermore,
MetR cells (DU145-MetR or 22RV1-MetR) and the corresponding
control cells (DU145-WT or 22RV1-WT) were paired and sub-
cutaneously injected into the flanks of male nude mice, which
were treated with daily feeding of a diet without metformin or a
diet intermittently containing metformin every three days. The
results showed that the mice injected with the MetR cells had
significantly smaller tumor sizes than those injected with the
WT cells (Fig. 1g, h). Interestingly, we observed no significant
difference in tumor size between the resistant cell injected groups
and the control groups in the intermittent metformin feeding
model (Fig. 1i, j). Taken together, our data indicated that the
development of metformin resistance in PCa cells is due to
continuous stimulation by the agent.

Metformin resistance in PCa is acquired through cell cycle
reactivation and metabolic reprogramming
As shown in Fig. 2a, b, metformin treatment induced cell cycle
arrest in WT cells, as determined by the accumulation of G0/G1-
phase cells, consistent with previous report.29 Furthermore, we
found an increase in S-phase cells and a concomitant decrease in
G0/G1-phase cells among the MetR cells, and such changes
became more substantial after metformin treatment. However,
there were no significant differences in cell invasion, migration
and apoptosis between WT cells and MetR cells (Supplementary
Fig. S1). On the other hand, we proved that metformin can
effectively inhibit OXPHOS and the production of ATP in PCa in
our recent study.30 Thus, we next sought to determine whether
continued treatment with metformin would alter the primary
metabolic pathways that maintain PCa cell growth. We quantified
the level of OXPHOS and glycolytic activity by measuring the
oxygen consumption rate (OCR) and extracellular acidification rate
(ECAR) respectively using a Seahorse assay, showing that DU145-
MetR cells exhibited a higher OCR than DU145-WT cells when
treated with metformin (Fig. 2c). The inhibition of basal respiration
and ATP production by metformin was much weaker in DU145-
MetR cells than those in DU145-WT cells (Fig. 2d). However, basal
respiration and ATP production were significantly suppressed in
both 22RV1-MetR and 22RV1-WT cells when metformin was
applied (Fig. 2e, f). Interestingly, the ECAR in both MetR cell lines
were significantly increased regardless of metformin treatment,
suggesting that PCa cells have the ability to activate glycolysis to
compensate for their energy supply needs (Fig. 2g, h). Taken
together, these results indicated that PCa cells may acquire
metformin resistance through cell cycle reactivation and meta-
bolic reprogramming.

Relevance of aberrant activation of SEs and their target genes in
PCa cells with metformin resistance
To understand the underlying mechanisms, we first conducted
RNA-seq on metformin-resistant cell lines (Fig. 3a, b). Differential
expression analysis revealed that 602 genes were significantly
upregulated and 687 genes were downregulated in DU145-MetR
cells compared to DU145-WT cells (Supplementary Fig. S2a) and
that 996 genes were significantly upregulated and 406 genes were
downregulated in 22RV1-MetR cells compared to 22RV1-WT cells
(Supplementary Fig. S2b). The differentially expressed genes
(DEGs) between DU145-MetR and DU145-WT cells were enriched
in cell growth and metabolic pathways (sterol metabolic process,
fatty acid metabolic process, and prostanoid metabolic process)
(Supplementary Fig. S2c), while the DEGs between 22RV1-MetR
and 22RV1-WT cells were enriched in the cell cycle and DNA
replication pathways (Supplementary Fig. S2d). The fold changes
in the expression levels of metabolic DEGs and cell cycle-related
DEGs shown in detail in Supplementary Fig. S2e, f, indicating that
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cell cycle-related genes and metabolic genes were differentially
expressed in metformin-resistant cells. Studies have demonstrated
that SEs and their associated networks of transcription factors play
an important role in regulating drug resistance and progression in
prostate cancer.25 SEs are characterized by higher levels of
binding of chromatin factors associated with enhancer activity,
such as cohesin, and histone modifications, including H3K27ac,
dimethylation of histone H3 at lysine 4 (H3K4me2), and
H3K4me1.22

In our study, to test the hypothesis that the genes contributing
to metformin resistance are upregulated by transcriptional
programs such as histone modification and cis-regulatory
elements, we performed H3K27ac ChIP-Seq in both WT and MetR
cells. ChIP-Seq data were processed through ROSE (Rank Ordering
of super-enhancers) to identify super-enhancers and typical
enhancers (TEs).31 In order to access the statistical difference of
H3K27ac signal in DU145-MetR SE region between DU145-MetR
and DU145-WT cells, we quantified and normalized the average

Fig. 1 Prostate cancer cells acquire resistance to metformin after long-term treatment. a Representative metformin half-maximal inhibitory
concentration (IC50) in two wild-type (WT) and metformin-resistant (MetR) prostate cancer cell lines (DU145, 22RV1, n= 3) determined by the
CCK-8 assay and calculated by fitting a nonlinear regression curve. b Colony formation assay of DU145-WT, DU145-MetR, 22RV1-WT and
22RV1-MetR cells treated with different concentrations of metformin. c, d Nude mice (DU145 n= 6, 22RV1 n= 4) received continuous
metformin treatment. Tumor volume growth curves and representative images of DU145 (c) and 22RV1 (d) tumors are shown. Metformin was
administered at a concentration of 250mg/kg. e, f Colony formation assay comparing the proliferation of WT cells, MetR cells and MetR cells
after 30 days of metformin withdrawal. The results of DU145 cells (e) and 22RV1 cells (f) are shown. g, h Nude mice (DU145 n= 9, 22RV1 n= 8)
were fed a diet without metformin. Tumor volume growth curves and representative images of DU145 (g) and 22RV1 (h) tumors are shown.
i, j Nude mice (DU145 n= 11, 22RV1 n= 8) received metformin every 3 days. Tumor volume growth curves and representative images of
DU145 (i) and 22RV1 (j) tumors are shown. Metformin was administered at a concentration of 250mg/kg. The tumor sizes were measured at
3-day intervals as soon as the tumors were palpable. *P < 0.05, **P < 0.01, the error bar indicates the standard deviation
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read coverage as the peak density of each DU145-MetR SE by
using Homer annotatePeaks.pl function32 and presented the
difference by boxplot in Fig. 3c, d. The boxplot indicated
significant difference between DU145-MetR and DU145-WT cells
(Wilcoxon, P value= 0.017) and a significant difference between
22RV1-MetR and 22RV1-WT cells (Wilcoxon, P value < 2.2e-16). The
results showed that the H3K27ac signal in the super-enhancer
regions of MetR cells was significantly stronger than that in WT
cells (Fig. 3c, d). We next conducted gene set enrichment analysis
(GSEA) based on the fold changes in the expression of preranked
genes differentially expressed between DU145-MetR and DU145-

WT cells. The input annotations were generated from the SE-
associated genes in DU145-MetR cells. Our results showed that SEs
associated genes signature enriched in DU145-MetR cells versus
DU145-WT cells (Fig. 3e, NES= 1.43, adjusted P= 0.01). However,
the SEs associated genes signature between 22RV1-MetR cells and
22RV1-WT cells showed no significant difference (Fig. 3f, NES=
0.73, adjusted P= 1).
With the ROSE algorithm, 281 SEs and 7788 TEs were called in

DU145-MetR cells, while 643 SEs and 10,610 TEs were called in
22RV1-MetR cells (Fig. 3g, h). Moreover, 269 and 603 genes were
annotated as SE-associated genes in DU145-MetR cells and 22RV1-

Fig. 2 Reactivation of cell cycle progression and metabolic reprogramming contributes to metformin resistance in prostate cancer cells. a The
percentages of G0/G1-, S-, and G2M-phase cells in each group of DU145 cells were determined by using flow cytometric analysis. Metformin
(20mM) was used in the treatment group. b The percentages of G0/G1-, S-, and G2M-phase cells in each group of 22RV1 cells were
determined by using flow cytometric analysis. Metformin (10 mM) was used in the treatment group. c, d The oxygen consumption rate in
DU145 cells treated with or without metformin (20mM) was measured by Seahorse assay (c). Basal respiration, Spare respiratory capacity and
ATP production were calculated (d). e, f The oxygen consumption rate in 22RV1 cells treated with or without metformin (10mM) was
measured by Seahorse assay (e). Basal respiration, Spare respiratory capacity and ATP production were calculated (f). g Extracellular
acidification rate in each group of DU145 cells was measured by Seahorse assay. Metformin (20mM) was used in the treatment group. h The
extracellular acidification rate in each group of 22RV1 cells was measured by a Seahorse assay. Metformin (10mM) was used in the treatment
group. n= 3. Oligo oligomycin, FCCP carbonyl cyanide 4-trifluoromethoxy-phenylhydrazone, 2-DG 2-deoxy-D-glucose. *P < 0.05, **P < 0.01, the
error bar indicates the standard deviation
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MetR cells, respectively. The composite heatmap showed that, in
both MetR cell lines, the increases in H3K27ac in SEs were
significantly greater than that in TEs (Fig. 3i, j). Although the
number of SEs was much less than that of TEs in MetR cells, the

expression levels of SE-associated genes were significantly higher
than those of genes associated with TEs (Fig. 3k). Taken together,
our data indicated that aberrant activation of SEs and their target
genes may account for metformin resistance in PCa cells.

Fig. 3 Aberrant activation of super-enhancer and its associated gene PTGR1 in a preexist cluster of prostate cancer cells may be associated
with metformin resistance. a Heatmap of the RNA-seq results in DU145-WT and DU145-MetR cells (n= 3). Each row represents the
transformed FPKM Z-score of an individual gene. b Heatmap of the RNA-seq results in 22RV1-WT and 22RV1-MetR cells (n= 3). Each row
represents the transformed FPKM Z-score of an individual gene. c Average intensity curves of the H3K27ac ChIP-seq signal at the super-
enhancer regions and the ±3 kb flanking regions in DU145-WT and DU145-MetR cells. Boxplot of super-enhancer peak density between
DU145-MetR and DU145-WT cells. d Average intensity curves of H3K27ac ChIP-seq signal at the super-enhancer regions and the ±3 kb
flanking regions in 22RV1-WT and 22RV1-MetR cells. Boxplot of super-enhancer peak density between 22RV1-MetR and 22RV1-WT cells.
e GSEA analysis based on the pre-ranking genes that ordered by the fold change (FC) from differentially expressed analysis in DU145-MetR
cells versus. DU145-WT cells with the input annotation generated from DU145-MetR SE-associated genes. f GSEA analysis based on the pre-
ranking genes that ordered by the fold change (FC) from differentially expressed analysis in 22RV1-MetR cells versus. 22RV1-WT cells with the
input annotation generated from 22RV1-MetR SE-associated genes. g DU145-MetR enhancer ranking plot based on H3K27ac ChIP-Seq signals
using the ROSE algorithm. h 22RV1-MetR enhancer ranking plot based on H3K27ac ChIP-Seq signals using the ROSE algorithm. i Heatmaps of
H3K27ac ChIP-seq signals at super-enhancer (left, SE) or typical enhancer (right, TE) regions in DU145-MetR cells. j Heatmaps of H3K27ac ChIP-
seq signals at super-enhancer (left, SE) or typical enhancer (right, TE) regions in 22RV1-MetR cells. k Log2(FPKM) of typical enhancer-associated
genes and super-enhancers-associated genes in DU145-MetR cells (left) and 22RV1-MetR cells (right). l T-distributed stochastic neighbor
embedding (t-SNE) plot for the sub-clusters identified by single-cell RNA-sequencing analysis in DU145 pre-MetR and DU145-WT, and stacked
bar chart for the distribution of each subcluster in DU145 pre-MetR and DU145-WT. m The gene PTGR1 was identified by intersection analysis
of H3K27ac ChIP-Seq results and marker genes of Cluster 0
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Upregulation of PTGR1 in PCa cells indicates metformin resistance
The androgen receptor (AR) has been demonstrated to have an
impact on the effectiveness of metformin treatment, and typically,
drug resistance develops in only a subset of cancer cells, not all
cells.20,22 To explore whether a subgroup of DU145 cells with AR-
negative expression is predisposed to acquiring metformin
resistance, we performed single-cell RNA-seq analysis on a
DU145 cell model undergoing the acquisition of metformin
resistance (DU145 pre-MetR) and identified 6 clusters (0 through
5) using unsupervised clustering (Fig. 3l). Our comparison with
DU145-WT cells revealed that the number of cells in Cluster 0 was
increased by more than 30%, while the numbers of cells in the
other clusters were decreased (Table 1). We designated the cells in
Cluster 0 as DTP-like cells, which could potentially develop
metformin resistance. Four marker genes were identified within
Cluster 0. By intersecting these data with the H3K27ac ChIP-Seq
data, we found a common gene, Prostaglandin Reductase 1
(PTGR1) between the marker genes of Cluster 0 and the SE-
associated genes in DU145-MetR cells (Fig. 3m), in addition, mRNA
level of PTGR1 was increased in Cluster 0 (Fig. 4a). Notably, among
the four marker genes (PTGR1, DDIT4, CEBPD, and EEF1A1)
associated with the metformin-resistant subcluster (Cluster 0), only
PTGR1 was significantly positively correlated with the cell cycle in
the TCGA-PRAD dataset (Supplement Fig. S2g).
Next, by assessing its expression at both the mRNA and protein

levels, we confirmed that PTGR1 was significantly upregulated in
DU145-MetR cells compared with DU145-WT cells (Fig. 4b–d).
However, we did not observe any difference in PTGR1 expression
between 22RV1-WT cells and 22RV1-MetR cells (Fig. 4b), consistent
with the assumption that the metformin efficacy is somehow
compromised or confounded in AR-positive PCa cells. To gain
further insights, we expanded our analysis by constructing
another metformin-resistant cell model with PC3 cells (PC3-MetR),
another AR-negative PCa cell line. The results of qRT‒PCR, western
blot analysis, and immunofluorescence analysis showed that
PTGR1 was overexpressed in PC3-MetR cells compared to PC3-
WT cells (Fig. 4e). To assess the presumed relationship between
PTGR1 expression and metformin efficacy, we applied lentiviral
transduction to establish two PCa cell lines, i.e., DU145-PTGR1 and
22RV1-PTGR1, that can stably express PTGR1 (Fig. 4f). The high
level of PTGR1 expression was found to significantly attenuate
metformin efficacy in both DU145 and 22RV1 cells (Fig. 4g).
Moreover, when we downregulated PTGR1 by transiently trans-
fecting MetR cells with siRNA, the effect of metformin was
enhanced as expected (Fig. 4h–k). In summary, our data and
results implied that increased expression of PTGR1 in PCa
indicates metformin resistance and that PTGR1 may serve as a
biomarker for metformin treatment selection.

Upregulation of PTGR1 promotes cell cycle progression and is
related to poor survival in PCa patients
To investigate how PTGR1 antagonizes metformin treatment,
GSEA was employed to delineate the potential biological path-
ways involving PTGR1 in PCa. The results showed that cell cycle-
related pathways, i.e., the MYC, G2M checkpoint, and E2F target
pathways, were enriched in the PTGR1-upregulated group,
indicating the relatedness between the antagonizing effect of
PTGR1 on metformin treatment and the activation of cell cycle
pathways (Fig. 5a, b). We then utilized flow cytometric analysis to
demonstrate that upregulated PTGR1 can effectively abrogate
metformin-induced G0/G1 arrest and promote S and G2/M-phase
entry in cancer cells (Fig. 5c). In contrast, downregulated PTGR1
restored metformin sensitivity in MetR cells by blocking cells in
G0/G1 phases and decreasing the population of cells in S phase or
G2/M-phase (Fig. 5d). To investigate the impact of PTGR1 on the
cell cycle, we performed western blot analysis. Our results showed
that the expression of E2F Transcription Factor 3 (E2F3) was
upregulated in DU145-MetR cells and in DU145 cells that stably
overexpressed PTGR1. Furthermore, when PTGR1 expression was
suppressed through siRNA transfection in DU145 cells, the
expression of E2F3 was downregulated (Supplementary Fig.
S3a). It is known that upregulation of E2F3 plays a crucial role in
promoting the S-G2 transcriptional program.33 Therefore, we
treated DU145-PTGR1 cells with CDK4/6 inhibitors, including
Ribociclib, Palbociclib, and Abemaciclib. These inhibitors have
been shown to induce G1 arrest by targeting the Retinoblastoma/
E2F repressive complex.34 Our results showed that the group with
high expression of PTGR1 exhibited a higher growth rate than the
control group (Fig. 5e). These data and results suggested that
PTGR1 likely exerts an antagonizing effect on metformin treat-
ment by interfering with cell cycle arrest, which may be related to
the role of E2F3.
In the literature, high expression of PTGR1 has been reported to

be associated with poor prognosis in several types of cancers.35 To
assess the clinical significance of PTGR1 in PCa, we surveyed its
expression in PCa patients across public databases. For each PCa
cohort in Fig. 5f, aberrant activation of PTGR1 was frequently
found in a subset of patients who may show no response to
metformin treatment. Further exploration of The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) databases
indicated that PCa patients with high PTGR1 expression had
shorter biochemical recurrence (BCR)-free survival times than
those with low PTGR1 expression (Fig. 5g).

PTGR1 expression is upregulated by super-enhancer bound by the
master transcription factors SRF and RUNX3
To understand the relationship between PTGR1 expression and
metformin resistance in DU145-MetR cells, we next investigated
the underlying mechanism. super-enhancers (SEs) are critical
regulatory elements and have been linked to the expression of
genes associated with drug resistance.24–26 Our hypothesis was
that the upregulation of PTGR1 in DU145-MetR cells might be
associated with a specific SE. Thus, we conducted H3K27ac ChIP-
Seq and applied the ROSE algorithm (Rank Ordering of super-
enhancers), which is based on the active enhancer marker histone
modification H3K27ac. Our analysis revealed a total of 281 SEs in
DU145-MetR cells, one of which was located ~10 kb upstream of
the transcription start site (TSS) of PTGR1. We selected the two
constituent enhancers with the highest intensity signals and
named them E1 and E2 (Fig. 6a). To examine the regulatory
function of this SE on PTGR1 expression, we constructed two
plasmids that contained minimal promoters of E1 and E2 to drive
luciferase expression, and then transfected these plasmids into
293T cells. The results showed that the transcriptional activity was
increased when either the E1 or E2 plasmid was successfully
transfected and was significantly higher in cells with E2
transfection (Fig. 6b).

Table 1. Cell numbers of each cluster in WT group and pre-MetR
group of DU145 cells

Cluster WT pre-MetR Trend (%)

0 424 4086 36.74

1 1453 1392 −9.42

2 1530 1088 −13.97

3 670 1466 4.50

4 1113 818 −9.88

5 776 469 −7.97

Total 5966 9319

WT wild-type cells, pre-MetR cells undergoing metformin resistance
Trend (%): Cluster (pre-MetR)/Total (pre-MetR)-Cluster (WT)/total
(WT) × 100%
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To further confirm that the SE specifically regulates PTGR1, we
also evaluated the expression of six neighboring genes located
within a 20-kb flanking distance from the PTGR1-SE site: DNAJC2,
GNG10, ECPAS, LRRC37A5P, SHOC1, and ZNF48. However, our
analysis showed that the expression of these neighboring genes
did not show statistically significant differences between DU145-
MetR cells and DU145-WT cells (Supplementary Fig. S4a). It has

been recognized that BRD4 is enriched in SEs, which is required for
SE-regulated transcriptional activity.36 Therefore, we applied BRD4
siRNAs as well as JQ1, a BRD4 inhibitor, to impair the regulatory
function of SEs in DU145-MetR cells. As expected, the expression of
PTGR1 was significantly decreased at both the mRNA and protein
levels after BRD4 downregulation with siRNAs, and the experiment
with JQ1 produced consistent results (Fig. 6c, d). However, the

Fig. 4 Increased expression of the super-enhancer-associated gene PTGR1 is associated with acquired metformin resistance. a Relative mRNA
levels of PTGR1 in the general population (left), Cluster 0 (resistant) and Cluster 2 (sensitive) of DU145 pre-MetR cells from single-cell RNA
sequencing (DU145 pre-MetR, cells undergoing metformin resistance). b mRNA (i) and protein (ii) levels of PTGR1 in DU145 and 22RV1 cells
with or without metformin resistance were measured by qRT‒PCR and western blot analysis (n= 3). c Representative immunohistochemistry
(IHC) images showing the PTGR1 expression pattern in the subcutaneous xenograft tissue from mice in the DU145-WT+Met and DU145-
MetR+Met groups. Scale bar= 50 μm. d Immunofluorescence (IF) analysis of PTGR1 expression in DU145-WT and DU145-MetR cells.
Representative images are shown. Scale bar= 20 μm. e mRNA (i) and protein (ii) levels of PTGR1 in PC3 cells with or without metformin
resistance. (iii) IF analysis of PTGR1 expression in PC3-WT and PC3-MetR cells are shown. Scale bar= 20 μm. f qRT‒PCR and western blot
analysis were utilized to validate the overexpression of PTGR1 in DU145 and 22RV1 cells transfected by lentiviral plasmids (n= 3). g The effect
of PTGR1 overexpression on metformin treatment in DU145 (20mM) and 22RV1 (10mM) cells was analyzed by a CCK-8 assay (n= 3).
h, i PTGR1 expression was decreased in DU145-MetR cells and PC3-MetR cells using siRNA, and the effect was validated by qRT‒PCR and
western blot analysis. j, k The effect of decreased expression of PTGR1 on metformin treatment in DU145-MetR (20 mM) and PC3-MetR
(20mM) cells was analyzed by a CCK-8 assay (n= 3). *P < 0.05, **P < 0.01, the error bar indicates the standard deviation
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expression levels of these six neighboring genes did not exhibit
significant changes (Supplementary Fig. S4b, c).
Next, we sought to identify the transcription factors involved in

the regulation of PTGR1 by the SE. To this end, we conducted
motif analysis using Homer and scanned the motifs from the
JASPAR 2022 database using FIMO with default parameters.37 We
then explored the expression of the predicted TFs, including SRF,
TFDP1, SOX12, ZSCAN29, and RUNX3, in the metformin-resistant
cell cluster using single-cell RNA-Seq (Fig. 6e). We also obtained
ChIP-Seq data of genomic regions enriched with these

transcription factors and mapped their binding sites in the
E1/E2 element using FIMO software, resulting in the identification
of four transcription factors, SRF, RUNX3, TFDP1, and ZSCAN29
(Fig. 6f). Furthermore, qRT-PCR and western blot analyses revealed
that PTGR1 expression was significantly reduced when SRF and
RUNX3 were downregulated (Fig. 6g and Supplementary Fig. S5).
Moreover, ChIP-seq analysis results showed that SRF and RUNX3
were able to bind to the SE regions of PTGR1 in DU145-MetR cells
(Fig. 6h). To validate the ChIP-seq results, ChIP-qPCR was
performed to quantify the occupancy of RUNX3 and SRF, and

Fig. 5 Upregulation of PTGR1 promoted cell cycle progression and was associated with poor survival in prostate cancer patients. a Bubble plot
shows the biological pathways activated/suppressed in the high PTGR1 expression group. b Gene set enrichment analysis (GSEA) plot of cell cycle-
related pathways enriched in the high PTGR1 expression group. c The effect of PTGR1 overexpression on the cell cycle with or without metformin
treatment (20mM) was analyzed by flow cytometry analysis. The percentages of G0/G1-, S-, and G2M-phase cells were compared among the
groups. (n= 3) d The effect of decreased expression of PTGR1 on the cell cycle with metformin treatment (20mM) was analyzed by flow cytometry
analysis. The percentages of G0/G1-, S-, and G2M-phase cells were compared among the groups. (n= 3) e The effect of PTGR1 overexpression on
CDK4/6 inhibitors, including abemaciclib, palbociclib and ribociclib, was analyzed by a CCK-8 assay. The concentration of each CDK4/6 inhibitor was
10 nM. Optical density values were determined by CCK-8 assay and measured at 450 nm (n= 3). f The proportion of PCa patients with aberrant
activation of PTGR1 was analyzed in public databases by cBioPortal (http://www.cbioportal.org/). g Biochemical recurrence (BCR)-free survival of
patients with high PTGR1 expression was compared with that of patients with low PTGR1 expression in the TCGA and GEO databases. *P< 0.05,
**P< 0.01, the error bar indicates the standard deviation
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their enrichment was confirmed at the SE regions of PTGR1
(Fig. 6i). We then applied the luciferase reporter assay to evaluate
the functionality of SRF and RUNX3 in the regulation of PTGR1 SE,
and the results demonstrated that upregulation of SRF or RUNX3
can significantly increase luciferase expression (Fig. 6j). Notably,
DU145-MetR cells became sensitive to metformin when SRF or
RUNX3 was downregulated (Fig. 6k). Furthermore, we suppressed

the expression of RUNX3 and SRF in DU145-MetR cells using
transient transfection of siRNAs. The results showed that the
expression levels of those six neighboring genes remained
unchanged (as indicated in Supplementary Fig. S4d). Considering
these results collectively, we concluded that SE activates PTGR1
expression by interacting with the key transcription factors SRF
and RUNX3.

Fig. 6 PTGR1 is upregulated by an upstream super-enhancer bound by the master transcription factors SRF and RUNX3. a Genome browser
view of normalized H3K27ac ChIP-seq signals at the PTGR1 locus in DU145-WT and DU145-MetR cells. Two tracks were the average of two
biological replicates. The super-enhancer (SE) region is marked by the blue line. The two constituent enhancers (Element 1, E1 and Element 2,
E2) within the PTGR1-SE region are marked by the red lines. b Luciferase reporter assays were performed in 293T cells to validate the
combination of SE and PTGR1. The Luciferase signal was normalized to the Renilla transfection control luciferase signal (n= 5). c qRT-PCR and
western blot analysis were used to evaluate the expression level of PTGR1 in DU145-MetR cells with downregulation of BRD4 (n= 3). d qRT-
PCR and western blot analysis were used to evaluate the expression level of PTGR1 in DU145-MetR cells treated with 1 μM JQ1 (n= 3).
e Summary of TF motif occurrences within E1 and E2 elements. TFs expression in the metformin resistance cluster is shown in the dot plot for
each motif. Statistically significant motif matches identified by FIMO were defined as P value (i.e., q value) <0.05. f Capture of the The Cistrome
Data Browser showed the locations of the predicted TFs binding sites and the PTGR1-SE locus. g qRT-PCR and western blot analysis were
performed to assess the mRNA and protein levels of PTGR1 after downregulating the predicted TFs (n= 3). The corresponding protein bands
representing beta-actin are shown in Supplementary Fig. S5. h The binding sites indicated by the SRF ChIP-seq and RUNX3-ChIP-seq. i ChIP-
qPCR analysis for enrichment of RUNX3 and SRF at the super-enhancer identified in Fig. 6a (n= 3). j Luciferase reporter assays were performed
in 293T cells to validate the combination of SE with SRF and RUNX3, respectively. The Luciferase signal was normalized to the Renilla
transfection control luciferase signal (n= 5). k The effect of decreased expression of SRF (left) or RUNX3 (right) on metformin treatment was
analyzed by CCK-8 assay (n= 3). *P < 0.05, **P < 0.01, error bar indicates the standard deviation
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DISCUSSION
In recent decades, metabolic modifications have been recognized
as cancer hallmarks and potential therapeutic targets to overcome
factors related to clinical treatment failure, such as drug
resistance.38,39 Although many metabolic therapies have shown
positive effects in basic studies,4,5 very few of them have been
approved by rigorous validation to enter the clinical phase.
Considering its satisfactory tolerance in humans, metformin has
recently been repurposed as a new adjuvant therapy in PCa
management.6–8 Metformin can directly inhibit complex I in the
electron transport chain to induce the phosphorylation of
Adenosine Monophosphate-Activated Protein Kinase (AMPK),
which consequently inhibits the PI3K/AKT/mTOR pathway, gluco-
neogenesis, and OXPHOS.6–8 In addition, metformin was found to
not only interfere with androgen signaling, but also reduce the
side effects of ADT.40 However, the clinical effect of metformin on
PCa therapy appears to be uncertain. Elgendy et al. demonstrated
that metformin treatment combined with hypoglycemia can
significantly inhibit tumor growth by modulating the PP2A/
GSK3b/MCL-1 axis.41 Their findings revealed a mechanism through
which cancer cells can escape the effects of metformin treatment.
Furthermore, another study demonstrated that metformin resis-
tance is widespread in various cancer cell lines, a characteristic
that may be related to the genetic background of these cells.19

Similarly, we found that PCa cells acquired metformin resistance
after long-term treatment. Based on our observation of metformin
use in the clinic, we hypothesized that the acquisition of drug
resistance is generally one of the main causes of the discrepant
clinical results.
Studies have demonstrated that cancer cells undergo rever-

sible cell cycle arrest to adapt to the treatment environment,
leading to drug resistance.20,21 We observed that the metformin
sensitivity of MetR cells was restored after thirty days of drug
withdrawal, likely due to the effect of metformin on cell cycle
arrest. Interestingly, we found a large proportion of MetR cells in S
and G2/M phases, suggesting that metformin resistance in PCa
cells may be attributed to cell cycle reactivation from arrest. The
literature shows that acquired metformin resistance may be
attributed to transcriptome reprogramming,28 and resistance-
related epigenetic alterations usually require transcriptome
reprogramming that affects the binding of transcription factors
and histone modifications.42,43 Indeed, our data indicated that
transcriptional regulation appeared to be more active in MetR
cells than in WT cells. Regulatory element enhancers may play an
important role in drug resistance acquisition, since we found that
they were enriched and associated with histone modification
patterns that govern the expression of cell-type-specific
genes.43,44 Notably, a relatively large group of enhancers called
super-enhancers (SEs) was defined in 2013, and cell malignancy is
often associated with changes in the transcriptional programs
driven by SEs.22,45 However, no studies have focused on the role
of SEs in influencing the efficacy of PCa treatment, however, one
study identified the aberrant activation of a group of SEs in a PCa
cell model of enzalutamide resistance.25 Specifically, SEs can
upregulate the expression of Choline Phosphotransferase 1
(CHPT1), which is independent of the androgen receptor (AR)
pathway, and then activate choline metabolism to confer
enzalutamide resistance on castration-resistant PCa cells. In our
study, aberrant activation of a number of SEs was found in
DU145-MetR and 22RV1-MetR cells. As a result, the SE-associated
genes were expressed at much higher levels than the genes
regulated by TEs, suggesting that resistance is caused mainly by
SEs and their downstream transcriptional programs. In addition,
we found different effects in DU145 cells than in 22RV1 cells, a
discrepancy that may be attributed to AR regulation. Thus, we
chose DU145 and PC3 cells, which are AR-negative, for
subsequent investigation so that potential AR interference could
be prevented.

It has been reported that a preexisting cluster of cancer cells,
which are characterized as slow-cycling or dormant, has the ability
to escape from the effects of antiproliferative agents.20,46 An
unresolved question is whether acquired metformin resistance in
PCa is also initiated in a unique cluster of cells. Although the
mechanisms of metformin resistance in PCa have been investi-
gated,19,28 these studies analyzed the genome changes or
modifications in the total cancer cell population as a whole,
neglecting differences between cells. In recent years, single-cell
RNA-Seq analysis has been well adopted to explore the responses
of cancer cells to drugs and the mechanism underlying drug
resistance. For example, a single-cell assay was performed to track
the evolution trajectory during chemotherapy in triple-negative
breast cancer, and the study identified a number of chemoresis-
tant genes that were being significantly upregulated after
neoadjuvant chemotherapy.47 Notably, these identified transcrip-
tional programs that conferred chemo-resistance were not
intrinsic but were initiated in only a fraction of cells upon
treatment. Likewise, Taavitsainen et al. identified a cluster of
LNCap cells that is mainly responsible for the development of
enzalutamide resistance. They confirmed that the marker genes in
this cell cluster are partially regulated by chromatin structure and
transcriptional reprogramming.48 Similarly, our single-cell RNA-Seq
analysis identified a cluster of DU145-pre-MetR cells with a higher
proliferation rate post-continuous treatment with metformin,
while the cell numbers in the other clusters were substantially
reduced. We then combined the results of H3K27ac ChIP-Seq and
single-cell RNA-Seq to detect PTGR1, potentially upregulated by
an upstream SE, in this resistant cluster. By the binding of master
transcription factors (TFs), RNA Polymerase II, the Mediator
complex and BRD4, SEs can enhance the expression levels of
downstream genes. The binding sites of TFs depend on SEs, and
they are changeable due to external stimulation, allowing the
maintenance and growth of cancer cells.36 Finally, we screened
two TFs involved in the regulation of PTGR1, i.e., SRF and RUNX3,
whose roles in promoting cancer development have been well-
established in recent decades.49,50

PTGR1 belongs to the medium-chain dehydrogenase/reductase
superfamily and plays a vital role in regulating the arachidonic
acid metabolism pathway.35 Accumulating evidence indicates that
PTGR1 is overexpressed in many cancer types, including lung
cancer, breast cancer, gastric cancer, pancreatic cancer and liver
cancer, and is associated with poor prognosis.35 Our bioinfor-
matics analysis revealed that PCa patients with high PTGR1
expression had shorter biochemical recurrence (BCR)-free survival
times than those with low PTGR1 expression. Some cancer studies
have preliminarily explored the role of PTGR1 in regulating the cell
cycle and resisting oxidative stress.51,52 Decreased PTGR1 expres-
sion in DU145 and PC3 cells induced G0/G1-phases arrest, which
was related to the increased protein levels of p21, Caspase 3, and
cleaved PARP, as well as the decreased expression of CCND1.52

Interestingly, metformin has been well recognized as an
antiproliferative agent that induces cell cycle arrest. Our data
showed that the expression of PTGR1 was increased in metformin-
resistant DU145 and PC3 cells, whereas it was decreased by
metformin withdrawal in a time-dependent manner (Supplemen-
tary Fig. S6). Upregulation of PTGR1 in both DU145 and
22RV1 cells can significantly attenuate the efficacy of metformin
treatment by promoting S- and G2/M-phase entry.
We present a novel finding that links the activation of the SE-

TFs-PTGR1 axis with metformin resistance in PCa. Our data suggest
that SE, through its interaction with the master transcription
factors SRF and RUNX3, upregulates the expression of PTGR1 in
the resistant cell cluster, thereby reducing the efficacy of
metformin treatment by promoting cell cycle progression from
the G0/G1 to the S and G2/M phases (Fig. 7). Our analysis of public
datasets supports the clinical significance of our findings, as high
expression of PTGR1 has been associated with a poor prognosis in
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PCa patients. These results highlight the importance of: (1) using
metformin in an intermittent manner to prevent the development
of resistance, and (2) exploring adjuvant therapies that target the
SE/TFs/PTGR1 axis, potentially for use in combination with
metformin. Further research is warranted to gain a deeper
understanding of the metabolic changes underlying the develop-
ment of metformin resistance in PCa, including the role of
androgen receptor pathways.

MATERIALS AND METHODS
Construction of metformin-resistant prostate cancer cells
The prostate cancer cell lines DU145, PC3, and 22RV1 were used to
construct metformin-resistant cell models. All human cancer cell
lines were purchased from the American Type Culture Collection
(ATCC) (Manassas, VA, USA) and cultured with their corresponding
medium. We first calculated the half-maximal inhibitory concen-
tration (IC50) of metformin in each cancer cell line at 72 h using the
Cell Counting Kit-8 (CCK-8) assay. Then, 50,000 cancer cells were
seeded in each well of six-well plates and cultured with the IC50 of
metformin for 72 h. After that, ~50% of the cells in each well were
transferred to culture dishes and cultured with half of the IC50 of
metformin for one month. To construct the preresistant PCa cell
model, 50,000 DU145 cells were cultured with the IC50 of
metformin for 72 h and then cultured with half of the IC50 of
metformin for 2 weeks. Finally, the resistance phenotype of the
cell models was verified by a CCK-8 assay and in subcutaneous
xenograft tumor models.

Establishment of subcutaneous xenograft tumor model
Animal experiments were performed in compliance with the
guidelines of the Animal Ethics Committee at South China University
of Technology (Guangzhou, Guangdong, China). All BALB/c nude
mice were divided into three groups: ① non-metformin feeding
group; ② metformin feeding group (250mg/kg metformin diluted in
the drinking water); and ③ intermittent feeding group (metformin
administration at intervals of 3 days). A total of 1 × 106 cells from the
control and MetR groups were injected into the left and right flank,
respectively, of each BALB/c nude mouse. The tumor volume was
calculated using the following formula: volume (mm3)=width2

(mm2) × length (mm)/2.

Cell lines construction and transfection
DU145 and 22RV1 cells were infected with lentivirus containing
the PTGR1 overexpression plasmid with a puro cassette and GFP
tag. Stable cell lines were selected via growth in medium

containing 3 g/mL puromycin 2 days after transfection. The
targeting siRNA and negative control siRNA and the transfection
reagent were obtained from GenePharma. The siRNA sequences
are provided in the Supplementary. The transfection efficacy was
tested by western blot analysis 72 h after transfection. Both
constructed cell lines were confirmed by western blot analysis.
The sequences are shown in the Supplementary File.

Seahorse assay
A total of 8000 DU145 cells and 16000 22RV1 cells were seeded in
each well of an XFe24 cell culture microplate and treated with
medium with or without metformin for one day before the assay
was performed. Mitochondrial function was determined by
measuring the oxygen consumption rate using an XF Cell Mito
Stress Test Kit (Agilent Technologies) according to the protocol of
our previous study.30 Glycolytic activity was determined by
measuring the extracellular acidification rate using an XF
Glycolysis Stress Test Kit. The results were analyzed using Wave
2.6.0 software (Seahorse Bioscience). The Seahorse XF Cell Mito
Stress Test Kit and XF Glycolysis Stress Test Kit were purchased
from Agilent Technologies.

ChIP-Seq and analysis
ChIP-Seq sample preparation & sequencing. H3K27ac, RUNX3, and
SRF ChIP-Seq were performed using the EpiTM chromatin
immunoprecipitation kit (Epibiotek, cat. no. R1802). First, a total
of 2 × 106 cells were collected and subjected to cross-linking with
one percent formaldehyde for 10 min, and the reaction was then
quenched with 0.125 M glycine for 5 min. To isolate nuclei, 1 mL
lysis buffer was added, and the cell debris was collected by
centrifugation at 2400 × g and 4 °C for 10 min. After that, nuclei
were located in the supernatant and subjected to enzymatic
shearing to generate chromatin fragments of an average length
of between 200 and 500 bp by incubation at 37 °C for 10 min. The
supernatant was collected by centrifugation at 18,000 × g and
4 °C for 10 min. The supernatant was mixed with the ChIP reaction
mix (protein A/G magnetic beads, ChIP IP buffer, antibody,
protease inhibitor cocktail) and incubated with rotation at 4 °C
overnight. On the second day, after washing and removing the
protein A/G magnetic beads from the mixture, the chromatin was
eluted in reverse cross-linking buffer at 65 °C for 3 h. Next, the
ChIP DNA was mixed with RNase A and protease K at 37 °C for
30 min and then purified using phenol–chloroform. Finally, the
ChIP DNA was used for library generation using the QIAseq
Ultralow Input Library Kit (QIAGEN) following the manufacturer’s
protocol. For ChIP-PCR, the ChIP DNA was used for the qPCR

Fig. 7 Schematic diagram showing that the SE-TFs-PTGR1 axis contributes to metformin resistance in PCa in a time-dependent manner
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assay. The sequences of all primers are provided in the
Supplementary Table.

ChIP-Seq analysis. Cutadapt (v2.5) was used to trim adapters and
filter raw data to get clean data for next step. FastQC (v0.11.9)
were used to perform the quality control of raw fastq data and
clean fastq data. Next, Bowtie2 (v2.5.1) were chosen to perform
genome alignment of clean data to the reference Homo sapiens
genome (hg38). We executed the alignment result quality control
based on the ENCODE4 Histone ChIP-seq Pipelines (https://
www.encodeproject.org/pipelines/ENCPL809GEM/) and get the
QC report for each sample. Peak calling were performed by using
MACS2 (v2.1.2) with the parameters macs2 callpeak -t IP.bam -c
input.bam -g hs -q 0.05 -m 5 50. After peak calling, R package
ChIPQC were chosen to assess the data quality of already aligned
or peak-called reads. Deeptools (v2.0) were chosen to transform
indexed BAM file into bigwig file.
Next, ROSE (RANK ORDERING OF super-enhancers) algorithm

(v1.3.1) were used to perform typical and super-enhancer
calling with parameters: ROSE_main.py -g HG38 -i $(1).narrow-
Peak.bed -r $(1)_H3K27AC.bam -c $(2)_H3K27AC_INPUT.bam
-o./$(1)/ -s 12500 -t 2500. Briefly, the H3K27ac ChIP-Seq peaks
file identified by MACS2 and the H3K27ac ChIP-Seq BAM file
were used as input for the algorithm, intergenic and intronic
H3K27ac peaks within 12.5 kb were stitched together to define
a single entity spanning a genomic region as enhancers. The
stitched and individual enhancers without neighboring peaks
within 12.5 kb were ranked by the level of H3K27ac signal in
the genomic region. The stitched or individual enhancers with
an H3K27ac intensity above a cutoff, where the slope of the
distribution plot of H3K27ac ChIP-seq intensity is 1, were
defined as SEs and the remaining enhancers were considered
TEs. All enhancer regions are plotted in an increasing order
based on their H3K27ac signal.
To evaluate the distribution characteristics and corresponding

visualization of ChIP-Seq data, we used NGSplot, which is an R
package. We aligned the genome using bowtie2 (v2.5.1) and
sorted and indexed the BAM file of each cell line using samtools.
We downloaded the Homo sapiens genome (hg38) from the
Google driver file of NGSplot and then performed the metagene
plot using NGSplot.r. The Input BAM file has removed background.
The corresponding parameter is ngs.plot.r -G hg38 -c indexed.bam
-R SE.bed -O SE_bed_3kb -L 3000. NGSplot can normalize the
whole region of super-enhancer and divide them into intervals of
unified standard. The signal of each bin in each interval was
calculated and used to draw a continuous curve. The height of the
curve represents the difference in H3K27ac signal within the
specified region of MetR and WT cells. We used NGSplot to
evaluate the average H3K27ac signal in the super-enhancer region
in MetR cell lines and WT cell lines.
Homer software (v4.8) was applied to perform motif enrichment

analysis with the parameters perl findMotifGenome.pl Super-
Enhancers.bed hg38 homer_out/ -mcheck homer/data/knownTFs/
vertebrates/all.motifs. The complete motif data source was
obtained from Homer’s built-in motif data. Homer annotate-
Peaks.pl were applied to annotate the super-enhancer-associated
genes and get peak density with the parameters perl annotate-
Peaks.pl super-enhancer.bed hg38 –bedGraph. DAVID (https://
david.ncifcrf.gov/) and R package clusterProfiler (v4.6.0) was
chosen to perform functional enrichment analysis of super-
enhancer-associated genes. FIMO software were applied to
perform motif scan of super-enhancer regions, according to the
methods of a newly published study.37 Statistically significant
motif matches identified by FIMO were defined as those with a P
value < 0.05. The motif pwm matrix file were downloaded from
JASPAR2022 database.
Public transcription factor ChIP-Seq data were downloaded

from the Cistrome Data Browser (http://cistrome.org/db/#/) to

verify the transcription factor predictions in our target super-
enhancer region.

RNA sequencing and data analysis
RNA libraries construction & sequencing. The total RNA of cells
was isolated by using TRIzol and used for RNA sequencing. RNA
quantification was performed with a Qubit 3.0 spectrophotometer
(Thermo Fisher, MA, USA). Library preparation was performed by
Epibiotek (Guangzhou, China). Briefly, total RNA was treated with
the GeneRead™ rRNA Depletion Kit (Qiagen, Hilden, Germany, Cat
No. 180211) to remove ribosomal RNA. rRNA-depleted RNA was
fragmented and then used to construct strand-specific RNA
libraries by using the VAHTS Stranded RNA-seq Library Prep Kit for
Illumina (Vazyme, Nanjing, China, Cat. No NR602) according to the
manufacturer’s instructions. Library quality was determined on a
Qseq100 Bio-Fragment Analyzer (Bioptic, Taiwan, China). The
strand-specific libraries were sequenced.

Data analysis of RNA Sequencing
Adaptor and primer sequences from the library were trimmed.
Following trimming, sequence reads were then aligned to the homo
sapiens genome (version Hg38) using Hisat2 followed by a post-
alignment quality check to assess the performance of the
alignment. After alignment, HTseq were used to calculate the
counts of the Reads mapped the genome. FPKM (fragments per
kilobase million reads) was used to standardize the expression data,
which allowed the comparison of gene expression levels between
each group. We applied DESeq2 algorithm to detect the
differentially expressed genes (DEGs) with the following criteria: (i)
|log2FC | >1; (ii) FDR < 0.05. Volcano Plots were drawn by the R
based on the differential expression analysis, and the color was
determined by the filtering criteria. Gene ontology (GO) and
pathway enrichment analysis were performed by DAVID online
tools (https://david.ncifcrf.gov/) and “clusterProfiler” package. The
analysis of the DAVID online tools was conducted on two
independent gene lists containing 602 upregulated genes (log2FC ≥
1, FDR < 0.05) and 687 downregulated genes (log2FC ≤−1, FDR <
0.05) in DU145-MetR vs. DU145-WT group and 996 upregulated
genes (log2FC ≥ 1, FDR < 0.05) and 406 downregulated genes
(log2FC ≤−1, FDR < 0.05) in 22RV1-MetR vs. 22RV1-WT group. The
DEGs were further fitted into pathway enrichment analysis by
“clusterProfiler” package using the annotation of “KEGG”. Adjust P
value < 0.05 was considered statistically significant enrichment.
Circle plot was performed to visualize the linkages of DEGs and
enriched concepts. Cell cycle score of each patient in TCGA-PRAD
was evaluated by gene set enrichment analysis using the
annotation of “cell cycle” gene set from “KEGG”. Then, Pearson
correlation analysis was conducted to examine the relation between
four candidate genes (PTGR1, CEBPD, DDIT4, and EEF1A1) and
cell cycle.

Single-cell RNA-Seq and bioinformatics analysis
The single-cell RNA-Seq process mainly includes four steps: single-
cell isolation, whole-genome amplification, high-throughput
sequencing, and data analysis. The preresistant DU145 cell model
and wild-type DU145 cells were collected by centrifugation at
300×g for 5 min, and then single cells were immediately isolated
by using 10x Genomics technology. After reverse transcription, the
constructed cDNA library was used for RNA-Seq. Sequencing was
performed by using the GPL27804 (Homo sapiens) platform and
the Illumina NovaSeq 6000 System (Illumina, USA). Cell Ranger
(version 2.2.0) was used to process the raw data, demultiplex
cellular barcodes, map the reads to the transcriptome, and down
sampled reads. These processes produced a raw unique molecular
identifier (UMI) count matrix, which was leveraged to create the
Seurat object by using the R package “Seurat” (version 4.0.1). Cells
with a UMI number <500, with over 20% mitochondrial-derived
UMI counts or with fewer than 250 genes detected were
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considered low-quality cells and were filtered out. Finally,
15285 single cells were retained for subsequent analysis. After
quality control, the UMI count matrix was normalized to the total
expression in the corresponding cell, multiplied by a scaling factor
of 10000, and then log2-transformed. To adjust for batch effects
between samples generated by technical and biological sources,
we performed the standard anchor-based preprocessing proce-
dure for removing potential batch effects. In this procedure, the
top 5000 variable features were used to identify the potential
anchors by the “FindIntegrationAnchors” function in Seurat. Then,
the data were integrated by the “IntegrateData” function. To
reduce the dimensionality of the scRNA-Seq dataset, principal
component analysis (PCA) was performed on the integrated data
matrix. By the Elbowplot function of Seurat, the majority of the
variance was captured in the first 20 PCs, which were utilized to
perform the downstream analysis. The main cell clusters were
identified with the “FindClusters” function offered by Seurat with
the resolution set as 0.2. The distribution of cells and clustering
performance were visualized with 2D t-SNE plots. Differentially
expressed genes in each cluster were identified based on the
Wilcoxon rank-sum test, which was implemented in the Seurat
“Findmarker” function.

Dual-luciferase reporter assay
Both plasmids were constructed and purchased from Dongze
Biotech Co., Ltd. (Guangzhou, China). The dual-luciferase reporter
assay was performed by using the Dual-Luciferase® Reporter Assay
System. Cells were seeded into each well of 96-well plates for
preparation. The supernatant was removed, and then 35 μl of PBS
and 35 μl of D-Luciferin were added. After mixing for 10 min, the
fluorescence value was determined. Finally, the fluorescence value
was determined again after adding 35 μl of Stop reagent and
mixing for 10 min.

Cell cycle and apoptosis assays
The cell cycle assay was performed by using a Cell Cycle Staining
Kit (MULTI SCIENCE, China). A total of 1 × 106 cells from the control
and experimental groups were transferred to a 1.5-ml centrifuge
tube. The supernatant was removed, and the cell pellet was
collected after centrifugation at 1800 rpm for 3 min. The cell pellet
was mixed with 1 ml DNA staining solution and 10 μl permeabi-
lization solution and then incubated at 37 °C in the dark for
30min. For the apoptosis assay, the Annexin V-FITC/PI Apoptosis
Detection Kit (70-AP101–100) was purchased from Multi Sciences,
China and used according to the instructions. The stained cells
were analyzed via flow cytometry on a BD FACSVerse instrument
(BD Biosciences, USA). FlowJo and ModFit software were used to
analyze the data.

Cell proliferation assays
Cell proliferation was tested by a colony formation assay and a Cell
Counting Kit-8 (CCK-8) assay. The CCK-8 kit was purchased from
Meilunbio Co., Ltd. China (MA0218). The assay was performed
according to a previously described protocol.53

Cell migration and invasion assays
Cell migration and invasion were evaluated by a wound-healing
assay and a transwell invasion assay, as previously described.53

Matrigel matrix was purchased from Corning, USA (Cat. No:
354,234) and diluted to the working concentration a day before
the experiment.

qRT‒PCR assay
Total RNA in cells was obtained by using an RNeasy Mini Kit
(Qiagen). mRNA expression was quantified by using qRT‒PCR
according to the protocol of our previous studies.53 The sequences
of all primers used for qPCR are provided in the Supplementary
Table.

Western blot analysis
The concentration of protein extracted from each cell line was
obtained by using a BCA Protein Assay Kit (Thermo Fisher
Scientific). The protein expression level of the target gene was
quantified by using western blot analysis according to the
protocol of our previous studies.53 The antibodies are described
in the Supplementary Table.

Immunohistochemistry
PTGR1 protein expression in tissues from the nude mouse
subcutaneous xenograft model was evaluated by IHC in accor-
dance with our previously published protocols.53 The antibodies
are described in the Supplementary Table.

Immunofluorescence
The immunofluorescence samples were prepared in accordance
with our previously published protocols.53 The samples were
imaged using a confocal laser scanning microscope (LSM880,
Zeiss, Germany). The antibodies are described in the Supplemen-
tary Table.

Statistical analysis and Bioinformatics
The version 21.0 SPSS for Windows (SPSS Inc, IL, USA) software and
the R (version 4.2.2) were used for statistical analysis and
visualization. The biochemical recurrence (BCR)-free survival was
evaluated using the Kaplan–Meier method and the log-rank test
based on the optimal cutoff values generated by the survminer R
package. To explore the potentially biological alteration related to
PTGR1 in prostate cancer, a differentially expressed analysis was
first performed between the high- and low-expression subgroups
based on the median value of PTGR1 expression in the entire
cohort from TCGA. We then arranged the genes in descending
order based on the magnitude of the absolute value of their Log2
FC. The ordered gene list was further fitted in the GSEA analysis by
the R package, “clusterProfilter”. Adjusted P value < 0.05 were
considered to be statistically significant. The process of the
Bioinformatics analysis was in accordance with our previous
publishment.54 Gene set variation analysis (GSVA) was performed
to measure the cell cycle score for patients in TCGA-PRAD datasets
with the annotation of “cell cycle” based on Kyoto encyclopedia of
genes and genomes (KEGG). Pearson’s correlation analysis was
leveraged to examine the relationship between cell cycle score
and four marker genes of metformin resistance. Continuous
variables were expressed as mean ± SD or mean ± SEM. Differ-
ences among groups were assessed using the Independent-
Samples t test. Differences were considered statistically significant
when the P value was less than 0.05.
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