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Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorgan-
isms. While nitrification has primarily been studied in near-neutral environments, this process
occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes.
Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria
and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bac-
teria adapted to these environments. Here, we review the literature and identify knowledge
gaps on the metabolic diversity, ecological distribution, and physiological adaptations of
nitrifying microorganisms in acidic and alkaline environments. We emphasise that nitrifying
microorganisms depend on a suite of physiological adaptations to maintain pH homeosta-
sis, acquire energy and carbon sources, detoxify reactive nitrogen species, and generate a
membrane potential at pH extremes. We also recognize the broader implications of their ac-
tivities primarily in acidic environments, with a focus on agricultural productivity and nitrous
oxide emissions, as well as promising applications in treating municipal wastewater.

Introduction
During aerobic chemolithoautotrophic nitrification, microorganisms convert ammonia (NH3) to ni-
trite (NO2

−) and then nitrate (NO3
−) [1]. The first step is mediated by ammonia-oxidising archaea

(AOA) and ammonia-oxidising bacteria (AOB), while the second step is mediated by diverse lineages
of nitrite-oxidising bacteria (NOB) [2]. It has also recently been discovered that some Nitrospira species,
known as comammox bacteria, mediate complete oxidation of ammonia to nitrate [3,4]. Collectively, these
microorganisms support key steps in the biogeochemical cycling of nitrogen on the earth and play impor-
tant ecological roles in diverse terrestrial and aquatic ecosystems, as well as engineered ecosystems such
as wastewater and drinking water treatment plants.

The maintenance of a circumneutral intracellular pH, termed ‘pH homeostasis’, is crucial in any living
cell [5–7]. This is because most proteins have distinct ranges of pH within which they can function, while
pH also affects the structure of nucleic acid and many other biological molecules [7]. pH also plays a
central role in cellular bioenergetics since the establishment of proton-motive force (PMF) depends on
both the electrical gradient (membrane potential, �ψ) and pH gradient (�pH, i.e. pHin − pHout), as
per the equation PMF = �ψ − 59�pH at 25◦C [5]. It is therefore vital for microorganisms to sense pH
in their milieu and maintain intracellular pH homeostasis [5,8]. Most microorganisms have pH optima
between 5 and 9, while a small but significant proportion of microorganisms grow optimally at pH values
below 5 or greater than 9 [9]. At low pH, PMF is primarily made up of �pH, while �ψ detracts from
PMF formed by �pH. At high pH, alkaliphilic and alkalitolerant microorganisms maintain a higher �ψ

component of the PMF than neutralophiles or acidophiles because the �pH component is reversed and
detracts from the PMF [5] (Figure 1).
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Figure 1. Differences in proton motive force composition under acidic, neutral and alkaline conditions.

�pH contributes to proton motive force (PMF) generation under acidic and neutral conditions, and detracts from proton motive

force under alkaline conditions at 25◦C. This is illustrated with examples from the obligate acidophile Acidithiobacillus ferrooxidans,

the neutralophile Escherichia coli, and facultative alkaliphile Bacillus pseudofirmus OF4; adapted from Krulwich et al., 2011 [5].

Figure 2. Comparisons of concentrations of nitrogen and carbon sources for nitrifying microorganisms from pH 1 to 14.

These comparisons are based on pKa values (NH4
+/NH3 = 9.25, HNO2/NO2

− = 3.39, CO2/HCO3
− = 6.37, HCO3

−/CO3
2− =

10.32), calculated using 1 mM total concentration for ammonia (orange, solid) and ammonium (orange, dashed); nitrite (blue, solid)

and nitrous acid (blue, dashed); and 10 mM total concentration for bicarbonate (green, solid), carbon dioxide (green, dashed) and

carbonate (green, dash dot).

In addition, the shifting equilibrium between acid–base conjugates (determined by acid dissociation constant pKa)
of growth substrates at pH extremes imposes nutritional and toxicity stresses on nitrifying microorganisms. Ammo-
nia is the presumed substrate for ammonia monooxygenase [10–14] and it is more abundant than ammonium at pH
conditions < 9.25 (pKa NH4

+/NH3 = 9.25, at 25◦C and zero ionic strength, same conditions used herein). Similarly,
nitrous acid (HNO2) dominates over nitrite (NO2

−) below pH 3.39 (pKa HNO2/NO2
− = 3.39), while bicarbon-

ate (HCO3
−) dominates over carbon dioxide (CO2) above pH 6.37 (pKa CO2/HCO3

− = 6.37) (Figure 2) [15]. pH
drastically influences the speciation of these compounds, as decreasing one pH unit would result in 10 times higher
acid/base ratio for each conjugating pair. Thus, the effect of pH on nitrifying microorganisms includes the availability
of energy and carbon sources, as well as the toxicity of reactive nitrogen species such as nitrous acid.

While the process of nitrification has been studied extensively owing to its biogeochemical and industrial signifi-
cance, most of our understandings are centered towards neutralophilic nitrifiers or near-neutral environments. An in-
creasing number of culture-dependent and culture-independent studies (summarised in Table 1) have demonstrated
that nitrification is active at pH extremes and identified the microorganisms mediating these processes. However,
our insights on how nitrifying microorganisms have adapted to acidic and alkaline pH remain rudimentary. This
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Table 1 Overview of reported nitrification in acidic (≤5.5) and alkaline (≥8.5) environments, including information on the
identified nitrifier groups and organisms

pH range* Environments Nitrifier group Representative taxa
Technique/type of
study** Citation

2.0–7.0 Acidic tea field AOB Ca. Nitrosoglobus terrae F, I, B, Q, A, O, K, T [21]

2.2–5.4 Laboratory reactor AOB Nitrosococcus-like I, B, A, T [22]

2.5–7.0 Laboratory reactor AOB Ca. Nitrosacidococcus
tergens

I, B, A, O, M, K [23]

2.5–7.0 Laboratory reactor AOB Ca. Nitrosacidococcus
urinae

I, B, A, K [24]

2.9–7.0 Agricultural soil AOB Nitrosococcus-like F, I, B [25]

3.0–10.0 Laboratory incubation AOB, AOA Nitrosomonas europaea,
Nitrosomonas multiformis,
Nitrosospira briensis, and
Nitrosopumilus maritimus

I, H [26]†

3.2–6.6 Agricultural soil AOB Nitrosomonas F, B, Q [27]

3.3–4.5 Permafrost environment AOA, AOB NA F, B, Q, S, O, T [28]

3.6–4.5 Heathland soil AOB, NOB Nitrosospira spp. AHB1,
Nitrobacter spp. NHB1

F, I, B, M [29–31,32,33]

3.7–8.8 Soil AOA NA F, A, T [34]

3.8–4.3 Forest soil AOA NA F, B, A, Q [35]

3.8–5.3 Agricultural and forest soil AOA Nitrosotalea-like F, I, B, D, O [36]

3.8–5.7 Laboratory reactor AOB Ca. Nitrosoglobus I, B, A, T [37]

3.8–6.2 Agricultural soil AOA, AOB NA F, I, A, Q, T [38]

3.8–8.0 Soil AOA NA R [17]

<4.0–6.0 Agricultural soil AOB, NOB, comammox Nitrosospira, canonical and
comammox Nitrospira

F, B, I, A, M [39]

4.0–4.1 Forest soil AOA NA I, B, A, Q, T [40]

4.0–4.3 Agricultural and restored
soil

AOA, AOB Nitrosomonas,
Nitrosospira

F, B, A, Q, S [41]

4.0–5.5 Agricultural soil AOA Ca. Nitrosotalea
devaniterrae

F, B, I, A, M, O, T [42–45]

4.0–7.5 Laboratory cultivation AOB Nitrosospira sp. NPAV I, B, Q [46]

4.0–5.8 Forest soil AOA, AOB, NOB Ca. Nitrosotalea,
Nitrosospira, Nitrospira,
Nitrobacter,
Nitrosococcus,
Nitrosospira

F, I, B, A, O, T [47]

4.1–4.9 Forest, grassland, and
wetland

AOA, NOB NA F, O [48]

4.1–5.2 Forest soil AOA, AOB NA F, B, A, Q, T [49]

4.2–4.5 Agricultural soil AOA, AOB NA F, B, A, Q, T, D [50]

4.2–7.5 Glacier foreland soil AOA NA F, A, Q [51]

4.3 Laboratory reactor AOB Ca. Nitrosoglobus I, B, A, Q [52]

4.3–5.2 Forest soil NOB Nitrobacter spp. IOacid F, I, B, M [53]

4.7–5.6 Volcanic soil AOA, AOB Nitrososphaera, Ca.
Nitrosotalea, Nitrosospira,
Nitrosomonas

F, B, A, T [54]

4.8–6.4 Peat land AOA, AOB, NOB NA F, A, T [55]

4.8–6.9 Agricultural soil NOB Nitrospira, Nitrobacter F, B, A, Q, O, T [56]

5.0 Laboratory reactor AOB Ca. Nitrosoglobus I, B, A, K [57]

5.0–7.0 Laboratory reactor AOB Ca. Nitrosoglobus I, B, A, K [58]

5.0–8.0 Laboratory reactor AOB Nitrosomonas europaea I, B [13,59]

5.0–9.5 Soil AOA NA F, A, Q [60]

5.2–5.9 Agricultural soil AOA, AOB NA F, I, Q [61]

5.5–8.5 Laboratory cultivation AOA, NOB Nitrosocosmicus
oleophilus, Nitrosotenuis
chungbukensis,
Nitrosomonas europaea,
Nitrobacter winogradskyi

I, S, B, A, T [62]

5.5–8.0 Hot spring NOB Chloroflexota F, I, Q, A, O, M [63]

8.2–8.8 Glacier soil NA NA F, B, A, T [64]

8.9 Laboratory reactor NA NA I, B, M [65]

Continued over
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Table 1 Overview of reported nitrification in acidic (≤5.5) and alkaline (≥8.5) environments, including information on the
identified nitrifier groups and organisms (Continued)

pH range* Environments Nitrifier group Representative taxa
Technique/type of
study** Citation

9.5–10.2 Soda lake NOB Nitrobacter alkalicus F, I, B, A, M [66]

9.7 Saline-alkaline lake NA NA F, B, S [67]

9.8 Soda lake AOA, AOB Nitrosomonas F, B, A, M [68]

9.0–11.0 Soda lake AOB, NOB Nitrosomonas, Nitrobacter R [69]

8.9–10.5 Saline-alkaline lake NOB canonical Nitrospira, Ca.
Nitrospira alkalitolerans

F, I, B, A, O, M [70]

9.6–10.4 Soda lake AOA NA F, B, A [71]

9.5–11 Soda lake AOB, NOB Nitrosomonas, Nitrobacter R [72]

7.6–11.0 Saline-alkaline lake AOA, NOB, and
comammox

Nitrosocosmicus,
Nitrososphaera, canonical
and comammox Nitrospira

F, B, A, S [73]

∼11.3 Soda lake AOB, NOB Nitrosomonas halophilus,
Nitrobacter alkalicus

R [74]

*Sorted based on lowest or highest reported pH for the detection of nitrification or nitrifiers in acidic or alkaline environments, respectively
**Abbreviations of techniques or study type:
F: Field campaigns
I: Isolation or cultivation
B: Biochemical assays and physiological studies
Q: Auantitative polymerase chain reaction (qPCR)
A: Amplicon-based sequencing analysis using genes such as 16S rRNA gene, amoAB and nitrite oxidoreductase (nxrAB)
O: Omics and meta-omics including genomics, transcriptomics, and proteomics
M: Microscopy including electron microscopy and fluorescence in situ hybridization (FISH)
S: Stable isotopic tracing
T: Statistical analysis
K: Kinetics
D: DNA stable-isotope probing (DNA-SIP)
H: Thermodynamic investigation
R: Review article
†This study applies calorimetric and potentiometric titrations to thermodynamically characterise cell surfaces of AOB and AOB from pH 3 to 10, which
is beyond the growth pH range of subject microorganisms.

topic has not previously been reviewed, with the exceptions of a consideration of the pH dependency of enzymatic
processes regulating N2O production in wastewater treatment systems [16], one study in 2012 that reviewed progress
in mechanistic understanding that could explain the dominance of AOA over AOB in certain acidic soils [17], and
prior reviews focusing primarily on the distribution and diversity of nitrifiers in acidic soils [18–20]. In the following
sections, we describe the process of nitrification, as well as the pH preferences and cellular adaptations of nitrifiers, in
diverse acidic and alkaline ecosystems. For a description of the distribution of nitrifiers in acidic and alkaline habitats,
we refer to Table 1.

Ecological distribution
To date, there are over 50 studies reporting nitrification activities from a range of acidic and alkaline environments
(Table 1). At acidic pH, nitrifiers have been reported to occur in agricultural, forest, coastal, permafrost, and vol-
canic soils, as well as in various reactor systems treating municipal or mining wastewaters. Nitrification has been less
frequently investigated at high pH, but it is known to occur in certain alkaline saltmarshes, saline-alkaline and soda
lakes, and bioreactors. The habitats with reported nitrification activities at the lowest pH (2.0) include acidic tea fields
and laboratory bioreactors [21–23], while the activity at the highest pH (11.3) detected was in soda lakes [74].

Acidic ecosystems
Some of the highest rates of soil nitrification are found in acidic soils (pH < 5.5) that constitute approximately 30%
of the world’s ice-free land [75]. The majority of these soils are naturally acidic, and approximately 5% are used for
arable crops [75]. AOA are generally the predominant nitrifiers in such soils, which makes them a crucial subject
for investigation [19,75,34]. The best-studied acidophilic AOA belong to the genus Ca. Nitrosotalea [42], which is
currently represented by three cultivated strains (Ca. Nitrosotalea devaniterrae, Ca. Nitrosotalea sinensis and Ca.
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Nitrosotalea okcheonensis) with growth pH restricted to 4 and 5.5 (optima between 4 and 5) [42–45]. This is sup-
ported by a regional and global phylogenetic analysis of archaeal amoA gene distribution [34,76], which demonstrate
that most lineages of Ca. Nitrosotalea are distributed in acidic environments. In addition, these studies revealed that
clades of the Nitrososphaerales (γ and ζ [76]) are also consistently found in acidic soils, revealing patterns of niche
speciation driven by low pH in AOA. This view is supported by a study using Bayesian comparative phylogenetics
to investigate co-evolutionary relationships between amoA and soil characteristics, which shows that pH is a strong
driver for AOA speciation [77]. However, no higher-level AOA clades that are specific to neutral or near-alkaline pH
have been identified so far [76].

AOB can outnumber AOA in certain acidic soils and man-made ecosystems containing high levels of ammonium or
urea [78,79] (Table 1). Cultivated neutralophilic AOB in the order of Burkholderiales within the Gammaproteobac-
teria (formerly placed within Betaproteobacteria) have been demonstrated to grow in acidic conditions when using
urea as a substrate [29, 30, 46] or when growing in aggregates [31] or biofilms [59]. To date, the most acid-tolerant
ammonia oxidizers characterised belong to the two gammaproteobacterial AOB isolates, Ca. Nitrosoglobus terrae
TAO100 [21] and Ca. Nitrosacidococcus tergens RJ19 [23]. Both are most closely related to the neutralophilic ma-
rine AOB genus Nitrosococcus [23,21]. While both AOB have an optimum growth pH ∼6, they can mediate am-
monia oxidation at pH 2–2.5, with Ca. Nitrosacidococcus tergens RJ19 even growing at pH 2.5. Additionally, 16S
rRNA gene-based surveys in bioreactors treating wastewater suggest a much higher diversity of acid-tolerant AOB
than currently enriched [22,52,24]. Finally, both AOA and AOB are found to be pioneer microorganisms in acidic
volcanic soils [54], with their capacity to autotrophically grow on inorganic nitrogen compounds facilitating primary
succession of barren environments [80].

A range of NOB have been identified through culture-independent surveys of various acidic systems such as soil
and aquatic ecosystems, geothermal sites, and engineered environments. NOB activities and adaptations have been
minimally studied under low pH conditions through bioassays and culture-dependent methods. To date, two aci-
dophilic Nitrobacter strains have been isolated: Nitrobacter NHB1 from acidic heath soil [30] with an activity range
of pH 5.0–7.5 and Nitrobacter strain IOacid from an acidic forest soil with maximal nitrite oxidation activity at pH
5.5 (range 4.1–7.2) [53]. Furthermore, canonical (only nitrite-oxidizing) and a comammox clade A Nitrospira strain
have been enriched from acidic agricultural soils with activity from pH 4 to 6 [81]. To our knowledge, NOB and
comammox organisms from acidic environments have not been subject to detailed physiological studies or genomic
characterisation.

Alkaline ecosystems
Nitrification also occurs in saline-alkaline lakes and soda lakes ecosystems, as confirmed by ex situ incubations of
lake sediments [82,73]. Multiple studies have shown that ammonia oxidisers mediate ammonia oxidation and pri-
mary production at high pH in these environments [74,67, 68, 71–73, 83]. Nitrosomonas halophila Ans5, the most
alkaliphilic AOB known, was isolated from a Mongolian soda lake in 2001 [84]. This bacterium has an optimal pH
range of 8.5–9.5 for growth and can maintain growth up to pH 11.3. In 2008, AOB affiliated with Nitrosomonas and
AOA from Nitrososphaerales were suggested to be significant contributors of nitrification in the saline and alkaline
Mono Lake, California [68]. Moreover, a recent study implicates both comammox and canonical Nitrospira, as well
as several AOA phylotypes, in carrying out rapid nitrification in saline-alkaline lakes at pH up to 11 [73]. Analysis of
an enrichment culture of the canonical nitrite oxidiser Ca. Nitrospira alkalitolerans showed it thrives at pH between
8.9 and 10.3, and is tolerant to hyposaline and subsaline conditions [70]. Five strains from Nitrobacter (AN1–AN5)
have been isolated from sediments of soda lakes and soda soil at pH 10 with nitrite as the sole electron source; they
formed a distinct species cluster denoted Nitrobacter alkalicus [84]. Several excellent reviews have highlighted the
central role of nitrifying microorganisms in regulating elemental cycling and enabling primary production in alkaline
and saline soda lakes [74,72,69]. However, compared to acidic ecosystems, research on nitrification in alkaline ecosys-
tems is scarce. Given the apparent presence and activity of nitrifiers in alkaline environments, future research on the
distribution, physiological speciation and adaptation to elevated pH of these nitrifiers is needed to better understand
alkaline nitrification and explore its potential applications.

Physiological adaptations
Ammonia acquisition and oxidation
The active sites of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO) are thought to be
periplasmic in AOA and AOB (Figure 3A–C) [85]. Our current understanding of comammox Nitrospira also favours
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Figure 3. Conceptual diagrams of substrate acquisition and pH homeostasis systems encoded in the genomes of nitrifiers.

(A) AOA Ca. Nitrosotalea devaniterrae based on illustrations in Lehtovira-Morley et al., 2016 [44]. (B) The intracytoplasmic membrane

stacks based on illustration and electron micrographs of Ca. Nitrosacidococcus tergens RJ19 in Picone et al., 2020 [23]. The

cation transporters and Na+/H+ antiporters provide pH homeostasis capabilities. (C) Proposed allocations of AMO and HAO on

the intracytoplasmic membrane stacks according to electron microgram of Nitrosomonas halophila Ans1 [84]. The presence of

respiratory complexes is inferred from the model pathway of N. halophila Nm1 at Biocyc.org [88]. Respiratory complexes I to V

are indicated by roman numerals in panels (B and C); HP/HB, the hydroxypropionate/hydroxybutyrate cycle; TCA, the tricarboxylic

acid cycle; CBB, Calvin–Benson–Bassham cycle; CA, carbonic anhydrase.

a periplasmic orientation of AMO and HAO [3,86]. Therefore, the functionalities of these enzymes are likely influ-
enced by environmental pH, as periplasmic pH is likely closer to external pH [5,87]. At acidic pH, ammonia (generally
considered to be the substrate of AMO) becomes substantially scarce, posing a major substrate limitation for ammo-
nia oxidisers (Figure 2). Early observations that the AOB Nitrosospira sp. AHB1 and Nitrosospira. sp. NPAV were
able to grow on urea alone, but not on ammonium, at pH < 5.5 have led to the hypothesis that intracellular ureol-
ysis enables ammonia acquisition and oxidation to occur independently of extracellular pH [46,29]. However, Ca.
Nitrosotalea devaniterrae is not ureolytic [44], and the ability of the AOB Ca. Nitrosacidococcus tergens RJ19 and
Ca. Nitrosoglobus terrae TAO100 to grow at low pH in ammonium-fed bioreactors without added urea suggests that
ureolysis can play an important, but not essential role, in adaptation to low pH for some ammonia oxidizers. It should
be noted that AMO and HAO of known comammox Nitrospira are phylogenetically distinct from those of canonical
AOB [3,4,86] and their orientation has yet to be proven. This knowledge is necessary to fully understand the impact
of pH on bioenergetics in comammox Nitrospira.
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The obligately acidophilic AOA Ca. Nitrosotalea devaniterrae is hypothesized to overcome ammonia limitation
at picomolar ranges by actively importing NH4

+ into the cytoplasm [44]. This is accompanied by deprotonation to
NH3 and diffusion of NH3 through the cytoplasmic membrane back into the pseudo-periplasmic space to generate
sufficiently high levels of ammonia locally [44] (Figure 3A). Acid-tolerant/acidophilic AOA likely have a competitive
advantage in acidic soils, just as they do in the oligotrophic ocean, due to a high ammonia affinity and efficient CO2
fixation pathways [14,89,90]. Indeed, Ca. Nitrosotalea devaniterrae possesses the highest specific affinity for NH3 of
all kinetically characterized AOA [14]. Based on simulations, Li and co-authors further proposed that the negatively
charged S-layer proteins of AOA may serve as a reservoir for the positively charged NH4

+, thus indirectly increasing
the NH3 concentration in the pseudo-periplasmic space and around AMO [91,26]. No AmtB-type ammonia trans-
porter could be identified in the genomes of the two AOB species with the highest tolerance to low pH conditions and
it has been speculated that these organisms rely on permeases or passive ammonia diffusion across the membrane
(Figure 3B) [23].

Unlike AOA, ammonia oxidation in AOB likely occurs primarily around the extensive specialized intracytoplasmic
membrane stacks predicted to house enzymes involved in nitrification and respiration to facilitate energy generation
(Figure 3B) [23]. The membrane stacks found in many AOB may increase the membrane surface and periplasm vol-
ume and provide more space for the ammonia oxidizing enzymes. This would increase the maximal reaction rate at
the cellular level and thus the rate of energy generation from NH3. This may help acidophilic AOB to survive un-
der strongly NH3-limited conditions and provide a competitive advantage over other AOB. It is worth noting that
the intracellular localization of intracytoplasmic membrane stacks displays a considerable distinction across different
phylogenetic lineages of AOB [92]. For instance, in the AOB Nitrosomonas halophila, intracytoplasmic membrane
stacks are localized in the immediate periphery of the outer cytoplasmic membrane [84] whereas those in Ca. Ni-
trosacidococcus tergens RJ19 and Ca. Nitrosoglobus terrae TAO100 are centered towards the cellular center (Figure
3C) [23,21]. Whether there is link between the cellular allocation of intracytoplasmic membrane stacks and adapta-
tion towards acidic conditions remains to be determined.

Nitrite acquisition and oxidation
A low pH also presents challenges for nitrite acquisition in NOB. The chemical equilibrium dictates the dominance of
HNO2 over NO2

− under acidic conditions (Figure 2), further limiting the availability of nitrite, a transient substrate
especially at reduced pH [93,94]. In addition, a high level of HNO2 imposes toxicity, nitrosative stress, and structural
damage to the cell [95–98]. Both Nitrobacter and Nitrospira species have been detected in and/or isolated from
acidic soils [53,39], where they likely inhabit different niches given their differences in affinity (to substrate NO2

−)
[99] and sensitivity (towards the toxic NH3 and HNO2) [100]. Moreover, micro-niches in soil might provide different
pH micro-environments, allowing coexistence of different NOB. Therefore, kinetic data for the mostly uncultured
NOB in soils, and physiological and comparative genomic studies of their mechanisms to combat nitrosative stress,
are crucially needed to decipher the respective adaptive traits of different NOB lineages in acidic soils and other habi-
tats. At high pH, the NO2

−-HNO2 equilibrium is unlikely to be a limiting factor, because NO2
− is the predominant

form over HNO2 and therefore HNO2 toxicity plays no significant role at high pH (Figure 2). It is worth noting that
the capacity of NOB including Nitrobacter and Nitrospira to use alternative energy sources, including and hydrogen,
formate, and acetate, may also enable them to adapt to fluctuations in nitrite availability and fulfill their energetic re-
quirements for intracellular pH homeostasis [101–106]. Indeed, the genome of the NOB Ca. Nitrospira alkalitolerans
encodes a high-affinity group 2a [NiFe]-hydrogenase to potentially consume atmospheric H2, suggesting physiolog-
ical flexibility as demonstrated in the neutralophile Nitrospira moscoviensis [101,105,107].

Intracellular pH homeostasis
Nitrifying microorganisms adapted to acidic environments use several mechanisms to overcome intracellular acidifi-
cation resulting from inward proton flow due to the high �pH. In a recent study, Wang and colleagues demonstrated
that AOA adapted to acidic conditions had horizontally acquired V-type ATPases that extrude cytosolic protons; con-
sistently, heterologous expression of this enzyme in Escherichia coli enhanced acid tolerance [36]. Ion transporters
and reduced membrane permeability have also been proposed to facilitate pH homeostasis in Ca. Nitrosotalea de-
vaniterrae, including a range of cation transporters predicted for K+, Na+ and divalent cation uptake, a H+/Na+ an-
tiporter, a carbonic anhydrase that may facilitate pH homeostasis in addition to contributing to carbon fixation, and
an α-acetolactate decarboxylase suggested to mediate proton scavenging [44]. This archaeon may possess lipid mem-
branes that are less permeable compared with neutralophilic AOA in addition to increased sugar units on the outside
of the S-layer that are suggested to prohibit proton entry (Figure 3A) [44]. Several studies have inferred mechanisms
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for acidic adaptations of AOB based on genomic analysis, though without further validation [23,21]. The AOB Ca.
Nitrosacidococcus tergens is proposed to use multiple enzymes for this purpose: carbonic anhydrases to scavenge
protons, cation transporters to maintain an inside-positive �ψ , and several Na+/H+ transporters that may contribute
to pH homeostasis (Figure 3B) [23]. The AOB Ca. Nitrosoglobus terrae TAO100 also encodes cation transporters
which may be involved in the creation of an inside positive membrane potential to resist proton flux [21].

At high pH, the energetic challenge is much more severe as �pH detracts from PMF and it is therefore crucial to
maintain a high �ψ with tightly regulated pH and ion homeostasis [5]. Instead of relying solely on PMF for ATP
synthesis, the NOB Ca. Nitrospira alkalitolerans can potentially conserve energy through a sodium-motive force
(SMF) as inferred by the presence of an N-type ATPase and a sodium-dependent NADH:quinone oxidoreductase in
the genome next to the canonical complexes of the electron transport chain, in conjunction with the several H+/Na+

antiporters such as Mrp- and Nha-type antiporters to facilitate pH homeostasis [70].
While complex mechanisms are adopted by different groups of nitrifying microorganisms to regulate intracellular

pH at a single cell level, microbes do not live in isolation in nature. Biofilms and aggregates formed by nitrifying
communities provide microsites and buffers that may enable nitrification to continue at pH beyond tolerable ranges
at the individual level. For example, de Boer et al. reported that aggregated but not individual cells from nitrifying
communities in two Dutch acidic heath soils were able to nitrify at pH 4 [31], while Allison and Prosser also observed
that biofilm populations of Nitrosomonas europaea oxidized ammonia at lower pH than planktonic populations
[59]. Consistently, aggregate cell formation of Ca. Nitrosoglobus terrae TAO100 is induced under strongly acidic
conditions [21] and Ca. Nitrospira alkalitolerans cells enriched under high pH densely clustered into consortia [70].

Nitrifier carbon fixation
As chemolithoautotrophs, nitrifying microorganisms build biomass through energy-demanding CO2 fixation
pathways. AOA employ a variant of the hydroxypropionate/hydroxybutyrate (HP/HB) cycle. Being the most
energy-efficient known aerobic carbon fixation pathway, it facilitates their adaptation to oligotrophic environments
[108]. However, the carboxylases involved in this pathway use bicarbonate as a substrate [108], which is limited rel-
ative to dissolved CO2 at low pH (Figure 1). Some acidophilic AOA may enhance the rates and efficiency of carbon
fixation through carbonic anhydrase to enrich intracellular bicarbonate through the conversion of CO2; consistently,
carbonic anhydrases have been identified in two of four Ca. Nitrosotalea genomes [45]. At high pH, importing bicar-
bonate rather than CO2 is more advantageous due to the higher concentration of bicarbonate (Figure 2).

AOB and Chloroflexota NOB adopt the Calvin–Benson–Bassham (CBB) cycle, which uses CO2 as the substrate
[63]. Despite the higher availability of dissolved CO2 at low pH, these nitrifying microorganisms have evolved mecha-
nisms to further facilitate carbon fixation, possibly in part due to the low catalytic and energetic efficiency of the CBB
cycle [109]. For instance, the genome of the acid-tolerant AOB Ca. Nitrosacidococcus tergens encodes two types of
carbonic anhydrases that may support a ‘buffering’ mechanism by forming bicarbonate from CO2 that has entered the
cytoplasm (with proton consumption) and subsequently converting bicarbonate back to CO2 as required by carbon
fixation. Ca. Nitrosacidococcus tergens and Ca. Nitrosoglobus terrae TAO100 contain a urease that breaks down urea
to generate CO2, in addition to providing NH3 as a source of energy [23,21]. On the other hand, the alkaliphilic Ni-
trosomonas halophila contains carboxysome-like organelles [84], which may be responsible for concentrating CO2
as suggested for Nitrosomonas eutropha C91 [110,111]. Finally, NOB in the genus Nitrospira employ the reductive
tricarboxylic acid cycle for carbon fixation, which utilizes CO2 as the substrate [86,112,113]. The NOB Ca. Nitrospira
alkalitolerans is likely able to use the sodium gradient between its saline-alkaline environment and the cytoplasm for
bicarbonate uptake with a BicA symporter. Its cytoplasmic carbonic anhydrase may then convert the imported bicar-
bonate to CO2 in the cytoplasm for carbon fixation [70]. However, genes encoding these enzymes are also present in
the genome of the neutralophilic marine species Nitrospira marina [114].

Applications and implications
Agricultural land
Agricultural soils accounted for 38.8% of global N2O emission between 2007 and 2016 [115]; the proportion and the
gross emission are expected to intensify continually in the coming decade driven by increased fertilizer application
and population growth [116]. Understanding the link between soil pH, productivity and microbial nitrogen cycling
in soil is crucial to mitigating N2O emissions and enhancing productivity from agricultural land. Firstly, soil pH and
crop productivity are intrinsically linked to nitrifier activities. This is because nitrifiers in agricultural soils compete
for ammonium with crops, contribute to soil acidification due to the conversion of ammonia to nitrite in the first
step of nitrification, and accelerate nitrogen losses through leaching of the highly soluble end-product nitrate [18].
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Secondly, pH is strongly correlated with the emission of N2O from soil [117]. This is because both nitrifiers and den-
itrifiers are drivers of N2O emission [118,119], and their activities are strongly influenced by soil pH [120–123]. Soil
acidification affects N2O emission in opposite ways between nitrifiers and denitrifiers. For instance, low pH impairs
the maturation of N2O reductase in the denitrifier Paracoccus denitrificans [124], therefore, N2O emission by den-
itrifiers is increased when soil pH decreases [125,126], as N2O reductase is the only known enzyme able to reduce
N2O to N2 [117]. In contrast, N2O emission by nitrifiers decreases as pH decreases because of niche differentiation;
low pH in general favours the dominance of AOA over AOB and AOA produce less N2O [117,118,127]. N2O yields
from ammonia oxidation by AOB species (0.1–8%) are generally at least one order of magnitude higher than from
AOA species (0.04–0.3%) and comammox bacteria (0.07%) [119], with AOB activity generating approximately dou-
ble the yield of AOA in soil [127]. Therefore, soils dominated by AOA and comammox Nitrospira are predicted to
have lower N2O emission potentials than soils dominated by AOB activity, which are also associated with high inputs
of inorganic ammonium fertilizer [118,128].

Various strategies to inhibit nitrification have been developed, which can be used in acidic agricultural soils to
reduce N2O emissions and nitrogen loss. The most widely adopted method is the field application of nitrification in-
hibitors such as dicyandiamide (DCD), nitrapyrin (NP), and dimethylpyrazole phosphate (DMPP). These commer-
cial inhibitors were tested against neutralophilic AOB and developed prior to the discoveries of AOA and comam-
mox, and prior to the isolation of acid-tolerant ammonia oxidisers [19]. Indeed, the efficacy of these inhibitors varies
across different groups of nitrifying microorganisms and soils with different pH and physicochemical conditions as
reviewed by Li et al. [19] and Beeckman et al. [129]. AOA rather than AOB are often major ammonia oxidisers in
agricultural soils [18,130,131] and the improved identification of resident nitrifiers is facilitating the development of
targeted approaches to suppress their nitrification activities at various soil pH regimes. For example, a novel potential
nitrification inhibitor, quinone imine, has recently been developed and shown to act more effectively than DCD and
NP on AOA in acidic soils [132]. The isolation of acid-tolerant and acidophilic strains also offers opportunities for
evaluating the efficacy of existing nitrification inhibitors on nitrification under acidic conditions, for understanding
their mechanisms of action, as well as for designing and testing novel inhibitory compounds specific to the unique
physiology of acidophilic nitrifiers while minimising harmful impacts on non-target organisms and the environment.
Besides synthetic nitrification inhibitors, there is a prospect of employing biological nitrification inhibitors (BNIs)
released in the rhizosphere of certain plants [131,133,134]. These plant-produced compounds could act as a natural
control of nitrifier activities (reviewed in [135]), but it is unclear whether plants produce sufficient amounts of BNI
for inhibiting nitrification when growing in acidic/alkaline soils or whether BNI can maintain their function in these
soils.

Wastewater treatment at low pH
Acidic nitrification has extensive implications in global wastewater treatment. Biological nitrogen removal from
wastewater is based on nitrification and denitrification mediated by autotrophic nitrifiers in oxic tanks and het-
erotrophic denitrifiers in anoxic tanks, respectively. Compared to a generally low abundance and activity of AOA,
AOB usually play a more critical role in converting ammonium to nitrite in these systems [136,137]. The dominant
NOB genera in most wastewater treatment plants (WWTPs) are Nitrospira and Nitrotoga [137,138]. Compared with
the conventional combination of nitrification and denitrification, the application of either partial nitritation coupled
with the anaerobic oxidation of ammonium (anammox) (PN/A) or of the ‘nitrite shunt’ approach can reduce aera-
tion costs by 60% and eliminate the need for organic carbon dosing to heterotrophic denitrifiers [139], thus being
more sustainable nitrogen removal techniques. Anammox is a process carried out by Planctomycetes in the Broca-
diales order that oxidize ammonium using nitrite as the electron acceptor to produce dinitrogen gas. In contrast, the
nitrite shunt approach is the attempt to stop nitrification at nitrite, which is then reduced to dinitrogen gas. Both pro-
cesses require the selective suppression of NOB while retaining the activities of AOB and of anammox or denitrifiers,
respectively [140]. However, this this has been a long-standing technological challenge.

NOB are typically sensitive to acid stress (see above), which has inspired attempts to develop efficient nitrification
at low pH using acid-tolerant AOB [37]. Acid-tolerant AOB can provide a stable source of nitrite for anammox bac-
teria, while suppressing the activity of NOB at low pH [37,141]. This coupling of acidic nitrification with anammox is
a highly promising technology that has been demonstrated in both lab-scale [37,57,142,143] and pilot-scale reactors
[144]. It can save significant aeration costs, eliminate the need for organic carbon, and allow for the separation and
use of digested sludge in bioenergy recovery [141,145]. This technology has the potential to transform sewage treat-
ment from an energy-negative to an energy-neutral service for wastewater treatment plants [139,146,147]. In acidic
laboratory reactors treating urine, Ca. Nitrosacidococcus urinae was favored under acidic conditions, while NOB
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were likely absent [24]. Although aerobic acidic nitritation has the potential to brings tremendous energy sufficiency
in wastewater treatment, N2O emissions during this process (likely caused by nitrite detoxification in the microbial
consortia) cannot be ignored [123]. Currently, a better understanding of the mechanisms regulating N2O emission
is needed for these highly promising systems that aim to operate with low energy consumption and environmental
footprint.

Conclusions and outlook
Through a combination of culture-based and culture-independent techniques, we now have an increasing under-
standing of the ecophysiology, adaptations, and distribution of nitrifying microorganisms in different ecosystems. As
pH is intricately linked to substrate availability, bioenergetics and cellular defense against oxidative and nitrosative
stress, it is crucial to deepen our understanding of mechanisms allowing nitrifiers to thrive or adapt to extreme pH.
It is also critical to translate these ecological and physiological insights into mitigating nitrogen loss in agricultural
land and improving energy efficiency in next-generation wastewater treatment processes.

Summary
• Nitrification at acidic and alkaline pH has been understudied compared to nitrification at neutral

pH conditions.

• Ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and comammox bacteria in-
habit diverse acidic and alkaline environments.

• Physiological adaptations allow them to maintain pH homeostasis, acquire limiting energy and
carbon sources, and detoxify toxic compounds at pH extremes.

• Nitrification at acidic pH contributes to nitrogen loss and nitrous oxide emissions in agricultural
systems, but also has promising applications in acidic wastewater treatment.
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106 Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E. et al. (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing

bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. 112, 11371–11376, https://doi.org/10.1073/pnas.1506533112
107 Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W. and Bock, E. (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira

moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164, 16–23, https://doi.org/10.1007/BF02568729
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113 Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B. et al. (2010) A Nitrospira metagenome illuminates the physiology and evolution

of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. 107, 13479–13484, https://doi.org/10.1073/pnas.1003860107
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