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Summary
Background Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes
remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide
intermediary links between genetic risk factors and multifaceted ASD phenotypes. In this study, we sought to determine
whether plasma metabolite levels could serve as endophenotypes in individuals with ASD and their family members.

Methods We employed an untargeted, high-resolution metabolomics platform to analyse 14,342 features across 1099
plasma samples. These samples were collected from probands and their family members participating in the Autism
Genetic Resource Exchange (AGRE) (N = 658), compared with neurotypical individuals enrolled in the PrecisionLink
Health Discovery (PLHD) program at Boston Children’s Hospital (N = 441). We conducted a metabolite quantitative
trait loci (mQTL) analysis using whole-genome genotyping data from each cohort in AGRE and PLHD, aiming to
prioritize significant mQTL and metabolite pairs that were exclusively observed in AGRE.

Findings Within the AGRE group, we identified 54 significant associations between genotypes and metabolite levels
(P < 5.27 × 10−11), 44 of which were not observed in the PLHD group. Plasma glutamine levels were found to be
associated with variants in the NLGN1 gene, a gene that encodes post-synaptic cell-adhesion molecules in excitatory
neurons. This association was not detected in the PLHD group. Notably, a significant negative correlation between
plasma glutamine and glutamate levels was observed in the AGRE group, but not in the PLHD group.
Furthermore, plasma glutamine levels showed a negative correlation with the severity of restrictive and repetitive
behaviours (RRB) in ASD, although no direct association was observed between RRB severity and the NLGN1
genotype.

Interpretation Our findings suggest that plasma glutamine levels could potentially serve as an endophenotype, thus
establishing a link between the genetic risk associated with NLGN1 and the severity of RRB in ASD. This identified
association could facilitate the development of novel therapeutic targets, assist in selecting specific cohorts for clinical
trials, and provide insights into target symptoms for future ASD treatment strategies.
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Introduction
Autism spectrum disorder (ASD) is a neuro-
developmental condition that affects 2.3% of 8-year-old
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children in the U.S.1 Over the past two decades, its
prevalence has been increasing in industrialized coun-
tries, partly due to earlier and more inclusive diagnosis.2
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Research in context

Evidence before this study
Previous gene discovery studies have catalogued over 1000
genes with de novo, rare and common genetic variants
potentially associated with ASD. However, translating these
candidate genes into diagnostic and treatment biomarkers
remains elusive. Endophenotypes could serve as a bridge
between genetic risk factors and the intricate phenotypes of
ASD, providing valuable insights into potential therapeutic
targets and specific symptoms to focus on for ASD treatment.

Added value of this study
Specifically among ASD patients and their family members,
plasma glutamine levels were associated with variants in the
NLGN1 gene, which encodes a postsynaptic cell-adhesion
protein involved in the incorporation and retention of
excitatory glutamatergic neurons. Furthermore, glutamine

levels were correlated with the phenotypic scores for
repetitive and restricted behaviours (RBS total score) in ASD
patients. Notably, no direct association was observed between
the NLGN1 gene variants and the RBS total score.

Implications of all the available evidence
The imbalance of cortical cellular excitation to inhibition (E-I)
has been suggested as a common pathophysiological
mechanism of ASD. However, clinical trials targeting
glutamatergic or inhibitory GABAergic receptors have yielded
mixed results. The association between NLGN1 variants and
plasma glutamine levels could potentially help identify a
target population for E-I imbalance-modulating drug
treatment, with the severity of RBS serving as an outcome
measure for treatment efficacy.
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The heritability of ASD is estimated to be between 0.69
and 0.91 based on family and twin studies,3 indicating
that the condition is attributable to polygenic risks with
varying contributions from de novo or rare variants with
large effects and aggregate effects of common variants.4

While hundreds of ASD candidate genes have been
identified through gene discovery studies,5 putative
disease-associated variants have only been found in
approximately 15% of cases.6 Candidate genetic variants
are often found in genes encoding synaptic cell-
adhesion molecules that specify synaptic functions,
such as neuroligins (NLGNs) and neurexins (NRXNs),
as well as post-synaptic scaffolding proteins like PSD95
and SHANK proteins.7,8 While protein-truncating vari-
ants in certain genes, including SHANK3 and CHD8,
have been observed more frequently in ASD than in
cohorts with intellectual disability (ID) or other con-
trols,9 the precise role of these genes in ASD remains
unclear. Indeed, as of our current understanding, no
ASD candidate gene has accumulated enough evidence
to establish its unique association with ASD.10

Deciphering the genetic underpinnings of ASD and
their associated indicators that could potentially be linked
to ASD aetiology is a crucial step in pinpointing possible
drug targets. Given the higher success rate in regulatory
approval for drug targets supported by human genetic
evidence,11,12 the role of gene discovery proves to be
indispensable in developing effective ASD therapeutics.13

Despite its importance, discovering “autism-specific”
genes poses significant challenges for several reasons.
Firstly, the diagnostic criteria and classification system
for psychiatric disorders,14 including ASD, rely on a wide-
range of symptoms and signs, all of which differ in
severity and clinical course.15 Secondly, ASD phenotypes
are the result of a complex interplay of genetic and
environmental factors, epigenetic changes, and stochastic
events occurring during foetal brain development.
Thirdly, ASD is a disorder of the developing human
brain, an organ composed of diverse cell types, extensive
connections, and intricate interactions at the cellular and
circuit levels, all of which are influenced by experiences
and changes across the developmental trajectory. Lastly,
the genetic heterogeneity of ASD is partly responsible for
its clinical heterogeneity.16 While direct associations be-
tween genotypes and phenotypes in ASD remain elusive
and the polygenic nature of the disorder further com-
plicates our understanding of the affected molecular
pathways and brain circuits, there is a critical need for
novel approaches to decipher the complex interplay be-
tween genotypes and phenotypes in ASD.

To better understand the biological underpinnings of
psychiatric disorders, Gottesman and Shields intro-
duced the concept of an endophenotype—measurable
internal phenotypes that serve as a link between geno-
types and psychiatric behavioural phenotypes, specif-
ically within the context of schizophrenia genetics.17

Various methods, such as neuroimaging, event-related
potentials, eye-tracking, and small molecules, have
been employed to identify endophenotypes for several
psychiatric disorders.18 For an indicator to be considered
as an endophenotype, it should meet several criteria: it
must be associated with illness in the population,
exhibit heritability, demonstrate trait dependency, co-
segregation with illness within families, and show a
higher occurrence rate in unaffected family members
compared to the general population. However, it’s worth
noting that for biomarkers in the conventional sense,
only the first criterion is necessary.

ASD has been associated with several potential
endophenotypes, including elevated serotonin levels,19

decreased oxytocin levels,20 abnormal activation of the
prefrontal cortex during non-social visual attention
tasks,21 and atypical visual scanning of human faces.22

Notably, heritable cognitive functional measures such
www.thelancet.com Vol 95 September, 2023
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as intelligence quotient (IQ), non-verbal communica-
tion, and social adaptation have also been considered as
potential endophenotypes. For instance, ‘age at first
word’ (WORD), a quantitative trait, has been used as an
endophenotype, revealing an association with common
variants in the CNTNAP2 gene.23,24 Moreover, our pre-
vious study identified a correlation between common
variants in the VPS13B gene, a causal gene for Cohen
syndrome, and the total score of Stereotyped Behaviours
and Restricted Interests, further highlighting the utility
of endophenotypes.25 Thus, endophenotypes present a
promising avenue to connect genotypes with the com-
plex ASD phenotype. This offers the potential to define
subgroups with shared pathobiological mechanisms,
clinical trajectories, and responses to treatment.

Recent advancements in high-throughput metab-
olomics have demonstrated substantial potential in the
identification of such endophenotypes. This technology
enables a comprehensive profiling of metabolites in an
individual, which can provide a snapshot of the host
genetic makeup and its interaction with environmental
factors.26,27 In essence, it enables to investigate how ge-
netic variants can influence metabolite levels, thus of-
fering mechanistic insights into the biological pathways
that are perturbed in pathophysiological conditions.28 In
a recent cross-platform meta-analysis, Lotta and col-
leagues validated the reported association between sin-
gle nucleotide variants (SNVs) and metabolite
concentrations across independent cohorts using a
genome-wide association study (GWAS) framework.29

However, the breadth of chemical space coverage has
been limited to a few hundred metabolites in previous
studies. By pioneering an untargeted analysis platform
using a high-resolution mass spectrometry coupled with
liquid chromatography (LC-HRMS),30,31 we conducted a
case-control study to identify metabolites that were
significantly different in individuals with ASD
compared to neurotypical controls.32 Furthermore, in
conjunction with genome-wide genotyping, this plat-
form was employed to investigate the genetic influence
on metabolite levels in generally healthy children.33 We
identified high heritability in certain metabolite species
and discovered novel gene-metabolite associations.
These findings underscore the need for continued
metabolomics research across different age groups to
enhance our understanding of gene-environment in-
teractions and their impact on health trajectories.
Therefore, untargeted metabolomics profiling, com-
bined with genome-wide genotyping, could offer an
unbiased approach for the discovery of endophenotypes
in ASD. Significant focus in ASD research has been
directed towards neuroactive amino acids, such as
glutamate and GABA, which play crucial roles in
maintaining the balance between excitatory and inhibi-
tory neuronal activity. Deviations in this excitatory-
inhibitory (E-I) balance have been thought to be asso-
ciated with ASD, with alterations in the glutamate/
www.thelancet.com Vol 95 September, 2023
glutamine cycle being one potential mediator of these
deviations.34–37 However, findings on the genetic un-
derpinnings for E-I imbalance, as reported in both hu-
man and animal models, have been inconsistent.38,39

Given these observations, the potential to elucidate
these connections through comprehensive metab-
olomics profiling presents promising new avenues in
ASD research.

In this study, we investigated the possible relation-
ships between metabotypes (levels of various metabo-
lites) and genotypes in individuals with ASD (mean age
8.8 years old (yo), range 1.9–28.4), their unaffected sib-
lings (mean age 8.5 yo, range 2.4–16.2), fathers (mean
age 41.5 yo, range 27.8–66.6), and mothers (mean age
39.1 yo, range 24.2–54.5). Our aim was to uncover
unique genotype-metabotype associations that could
indicate potential endophenotypes of ASD and their
underlying genetic factors. We profiled the plasma
metabolome in an untargeted manner, which yielded
quantitative measurements of 14,342 features. These
were then integrated with genome-wide genotyping data
to identify potential genetic determinants of the
metabotype unique to the ASD group and their family
members, compared to the control group. To account
for technical limitations due to the differences in plasma
sample collection and biobanking methods, metabolite
quantitative trait loci (mQTL) analysis was conducted
separately in the ASD and control groups. Significant
genotype-metabotype associations were then compared
between the two groups to prioritize ASD-specific as-
sociations. Moreover, we examined whether the identi-
fied endophenotypes would correlate with specific ASD
domain scores and measures of neurocognitive
development.
Methods
Participants
The Autism Genetic Resource Exchange (AGRE) Con-
sortium provided the collection of whole-genome
sequencing (WGS) and phenotype data of families with
at least one individual diagnosed with ASD through the
Autism Diagnostic Interview-Revised (ADI-R) and the
Autism Diagnostic Observation Schedule (ADOS).40 Cases
were defined using AGRE’s “derived affected status” in-
formation marked with “Autism”, “Not Quite Autism
(NQA)”, or “ASD.” We excluded individuals with known
genetic causes of ASD such as Fragile X syndrome, Tri-
somy 21, 15q deletion, and 22q duplication. The dataset
contained 11,961 individuals with demographic and
phenotypic information, and for the current study, we
included 658 individuals with both WGS and available
plasma samples for LC-HRMS analysis.

Generally healthy individuals who were enrolled in
the PrecisionLink Health Discovery (PLHD) cohort at
Boston Children’s Hospital (BCH) between January
2016 and November 2019 were subjected to whole-
3
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genome genotyping using microarray and metab-
olomics profiling using LC-HRMS.33 For participants
who had available plasma samples, we retrieved Inter-
national Classification of Diseases (versions 9 and 10),
Current Procedural Terminology (CPT4), and SNOMED
CT codes from the BCH Cerner electronic health re-
cords (EHR) database as illustrated in Fig. S1. A total of
859,427 concept identifiers were extracted for 441
individuals. These included CPT4 (N = 381,709), ICD-9-
CM (N = 199,837), ICD-10-CM (N = 269,851) and pro-
cedure codes. We mapped ICD codes to PheCodes to
consolidate ICD-9-CM and ICD-10-CM into a clinically
meaningful phenotype and disease classification.41 Spe-
cifically, we assessed whether any participants had been
diagnosed with ASD (PheCode: 313.3), intellectual dis-
abilities (PheCode: 315.3), and other developmental
disorders (PheCodes: 315, 315.1, and 315.2). The accu-
racy of ASD diagnosis using only ICD codes extracted
from EHR has been found to be low.42 Therefore, in
addition to this, we utilized CPT4 codes: 92,523 (evalu-
ation of speech sound production and language
comprehension and expression), 92,507 (treatment of
speech, language, voice, communication, and/or audi-
tory processing disorder), 92,508 (treatment of auditory
processing disorder), and 97,127 (cognitive interven-
tion) to determine whether any participants had un-
dergone evaluations and treatment for ASD. None of the
individuals in the control cohort had a diagnosis of ASD
or other neurodevelopmental disorders including
attention-deficit/hyperactivity disorder (ADHD),
learning disabilities, moderate to severe intellectual
disabilities, or Mendelian disorders. To adhere to the
Health Insurance Portability and Accountability Act
regulations, personal identifiers were removed from the
extracted EHR data and replaced with universal unique
identifiers (UUIDs). All subsequent analyses utilized
these UUIDs, age at blood collection, sex information,
and sample identifiers for plasma and DNA samples
provided by the BCH Biobank.

Ethics statement
For AGRE cohort, the study protocol was reviewed and
approved by Autism Speaks to access the WGS data and
to obtain plasma samples. All participants in AGRE
provided written informed consent to Autism Speaks.
The PLHD was approved by the BCH Institutional Re-
view Board under protocol number P00000159. All
participants in PLHD provided written or electronically
signed informed consent, with those under 18 years old
doing so through their parents or legal guardians, and
those over 18 years old providing consent themselves.

Characterization of plasma metabolome using
high-resolution mass spectrometry
AGRE plasma samples were thawed and aliquoted by
NIMH biorepository and PLHD plasma samples were
prepared at BCH Biobank. Plasma samples from the
AGRE and PLHD cohorts were randomly assigned to
different batches of LC-HRMS profiling to balance
sample sources, age, and sex. A dual column chroma-
tography approach involving hydrophilic interaction
liquid chromatography (HILIC; XBridge BEH Amide
XP HILIC column; 50 × 2.1 mm, 2.5 μm; Waters,
Waltham, MA) and reversed-phase liquid chromatog-
raphy (RPLC; C18 column; 50 × 2.1 mm, 2.6 μm; Hig-
gins Analytical, Mountain View, CA) was used, and
mass spectral data was collected and analysed as previ-
ously described.33,43 The detected features were
compared to an in-house library of identified metabo-
lites.44 The library consisted of metabolites that were
confirmed by co-elution relative to authentic standards
and ion dissociation mass spectrometry (level 1 identi-
fication by the criteria of Schymanski et al.45) with a
tolerance of 5 ppm in m/z and 30 s in retention time
(RT). A total of 166 features were matched with identi-
fied metabolites in the confirmed library. The details of
mass spectral data collection and analysis are provided
in the Supplementary Methods and the information of
166 identified metabolites are listed in Table S1.

Genome-wide genotype data
For the AGRE cohort, we downloaded variant call files
(VCFs) through MSSNG46 and the Hartwell Autism
Research and Technology Initiative (iHART)47 con-
sortium sites. The VCFs from MSSNG (version db6,
1740 subjects) were processed with Sentieon Genomics
pipeline version 201808.06 using GRCh38 as reference
genome. The VCFs from iHART (version v01, 2308
subjects) were processed with GATK-3.2 using GRCh37
as reference genome. The MSSNG VCFs were lifted to
GRCh37 coordinates to be merged with iHART VCFs.
While merging, we excluded 374,405 variants that were
genotyped inconsistently in subjects duplicated between
MSSNG and iHART. A total of 681 subjects had both
genotype data and LC-HRMS data and were subjected to
the quality control and filtering steps: (1) variants or
samples with missing rate less than 2%, (2) biallelic
variants in autosome with minor allele frequency of 5%
or greater, (3) variants passing Hardy-Weinberg equi-
librium test (P < 1 × 10−6), (4) samples with heterozy-
gosity within 3 standard deviations from average. The
final genotype data for AGRE cohort consisted of
4,967,901 autosomal variants for 658 subjects.

For the PLHD cohort, genome-wide genotyping was
performed using Illumina Global Diversity Arrays
(GDAs), and we downloaded genotype calls from 453
subjects from the PLHD portal.33 The genotypes were
imputed with TOPMed imputation reference panel.48

We selected autosomal variants with imputation accu-
racy (r2) >0.3 and lifted variants to GRCh37 coordinates
for quality control and filtering steps as in AGRE cohort.
The final data for PLHD cohort consisted of 6,439,124
variants and 441 independent subjects (King robust
estimator <0.177). Finally, we excluded variants specific
www.thelancet.com Vol 95 September, 2023
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Fig. 1: Overview of study design and data analysis. Diagram illustrating the workflow involving the Autism Genetic Resource Exchange
(AGRE) cohort, highlighting the process of data collection and analysis for phenotype, genotype, and metabolomics information. The
metabolomics data for the AGRE cohort was generated from 658 plasma samples using liquid-chromatography high-resolution mass spec-
trometry (LC-HRMS). These samples had accompanying whole-genome sequencing (WGS) data from either the iHART or MSSNG databases and
detailed phenotype scores. The analysis includes a metabolite Quantitative Trait Loci (mQTL) analysis and a comparison with variant–metabolite
associations observed in the PrecisionLink Health Discovery (PLHD) cohort. Variant-metabolite associations that passed genome-wide signif-
icance (P < 5 × 10−8) were selected for further evaluation in the AGRE cohort. Associations that were concurrently present in the PLHD cohort
were excluded from further evaluation and correlation with phenotype scores.

Articles
to either cohort, resulting in 4,840,930 variants in both
cohorts for further analysis. The detailed steps of quality
control and filtering for genotype dataset are described
in the Supplementary Methods and in Fig. S2.

Statistical analysis
The overall workflow, including data collection,
metabolomics profiling, and association analysis, is
depicted in Fig. 1. The AGRE and PLHD cohorts were
analysed separately due to differences related to the
plasma sample collection, preparation, and biobanking
processes. Within each cohort, however, all individuals
were analysed together without further stratifying by
age groups or ASD status. Each feature intensity was
transformed to log base 2 scale and normalized by
taking residuals from a generalized linear regression
fitted with subjects’ age, sex, and batch of metabolomic
profiling as covariates (log2 (feature) ∼
age + sex + batch). For each feature in each cohort, a
linear mixed model was fitted over the entire cohort
using GCTA49 (version 1.94.0 beta; –fastGWA-mlm),
with the top 10 principal components (calculated using
PLINK2 software50) as covariates to account for popu-
lation structure. Finally, we performed a stepwise
conditional and joint analysis using GCTA-COJO
(–cojo-slct)51 to obtain conditionally independent vari-
ants for each feature.

The polygenic risk score (PRS) for ASD was calcu-
lated using the summary statistics published by the
Lundbeck Foundation Initiative for Integrative Psychi-
atric Research (iPSYCH) and the Psychiatric Genomics
Consortium (PGC) in November 2017. We used PLINK
www.thelancet.com Vol 95 September, 2023
(v1.90b5.1 64-bit (20 December 2017)) to clump variants
and calculate PRS. We then assessed the association
between the PRS and feature levels using a generalized
linear model for each feature with subjects’ age, sex, and
10 PCs as covariates. The association test between the
PRS and feature levels were limited to the individuals
with European ancestry in AGRE cohort.

Significant features associated with genotype were
tested for correlation with phonotype scores, using 29
different scores from 9 instruments for core symptoms
of ASD or neurocognitive development (Table S2).25 We
used a generalized linear regression model with sub-
jects’ sex and age as covariates (phenotype score ∼ log2
(feature) + sex + age). For features that showed significant
associations with both phenotype scores and genetic
variants, we conducted a mediation analysis to test
whether the metabolite mediated the genetic effect on
phenotype score using PROCESS macro v4.1 for IBM
SPSS version 27.52 All statistical analysis, except for
mediation analysis, were performed using the R statis-
tical language (version 4.1.2; R Foundation for Statistical
Computing, Vienna, Austria). The details of statistical
analysis and software settings as well as the information
on the 29 phenotype scores used in the association
analysis are described in Supplementary Methods. We
have applied the STREGA reporting guidelines53 when
reporting our study.

Role of funders
The funders had no role in the design and conduct of
the study; collection, management, analysis, and inter-
pretation of the data; preparation, review, or approval of
5
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the manuscript; and decision to submit the manuscript
for publication.

Results
Study populations
The demographic characteristics of individuals from the
AGRE40 and PLHD33 cohorts, who were selected based
on the availability of stored plasma samples and
genome-wide genotype data are shown in Table 1. The
baseline characteristics of each cohort are compared
either by a chi-squared test (for categorical variables
such as sex) or by Welch’s t-test (for numerical variables
such as age). The AGRE cohort consisted of 350 pro-
bands including 90 females (25.7%), 17 unaffected sib-
lings, and 291 parents. The PLHD cohort consisted of
441 individuals, 300 of whom were under 18 years old.
The mean age of AGRE cohort was 22.6 years with a
standard deviation (SD) of 16.53, which was signifi-
cantly older than PLHD cohort (P < 0.001). However,
the mean age of probands in AGRE cohort was 8.8 years
(SD of 4.15 years), which was significantly younger than
the children in the PLHD group (Welch’s t-test,
P = 8.7 × 10−8). All individuals in the PLHD cohort were
Variable AGRE

Participants (n) 658

Proband 350

Unaffected sibling 17

Parents 291

Children

Adults

Age in years (mean [sd; range]) 22.6 [16.53; 1.9–66.6]

Proband 8.8 [4.15; 1.9–28.4]

Unaffected sibling 8.5 [3.82; 2.4–16.2]

Parents 40.2 [6.72; 24.2–66.6]

Children

Adults

Sex (female, n (%)) 262 (39.8%)

Proband 90 (25.7%)

Unaffected sibling 7 (47.1%)

Parents 164 (56.4%)

Children

Adults

Genotype-based global ancestryb (n (%))

European 528 (80.2%)

African 40 (6.1%)

American 85 (12.9%)

South Asian 5 (0.8%)

This table presents the basic demographic and clinical characteristics of participants in
Discovery (PLHD) cohorts. The information includes, but is not limited to, age, sex, ASD
are also indicated. aP represents the P-value at a significance level of 5%. The χ2-test w
quantitative variable to compare entire samples between the AGRE and PLHD cohorts.
projecting each individual into the principal component space defined using the five pop
Supplementary Material).

Table 1: Baseline characteristics in AGRE and PLHD cohorts.
generally healthy and had no history of neuro-
developmental disorders as described in Methods.
There were significant differences in the proportion of
self-reported race or ethnicity between AGRE and PLHD
cohort; however, we found no differences in the pro-
portion of genotype-based global ancestry (P = 0.51). The
genotype-based global ancestry for each individual was
estimated by projecting individuals into principal
component space defined using the whole genomes
from 1000 Genomes Project and finding the nearest
population group (Supplementary Methods for further
details).

The AGRE cohort generally showed higher PRS than
PLHD because of the probands sub-group which
showed significantly higher PRS than PLHD (Fig. 2,
Welch’s t-test, P = 4.9 × 10−40). There was no difference
in PRS between non-probands in AGRE cohort (parents
and unaffected siblings) and the PLHD cohort.

Genotype-metabotype associations unique to the
AGRE cohort
A total of 14,342 features, including 166 identified me-
tabolites, were subjected to mQTL analysis in each
PLHD Pa (t or χ2)

441

300

141

15.0 [8.47; 0.4–60.1] <0.001 (t = 10.04)

10.8 [5.13; 0.4–17.9]

24.0 [6.98; 18.0–60.1]

230 (52.2%) <0.001 (χ2 = 15.76)

152 (50.7%)

78 (55.3%)

0.51 (χ2 = 2.32)

342 (77.6%)

36 (8.2%)

58 (13.2%)

5 (1.1%)

both the Autism Genetic Resource Exchange (AGRE) and PrecisionLink Health
status, and genotype-based global ancestry. Statistical comparisons across groups
as used for each qualitative variable, and Welch’s t-test was employed for each
bGlobal ancestries based on genome-wide genotype data were determined by
ulation groups in the 1000 Genomes Project (additional details are provided in the

www.thelancet.com Vol 95 September, 2023
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Fig. 2: Comparison for polygenic risk scores across subgroups in
the AGRE and PLHD cohorts. The boxplots represent the distribu-
tion of the polygenic risk score (PRS) for autism spectrum disorder
(ASD) across various subgroups in the AGRE and PLHD cohorts.
Subgroups include probands, unaffected siblings, and parents (fa-
thers and mothers) in the AGRE cohort, as well as children (under 18
years old) and adults in the PLHD cohort. Probands had significantly
higher PRSs compared to the rest of the groups, with no differences
among the other groups (***P < 0.0001).

Articles
cohort. The process of filtering and prioritization of
features associated with genotype in the AGRE cohort is
depicted in Fig. 3. The genome-wide significant
Fig. 3: The process of filtering and prioritization of features associat
systematic process used within the AGRE cohort to filter and prioriti
associations.

www.thelancet.com Vol 95 September, 2023
(P < 5 × 10−8) mQTL loci were found for 1544 features
(10.8% of 14,342) and 2165 features (15.1%) in the
AGRE and PLHD cohorts, respectively, with only 16
associations found in both cohorts. The shared associ-
ations corresponded to previously reported genetically
influenced metabolites (GIMs), such as Ne,Ne-
dimethyllysine and PYROXD2, bilirubin and UGT1A1,
butyrylcarnitine and ACADS, and phosphocholines and
FADS1.29 Additionally, each cohort harboured associa-
tions mapped to the same gene or neighbouring loci as
the 16 shared associations: 39 additional features in
AGRE cohort and 17 in PLHD cohort. These additional
associations may represent isoforms or fragments of the
metabolites or small molecules in the 16 common as-
sociations. Other than the 16 associations found in both
cohorts and the additional associations sharing loci with
them, AGRE and PLHD cohort showed distinct mQTL
results.

Next, we focused on the 139 AGRE-specific associa-
tions that involved ASD candidate genes from the
SFARI Gene database (2022 Q4 release), specifically
genes in categories S, 1, and 2.5 Only one of them was
associated with features identified by authentic stan-
dards: glutamine and an intronic variant on the NLGN1
gene (NM_014932.3:c.646 + 136666T>A, rs11926085)
(P = 7.5 × 10−9, β = −0.2 [95% CI, −0.27 to −0.13],
Fig. 4a). However, despite the lack of differential fre-
quency for rs11926085 (0.24 for AGRE and 0.28 for
PLHD, χ2 = 5.66, P = 0.06) and the similarity between
haplotype structures of surrounding region in AGRE
and PLHD (Fig. S3), we did not observe the same as-
sociation in PLHD (Fig. 4b). Individuals with the T allele
had higher levels of plasma glutamine compared to
those with the A allele (Fig. 4c). Also, the presence of
protein-truncating variants in ASD candidate genes was
not associated with subjects with plasma glutamine
ed with genotype in the AGRE cohort. This diagram depicts the
ze the features that demonstrate significant genotype–metabolite
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Fig. 4: Association of NLGN1 loci with glutamine in the AGRE cohort. (a) The Manhattan plot for glutamine. The dashed horizontal line
represents the genome-wide significance threshold (P = 5 × 10−8). The y-axis shows the -log10 (P-values). (b) A regional plot of the NLGN1 gene
(ranging from 168.7 Mb to 178.7 Mb on chromosome 3), showing data from both the AGRE and PLHD cohorts. The dashed horizontal line
denotes the genome-wide significance threshold (P = 5 × 10−8), while the y-axis denotes the -log10 (P-values). (c) Glutamine levels distribution
stratified by the rs11926085 genotype (chr3:173662288 T>A). The y-axis represents glutamine levels normalized by age, sex, and batch
variables.
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levels outside of two SDs (Fig. S4), which suggested that
the plasma glutamine levels were not driven by the ge-
netic burden on ASD candidate genes.

The AGRE cohort also had 35 annotated and 103
unannotated features associated with ASD candidate
genes, which were not found in PLHD (Table S3). Of
these, 7 annotated and 2 unannotated features were
found associated with the intronic variant on NLGN1
gene, all of which were highly correlated with glutamine
(P < 0.001). We also found one annotated (mass-to-
charge ratio of 132.13 and retention time of 74.4s) and 2
unannotated features associated with intron variant on
SND1 gene (NM_014390.2:c.1779+14743A>G,
rs17151653) (P = 1.2 × 10−8, β = 0.2 [95% CI, 0.13–0.26],
Table S3). Although the 3 features were highly corre-
lated with a feature identified as leucine, leucine itself
did not reach the genome-wide significance level.

No feature was associated with ASD polygenic risk
score.

Plasma glutamine levels and phenotype scores
Although glutamine is a precursor of glutamate, no lo-
cus was associated with plasma glutamate levels. Inter-
estingly, a significant negative correlation was found in
AGRE (R = −0.51 [95% CI, −0.555 to −0.470], P < 0.001,
Fig. 5a), but not in PLHD (R = 0.042 [95%
CI, −0.0457–0.129], P = 0.35). Among the 29 phenotype
scores tested using regression modelling with plasma
glutamine levels, the Repetitive Behaviour Scale total
score (RBS) showed a negative correlation (β = −6.53
[95% CI, −9.73 to −3.24]; R = −0.130, P = 0.043, Fig. 5b).
Considering the association between plasma glutamine
level and NLGN1 haplotype as presented above, the
glutamine level may serve as an endophenotype that
reflects the genetic effect of NLGN1 on RBS whereas no
association between NLGN1 haplotype and RBS was
found (β = 3.4; SE = 2.43, P = 0.15, Fig. 5c). Since there
was no direct effect of NLGN1 haplotype on RBS, we did
not perform a mediation analysis for glutamine levels.

Discussion
In this study, we leveraged an untargeted metabolomics
platform to conduct a comprehensive examination of
the plasma metabolome in individuals with ASD and
their family members, subsequently integrating these
findings with whole-genome genotype data. We aimed
to delineate plasma metabolites that could serve as
endophenotypes—a measurable component unseen by
the unaided eye along the pathway between disease and
distal genotype—for genetic risk factors of ASD. Using a
genome-by-metabolome-wide association framework,
we were able to evaluate potential associations between a
broad spectrum of small molecules, encompassing both
endogenous metabolites and exogenous compounds,
and common genetic variants across the whole genome.
Our primary objective was to detect and prioritize
genotype-metabolite associations unique to the AGRE
cohort, not present in the PLHD cohort. We identified a
significant association between plasma glutamine levels
and specific genetic variants within the NLGN1 gene,
which was further bolstered by the correlation between
plasma glutamine levels and the severity of repetitive
and restricted behaviours (RRBs). These findings sug-
gest that plasma glutamine levels could reflect NLGN1’s
genetic influence on the severity of RRBs in individuals
with ASD, potentially serving as an endophenotype.

The NLGN gene family, including NLGN1, are
crucial post-synaptic cell-adhesion molecules, establish
physical interactions with pre-synaptic NRXNs and post-
synaptic scaffolding proteins such as SHANK proteins.
These NLGN-NRXN interactions are essential for syn-
aptogenesis and synaptic maintenance, thereby
www.thelancet.com Vol 95 September, 2023
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Fig. 5: The correlation between glutamine and glutamate levels, and association between NLGN1 and Repetitive Behaviour Scale (RBS)
total score. (a) The correlation between glutamine and glutamate levels in the AGRE and PLHD cohort. The boxplots in the top and right panels
depict the distribution of normalized glutamine and glutamate levels in both cohorts. (b) The correlation between glutamine levels and RBS
total score. (c) A diagram illustrating the impact of NLGN1 and plasma glutamine levels on the RBS total scores.

Articles
significantly contribute to the proper formation and
operation of neural circuits in the human brain.54,55

Mutations in these genes can dramatically disrupt
neural circuit formation and functioning, potentially
leading to neurodevelopmental disorders.56 Members of
the NLGN gene family have distinct patterns of
expression and roles. For instance, NLGN1 is exclusively
localized to the postsynaptic dendritic membrane of
excitatory neurons, whereas NLGN2 is typically
expressed at GABAergic inhibitory synapses. NLGN3
has a broader distribution, found at both glutamatergic
and GABAergic synapses, and NLGN4X is detected at
excitatory synapses.57–59 Genetic variants in NLGN1,
including copy number variations (CNVs), rare inheri-
ted, and de novo variants, have been identified in in-
dividuals with ASD.60–62 De novo variants in the NLGN3
and NLGN4 genes have also been discovered in in-
dividuals with ASD.63–65

Notably, the NLGN gene family, through its modu-
lation of the cortical E-I balance, may significantly
contribute to the pathogenesis of ASD.56,66 Animal
models, such as Nlgn1 knock-out (Nlgn1-KO) mice, have
www.thelancet.com Vol 95 September, 2023
provided valuable insights into the effects of these ge-
netic alterations. These mice exhibited deficits in spatial
learning and memory, linked to disrupted N-methyl-D-
aspartic acid (NMDA) receptor signalling in excitatory
neurons. Moreover, these mice showed a marked in-
crease in repetitive grooming behaviours, a potential
ASD-related RRB phenotype. This behaviour was
correlated with a reduced NMDA/AMPA ratio at corti-
costriatal synapses, and intriguingly, the excessive
grooming phenotype could be alleviated with the
administration of an NMDA receptor partial coagonist.67

Knock-in mice carrying the human missense variant p.
Pro89Leu in the NLGN1 gene exhibited social deficits
and impaired spatial memory—traits often associated
with ASD.68 In particular, mutations in NLGN4 are most
frequently found and exhibit high penetrance.59,69

Collectively, these observations underscore the poten-
tial contribution of NLGN genes to the genetic liability
of ASD, and the role of Nlgn1 in modulating excitatory
synaptic transmission, potentially underlying ASD
pathophysiology and offering a therapeutic target for
RRBs.
9
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By utilizing an untargeted methodology, we identi-
fied a significant association between NLGN1 and
plasma glutamine levels within the AGRE cohort, an
association not observed in the PLHD cohort. A signif-
icant inverse correlation was also observed between
plasma glutamine and glutamate levels within the
AGRE cohort, a correlation not found in the PLHD
cohort. Though speculative, these findings suggest
possible aberrations in the glutamate–glutamine cycle in
a subset of individuals with ASD, which might be linked
to genetic variants in NLGN1. Furthermore, the corre-
lation observed between plasma glutamine levels—
rather than glutamate levels—and the severity of repet-
itive and restricted behaviours (RRBs) highlights the
significance of our findings. Nonetheless, while our
findings provide valuable insights into the potential role
of NLGN1 and its association with RRBs, further
research is needed to validate these findings.

In the CNS, the glutamate-glutamine cycle is essen-
tial for the metabolism and recycling of glutamate be-
tween neurons and astrocytes. Disruptions in this cycle,
potentially due to genetic or environmental risk factors,
could lead to an imbalance between glutamate and
GABA levels. These changes may lead to an imbalance
between excitatory and inhibitory neuronal activity,
potentially contributing to the underlying pathophysi-
ology of ASD. This E-I imbalance, often linked to al-
terations in synaptic function or connectivity that
enhance excitation or reduce inhibition,70 is proposed to
contribute to core ASD symptoms, including impaired
social interaction, communication deficits, and repeti-
tive behaviours.71 Our findings suggest a potential role
for NLGN1 in modulating the glutamine-glutamate cy-
cle, and thereby, the E-I balance. This aligns with the-
ories suggesting an E-I imbalance underlies the ASD
pathophysiology.38,72 Further research is warranted to
investigate the direct involvement of NLGN1 in the
glutamine–glutamate cycle and its potential influence
on the RRB phenotype.

Glutamine is the most abundant amino acid in
plasma and cerebrospinal fluid (CSF), and plasma
glutamine concentration affects brain glutamine con-
centration.73 The concentration of glutamine in the
posterior cingulate cortex, as measured by magnetic
resonance spectrometry, was correlated with the con-
centration of glutamine in plasma, but not for gluta-
mate.74 Glutamine is a precursor to glutamate and
GABA, which are the primary excitatory and inhibitory
neurotransmitters in the mammalian brain. In addition,
outside the brain, glutamine also plays a crucial role in
supporting intestinal cell energy, regulating the im-
mune system function, and maintaining acid-base bal-
ance in the body.75 Glutamine and glutamate levels have
been studied in the brain and blood for various psy-
chiatric disorders, including schizophrenia and ASD.76

Reduced glutamate/glutamine ratios were reported us-
ing in vivo proton magnetic resonance spectroscopy for
ASD,34 and plasma glutamine levels were significantly
reduced in ASD compared to controls.77 A post-mortem
study measuring glutamine-glutamate cycle processing
enzymes showed a significantly lower level of kidney-
type glutaminase in the anterior cingulate cortex of
post-mortem brain samples from individuals with ASD
compared to those from controls.78

Glutamatergic dysfunction, leading to an imbalance
of cortical cellular excitation to inhibition, is posited as a
common mechanism in ASD pathophysiology.76 Mag-
netic resonance imaging studies identified a normal
GABA but decreased glutamate concentration in the
striatum of individuals with ASD, a pattern correlating
with social symptom severity, pointing towards subcor-
tical dysfunctions in ASD.35 Post-mortem examinations
of ASD brains have unveiled changes in the density and
distribution of GABAergic interneurons, indicating po-
tential abnormalities in inhibitory interneurons.79

Similarly, a disruption in the correlation between
GABA levels and perceptual dynamics has been re-
ported in individuals with ASD, suggesting elevated
excitatory-to-inhibitory signalling in the visual cortex.80

In a pioneering study, Deisseroth and colleagues
employed bistable optogenetic modulation to demon-
strate that E-I imbalance in the mouse prefrontal cortex
could induce social dysfunction without motor abnor-
malities, and that restoring E-I balance through the
elevation of inhibitory signals could ameliorate social
deficits.71 These findings suggest that the social
dysfunction phenotype in ASD may be associated with
the E-I imbalance in the medial prefrontal cortex
(mPFC), attributed to an excess of excitatory neurons.
Altered E-I balance may also be linked with potential
gender-specific differences in ASD. A study using the
Hurst exponent (H), a time-series metric derived from
fMRI BOLD signals as an indicator of synaptic E-I ratio
changes, reported decrease in H (suggesting increased
excitation) in the mPFC of males with ASD but not
females.81

Our study has several limitations. Firstly, plasma
sample collection, preparation, and biobanking might
have contributed to global differences in metabolomics
profiling. The AGRE and PLHD samples were collected
during different time periods, leading to variations in
the duration of storage in freezers between the two
collections. As a result, we could not perform a case-
control comparison of feature levels. Secondly, the co-
horts were genotyped using different methods—WGS
for AGRE and a genotyping microarray for PLHD.
Therefore, we limited our association analysis to com-
mon variants that were confidently profiled by both
platforms. Thirdly, the lack of specific measurements of
autistic traits, such as social impairment and repetitive
and restricted behaviours (RRB), in the PLHD cohort
presented another limitation. Even though none of in-
dividuals in PLHD were diagnosed with ASD, variations
or subclinical traits related to ASD could still exist.
www.thelancet.com Vol 95 September, 2023
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Furthermore, none of the participants in the PLHD
cohort underwent neuropsychological evaluations,
which limited our ability to fully compare behavioural
and genetic correlations across the ASD and control
cohorts. This could introduce potential confounders, as
unassessed traits or neuropsychological factors could
influence the observed associations unique to the AGRE
cohort.

Despite these limitations, our study presents several
notable strengths and innovative aspects that signifi-
cantly advance our understanding of the potential
mechanisms underpinning the genetic risk factors
associated with ASD. Firstly, our research is distin-
guished by our application of a genome-by-metabolome-
wide association study (GxMWAS). This method,
incorporating high-resolution metabolomics, parallels
the transformative genome-wide association analysis
(GWAS) framework, enhancing our capacity to discover
candidate genes and endophenotypes in an unbiased
manner. Secondly, we utilized metabolites as endophe-
notypes to better understand the underlying mecha-
nisms of ASD genetic risk factors. Thirdly, we
successfully discovered the association between NLGN1
and glutamine, and correlated plasma glutamine levels
with one of the core symptoms of ASD. Fourthly, our
inclusion of a non-ASD cohort strengthens the speci-
ficity of the observed association between NLGN1 and
glutamine in relation to ASD, emphasizing the potential
clinical significance of plasma glutamine levels in ASD.
Finally, we employed an unprecedented sample size in
metabolome research, which enhances the statistical
power of our findings and uncovers relationships that
may have been missed in smaller-scale studies. As a
result, our study sets a new standard for future
metabolome-wide investigations in the field. These
unique aspects of our study have facilitated the identi-
fication of previously unknown relationships between
genetic variants, plasma metabolite levels, and ASD
severity, providing valuable insights into potential ther-
apeutic targets and personalized treatment strategies for
individuals with ASD. We believe that our study
significantly contributes to the field, paving the way for
future research and enhancing our understanding of
ASD and other complex disorders.

In conclusion, our study has unveiled a unique
association between NLGN1 haplotypes and plasma
glutamine levels in individuals with ASD and their
family members. We have also detected a significant
correlation between plasma glutamine levels and the
severity of RRBs, a core symptom domain of ASD.
While we did not find a direct association between
NLGN1 variants and RRB scores, our findings suggest
that plasma glutamine levels could potentially serve as
an endophenotype, mediating the genetic influence of
NLGN1 on the severity of RRBs. This study highlights
the potential role of E-I imbalance in the pathophysi-
ology of ASD and proposes plasma glutamine levels as
www.thelancet.com Vol 95 September, 2023
a potential biomarker for identifying specific ASD
subgroups. These identified subgroups could benefit
from interventions targeting the glutamatergic sig-
nalling pathway in clinical trials.38 Future research
should aim to confirm the role of NLGN1 in the
glutamine-glutamate cycle and its impact on RRBs.
Additionally, further investigations into alterations in
the E-I balance could provide invaluable insights for
the development of novel therapeutic interventions for
ASD.
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