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A B S T R A C T   

Background: Cerebral small vessel disease (SVD) contributes to 45% of dementia cases worldwide, yet we lack a 
reliable model for predicting dementia in SVD. Past attempts largely relied on traditional statistical approaches. 
Here, we investigated whether machine learning (ML) methods improved prediction of incident dementia in SVD 
from baseline SVD-related features over traditional statistical methods. 
Methods: We included three cohorts with varying SVD severity (RUN DMC, n = 503; SCANS, n = 121; HAR
MONISATION, n = 265). Baseline demographics, vascular risk factors, cognitive scores, and magnetic resonance 
imaging (MRI) features of SVD were used for prediction. We conducted both survival analysis and classification 
analysis predicting 3-year dementia risk. For each analysis, several ML methods were evaluated against standard 
Cox or logistic regression. Finally, we compared the feature importance ranked by different models. 
Results: We included 789 participants without missing data in the survival analysis, amongst whom 108 (13.7%) 
developed dementia during a median follow-up of 5.4 years. Excluding those censored before three years, we 
included 750 participants in the classification analysis, amongst whom 48 (6.4%) developed dementia by year 3. 
Comparing statistical and ML models, only regularised Cox/logistic regression outperformed their statistical 
counterparts overall, but not significantly so in survival analysis. Baseline cognition was highly predictive, and 
global cognition was the most important feature. 
Conclusions: When using baseline SVD-related features to predict dementia in SVD, the ML survival or classifi
cation models we evaluated brought little improvement over traditional statistical approaches. The benefits of 
ML should be evaluated with caution, especially given limited sample size and features.   

Abbreviations: AD, Alzheimer’s dementia; C-index, concordance index; CMB, cerebral microbleed; CoXPH, Cox proportional hazards model; DTI, diffusion tensor 
imaging; GBT, gradient boosted survival trees; GMLVQ, generalised matrix learning vector quantisation; GRLVQ, generalised relevance learning vector quantisation; 
IBS, integrated Brier score; LBD, Lewy body dementia; MCI, mild cognitive impairment; ML, machine learning; MRI, magnetic resonance imaging; PSMD, peak width 
of skeletonised mean diffusivity; Reg_Cox, regularised CoxPH with elastic net penalty; Reg_Logistic, regularised logistic regression with elastic net penalty; RSF, 
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Introduction 

Cerebral small vessel disease (SVD) causes a quarter of ischaemic 
strokes and is the most common pathology underlying vascular de
mentia [1]. Furthermore, the presence of SVD increases the likelihood 
that other dementia pathologies, such as Alzheimer’s disease, will cause 
clinically overt dementia [2]. Thus, SVD contributes to 45% of dementia 
cases worldwide [2] and presents an enormous global health challenge 
[3]. Typical manifestations of SVD on magnetic resonance imaging 
(MRI) include white matter hyperintensities (WMH), lacunes, enlarged 
perivascular space, and cerebral microbleeds (CMB) [4]. 

Despite the importance of SVD in the aetiology of dementia, only a 
minority of subjects with SVD develop dementia. For example, in a 
cohort with symptomatic lacunar stroke and confluent WMH, one fifth 
developed dementia during 5 years of follow-up [5]. Several factors are 
known to increase the risk of dementia, including age [6], low education 
[6], and SVD burden assessed on MRI––particularly lacune count, WMH 
volume, brain atrophy and the extent of white matter ultrastructural 
damage on diffusion tensor imaging (DTI) [5,7–9]. A number of ap
proaches have been used to attempt dementia prediction in SVD. They 
include the use of a simple SVD severity score [10,11], and more 
advanced analysis of MRI [12]. In particular, DTI has been shown to be 
predictive of future dementia risk, and multiple ways of analysing the 
DTI metrics, such as the automatic marker, peak width of skeletonised 
mean diffusivity (PSMD), have been implemented [9,13]. 

Such models that can be applied on an individual patient basis to 
predict dementia risk in SVD are highly useful, both in providing 
prognostic information in the clinic, and in identifying patients to 
include in future clinical trials of potential treatments. However, most 
models targeting the SVD population to date have relied on traditional 
statistical approaches [11,14,15], whereas machine learning (ML) 
methods, which have fewer restrictive assumptions and can model more 
complex relationships among the predictors and outcome, are increas
ingly used for disease prediction in other settings including for Alz
heimer’s dementia (AD) [16]. Therefore, we sought to investigate 
whether common ML methods can improve prediction of incident de
mentia in SVD over traditional statistical approaches, when using 
baseline demographics, vascular risk factors, cognitive and MRI features 
related to SVD. To improve generalisability, we used data from three 
prospective cohort studies covering a wide range of SVD severity and 
ethnic diversity. We also addressed dementia prediction through both 

survival analyses utilising all follow-up time available, and classification 
analyses that predicted 3-year dementia risk. For both types of analyses, 
we trained and internally validated several ML and statistical models, 
using all or subsets of the selected feature modalities. Finally, we 
compared how different models ranked the importance of different 
input features in predicting dementia. 

Material and methods 

We followed the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) reporting 
guideline [17] (Table S1). 

Cohorts 

Three prospective longitudinal cohort studies (Table 1) with multi
modal MRI data, detailed neuropsychological assessment, and long-term 
follow-ups with dementia diagnoses recorded were included, which 
covered varying SVD severity. All participants were non-demented at 
baseline timepoint. Clinical diagnosis of mild cognitive impairment 
(MCI) at baseline was available in the HARMONISATION study, but not 
in RUN DMC or SCANS.  

i RUN DMC––Radboud University Nijmegen Diffusion tensor and 
Magnetic resonance imaging Cohort study was a 9-year study with 
503 predominantly mild symptomatic SVD patients, defined as pre
senting lacunes or WMH on neuroimaging and accompanying acute 
or subacute symptoms [19,20].  

ii SCANS––St George’s Cognition and Neuroimaging in Stroke study 
was a 5-year study with 121 severe symptomatic SVD patients, 
defined as having clinical lacunar stroke syndrome with confluent 
WMH on MRI [5,21]. 

iii HARMONISATION––A memory clinic study in Singapore that fol
lowed up 265 participants with clinically diagnosed MCI or normal 
cognition at baseline (MCI n = 127, normal cognition n = 115, un
known n = 23) for 5 years [22]. Although it was not originally an 
SVD cohort, it was included due to widespread imaging findings of 
SVD. 

Table 1 
Cohort information overview.  

Cohort RUN DMC SCANS HARMONISATION 

Baseline 
Cohort Size 

503 121 265 

Inclusion 
Criteria 

Symptomatic SVD, defined as the presence of 
lacunes or WMH on neuroimaging, and 
accompanying acute (lacunar stroke) or subacute 
(cognitive, motor) symptoms. Aged 50–85. 

Symptomatic SVD, defined as a clinical lacunar 
stroke syndrome with MRI evidence of an 
anatomically corresponding lacunar infarct and 
confluent regions of WMH graded ≥ 2 on the 
modified Fazekas scale [18]. 

Combination of: 
• Patients with cognitive impairment but no 
dementia, defined as being impaired in at least one 
cognitive domain on a neuropsychological test 
battery without loss of daily functions. 
• Controls with no cognitive impairment on 
neuropsychological tests, or function loss, but may 
had subjective complaints of memory impairment. 

Centres Department of Neurology, Radboud University 
Nijmegen, The Netherlands 

Stroke service at 3 hospitals in South London, UK Memory clinics at National University Hospital and 
Saint Luke’s Hospital, and adjacent community in 
Singapore 

Recruitment 
Period 

2006 12.2007–08.2010 08.2010–12.2016 

Follow-up 
Period 

Until 2015; 9 years. Until 08.2015; 5 years. Until 09.2020; 5 years. 

Assessments MRI and neuropsychological tests at baseline, year 
5 and 9. 

MRI at baseline, year 1,2,3. Neuropsychological 
tests at baseline, year 1,2,3,4,5. 

MRI and neuropsychological tests at baseline, year 
2,5. 

Dementia 
Diagnosis 

DSM-IV DSM-V DSM-IV 

SVD = Cerebral small vessel disease; WMH= White matter hyperintensity; MRI = Magnetic resonance imaging; DSM = Diagnostic and Statistical Manual of Mental 
Disorders. 
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Input features 

Fifteen SVD-related features, which associate with incident dementia 
and were available in all cohorts, were selected as input to dementia 
prediction models. The complete list and descriptions are in Table S2. 
Briefly, by modality they were:  

i Demographic features (n = 7)––Age, sex, years of education, and 
presence of vascular risk factors (hypertension, smoking, hyper
cholesterolaemia, diabetes mellitus), which increases dementia risk 
[6]. 

ii Imaging features (n = 5)––Total brain volume and typical SVD fea
tures on MRI that have been used for dementia prediction, including 
white matter lesion load (=WMH volume/total brain volume ×
100%), lacune count, presence of CMB, and PSMD measured from 
DTI [9,11]. We used the presence, instead of count, of CMB due to the 
heavily skewed nature of the distribution and the ease of assessment. 
Nonetheless, we also analysed CMB count in sensitivity analyses, but 
it led to similar prediction performance.  

iii Cognitive features (n = 3)––A global cognitive score and domain 
scores for executive function and processing speed, which are 
cognitive domains prominently impacted by SVD [12]. 

The demographic and imaging features were assessed as published 
previously [5,9,19,20,22]. Cognitive features were calculated from each 
cohort’s neuropsychological assessment batteries (Table S3) as 
described in Supplementary Methods. We only used features measured 
at participants’ baseline visit. All continuous features were standardised 
before being input into prediction models. 

Outcome measure 

The prediction outcome was incident all-cause dementia, diagnosed 
using Diagnostic and Statistical Manual of Mental Disorders [23] 
manual. We chose all-cause dementia instead of any dementia subtype, 
as this is a more clinically relevant outcome and accounts for the fact 
that most dementia patients have multiple underlying pathologies [24]. 

Missing data 

Three subjects developed dementia during the follow-up period, but 
their actual date of dementia diagnosis was missing. For these patients, 
the date of dementia diagnosis was estimated based on the midpoint 
between the study visits just before and after their dementia diagnosis, 
or the midpoint of the year of diagnosis if only the month and day were 
missing. After this minor imputation, 89% of all participants had all 
required variables including dementia outcome (Table S4). Assuming 
independence between missingness and outcome given the predictors, in 
which case complete-case analysis has negligible bias [25], we con
ducted complete-case analyses, thus excluding any cases with missing 
predictors or outcome. Additionally, we tested for significant differences 
in feature distribution between the original and selected samples, using 
two-sided t-test for continuous variables and χ2 test for categorical 
variables with p<0.05=significant. 

Overall analysis plan 

We conducted both survival and classification analyses, where 
several ML algorithms were evaluated against Cox or logistic regression 
on common metrics. Using data pooled from three cohorts, we trained 
and tested all models under the same cross-validation setting. No 
gender-specific analyses were performed. Code was implemented in 
Python 3.10.0. 

Survival analysis 
For the survival analyses, we defined time-to-dementia as the time 

from baseline visit to recorded dementia diagnosis. Patients without a 
dementia diagnosis by last contact were censored. No competing risks 
were considered. We evaluated the following ML survival models, which 
represent the major types developed to date that are suitable for 
medium-sized samples and feature sets [26], against standard Cox pro
portional hazards model (CoxPH) [27]:  

1 Regularised CoxPH with Elastic Net Penalty (Reg_Cox) 

This is CoxPH with regularised model coefficients to improve 
model’s generalisability. We classified this model as ML following 
the practice in [26,28], though this might be debatable, as regular
isation does not change the model structure.  

2 Random Survival Forests (RSF) [29] 

This is a nonlinear ensemble model consisting of independent sur
vival trees built in parallel.  

3 Gradient Boosted Survival Trees (GBT) [30] 

This is another nonlinear ensemble model with shallow survival trees 
built sequentially. 

Details about models and implementation are in Supplemental 
Methods and Table S5. The models were evaluated on concordance 
index (C-index) [31] measuring model discrimination, and the inte
grated Brier score (IBS) [32] measuring the overall error in predicted 
survival (so smaller values=better). We conducted Schoenfeld residuals 
tests in the pooled dataset and found no violation of the 
proportional-hazard assumption. 

Classification analysis 
For the classification analyses, we predicted whether individuals 

would develop dementia within three years of baseline, thus classifying 
the patients into two categories. An individual’s 3-year dementia status 
was determined as described in the Supplemental Methods. The 3-year 
window was chosen to maximise the sample size (as those censored 
before year 3 were excluded due to unknown outcome) while main
taining clinical relevance. We evaluated the following ML classification 
algorithms against standard logistic regression:  

1 Regularised Logistic Regression with Elastic Net Penalty 
(Reg_Logistic) 

This is logistic regression with regularised model coefficients for 
better generalisability to unseen data. As with Reg_Cox, we classified 
this model as ML, though this might be debatable.  

2 Support Vector Machine (SVM) [33] 

As one of the most popular ML methods in dementia prediction [34], 
an SVM classifier finds a class boundary with maximum distance to 
the nearest datapoints from each class. We experimented with both 
linear and radial basis function kernels for SVM, which enabled it to 
learn linear and nonlinear class boundaries respectively.  

3 Generalised Matrix Learning Vector Quantisation (GMLVQ) [35] 

Chosen due to promising performance in predicting Alzheimer’s 
dementia [16], a GMLVQ model learns class prototypes and a full 
relevance matrix, which encodes the relative importance of and in
teractions between input features for prediction.  

4 Generalised Relevance Learning Vector Quantisation (GRLVQ) 
[35] 
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Unlike GMLVQ, GRLVQ learns a diagonal relevance matrix––it ig
nores interactions between features but is less data-hungry to train. 

Details about models and implementation are in Supplemental 
Methods and Table S5. The models were evaluated using area under the 
receiver operating curve (ROC-AUC), accuracy, sensitivity, specificity, 
precision, and G-mean (=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sensitivity × specificity

√
), which measures 

balanced performance on two classes. 

Model training and evaluation 
We pooled data from three cohorts and trained and tested each 

prediction model in a nested 5-fold cross-validation framework (Sup
plemental Methods), which incorporates hyperparameter tuning in an 
automatic and unbiased way [36]. Where hyperparameter tuning was 
not needed, simple 5-fold cross validation was used instead. All 
fold-splitting was stratified by both dementia outcome and cohort, so 
that the proportion of dementia cases and the ratio of subjects from 
different cohorts were identical for training/validation/test sets. We 
used paired t-test to compare the test results of each ML model and its 
statistical counterpart. After finishing the cross validation, a final model 
was trained for each algorithm on the entire pooled dataset. 

To counter the class imbalance problem in the classification analysis 
(only 6.4% of all participants developed dementia within 3 years), we 
randomly oversampled cases with dementia during training to increase 
their weights and to achieve comparable performance between two 
classes during testing. Other interpolation-based oversampling tech
niques [37] were also tried but did not improve further. All over
samplers were implemented with Python imbalanced-learn package 
[38]. 

Feature importance analysis 
Apart from using all selected features, we also experimented with 

using subsets of feature modalities. Since demographic features are 
easily attainable in clinical practice, we ran models using only de
mographic features, or using demographics in combination with imag
ing and/or cognitive features. 

Furthermore, we examined how each prediction algorithm ranked 
the relative importance of the 15 selected features. For the standard/ 
regularised regression models and the LVQ models, this could be inter
preted straightforwardly from their final models trained with all features 
on the entire dataset––we examined the magnitude of the β-coefficients 
of the regression models and the diagonal elements of the relevance 
matrices of the LVQ models. 

Other models (including SVM due to the selection of the radial basis 
function kernel from nested cross validation) did not allow direct 
interpretation of feature importance as above. Instead, we removed each 
feature from the complete feature set one at a time and evaluated the 
reduction in average test ROC-AUC or C-index from cross-validation 
experiments. Features causing greater reductions were considered to 
be more important. 

Data and code availability 
Data from the three cohorts is available to bona fide researchers upon 

reasonable request, subject to approval of the relevant regulatory and 
ethical bodies. Code for all analyses reported is available at https 
://gitlab.developers.cam.ac.uk/stroke/papers/rui-dementia-prediction 
-in-svd-with-ml. 

Results 

Cohort data characteristics 

We had 889 participants from the three cohorts at baseline. After 
excluding those with missing data (Table S4), 789 participants (46.3% 
females, mean age [SD] = 67.62 [9.10]) were included in our survival 

analysis, of which 108/789 (13.7%) were diagnosed with dementia 
during a median (IQR) follow-up period of 5.4 (4.1, 8.7) years (Table 2). 
The RUN DMC cohort was younger (mean age=65) than SCANS (mean 
age=70) and HARMONISATION (mean age=71) on average. It also had 
the lowest proportion of dementia cases (11.4%; SCANS=17.3%; HAR
MONISATION=16.2%) despite having the longest follow-up. In the 
classification analysis, after further excluding those censored before 
three years due to unknown outcome, 750 participants were included, 
amongst whom 48/750 (6.4%) developed dementia within 3 years. No 
significant difference in the distribution of input features was found 
between the original pooled data and the data included in either 
analysis. 

Test performance of survival models 

All survival models performed well and achieved average test C- 
indices above 0.8 when using all features – CoxPH, 0.858; Reg_Cox, 
0.863; RSF, 0.848; GBT, 0.844 (Fig. 1, S1, Table S6). However, there was 
little improvement in performance by any ML method when compared 
with traditional CoxPH. 

Overall, the regularised Cox model achieved slightly higher C-indices 
than standard CoxPH with most feature sets, but the differences 
remained insignificant, and Reg_Cox showed no improvement in IBS. 
Both RSF and GBT models underperformed CoxPH on average with all 
feature sets, though they have more stable performance (Figure S1). 
Results from both training and testing (Figure S1) showed clear signs of 
overfitting for the RSF model only, as indicated by much better training 
performance than testing. 

Test performance of classification models 

Similar to that observed in the survival analysis, all classification 
models performed reasonably well, scoring average test ROC-AUC above 
0.8 when using all features – Logistic, 0.860; Reg_Logistic, 0.870; SVM, 
0.858; GMLVQ, 0.817; GRLVQ, 0.868 (Fig. 2, S2, Table S7). However, 
most ML models did not significantly outperform standard logistic 
regression for any feature set. 

The only model that consistently scored better than or similarly to 
logistic regression on all metrics was regularised logistic regression. It 
achieved an ROC-AUC of 0.870±0.061 when using all features, which 
was significantly (p = 0.019) higher than logistic regression (0.860 
±0.065). GRLVQ appeared to be the second-best model overall, with 
higher (though non-significantly) ROC-AUC and G-mean than logistic 
regression on average. However, GRLVQ had significantly worse speci
ficity (0.652±0.042) and accuracy (0.660±0.038) than logistic regres
sion (specificity, 0.714±0.042; accuracy, 0.711±0.038) when only 
imaging and demographic features were used. This pattern of better 
sensitivity but worse specificity than logistic regression was also 
observed for the SVM model, but the opposite was true for GMLVQ. Both 
SVM and GMLVQ underperformed logistic regression overall, with only 
comparable or significantly worse metrics than logistic regression for 
any feature set. 

Results from feature importance analysis 

In the cross-validation results from both survival and classification 
analyses (Figs. 1,2), we observed for all models that using only de
mographic and cognitive features led to similar, or sometimes even 
better, results than using all features from three modalities. In other 
words, adding the imaging variables did not improve prediction further. 
However, when excluding the cognitive data, adding imaging features to 
demographics alone still improved the prediction of most models. 

The rankings of all input features by each prediction model are 
shown in Fig. 3 (also Tables S8,S9). Despite the differences in model 
type, all models consistently ranked global cognition as the most 
important feature, which agreed with the importance of cognitive 
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features observed previously. All survival models were also consistent in 
choosing the second most important feature, age, which also always 
remained amongst the top five features selected by the classification 
models. Apart from these, there was less agreement among the models 
on the rankings for other features. However, the two best performing 
survival and classification models, regularised CoxPH and regularised 
logistic regression, both selected PSMD and TBV as the two most 

important imaging features. Besides, we observed in Table S8, S9 that 
the few least important features for the regularised Cox and logistic 
regression and GRLVQ models had zero coefficients/weights – these 
features were effectively disregarded by the models. 

Table 2 
Cohort characteristics.  

Cohort RUN DMC SCANS HARMONISATION POOLED 

Sample size in survival analysis 439 110 240 789 
No. dementia cases in survival analysis 50 (11.4%) 19 (17.3%) 39 (16.2%) 108 (13.7%) 
Cases per dementia subtype in survival analysis 28 AD 

14 VD 
6 mixed AD/VD 
1 LBD 
1 Unknown 

19 VD 34 AD 
5 VD 

62 AD 
38 VD 
6 mixed AD/VD 
1 LBD 
1 Unknown 

Follow-up years Median (IQR) 8.7 (8.5, 8.9) 5.0 (4.0, 5.1) 4.0 (3.0, 5.0) 5.4 (4.1, 8.7) 
Sample size in classification analysis 429 98 223 750 
No. dementia cases (by year 3) in classification analysis 14 (3.3%) 10 (10.2%) 24 (10.8%) 48 (6.4%) 
Cases per dementia subtype in classification analysis 11 AD 

2 VD 
1 Unknown 

10 VD 22 AD 
2 VD 

33 AD 
14 VD 
1 Unknown 

Input Features*     
Age Mean (SD) 65.17 (8.87) 70.01 (9.93) 70.98 (7.61) 67.62 (9.10) 
Years of Education Mean (SD) 10.88 (3.55) 11.56 (3.49) 8.45 (4.90) 10.24 (4.18) 
Sex (Female%) 196 (44.6%) 39 (35.5%) 130 (54.2%) 365 (46.3%) 
Hypertension (Yes%) 317 (72.2%) 101 (91.8%) 159 (66.2%) 577 (73.1%) 
Hypercholesterolaemia (Yes%) 194 (44.2%) 95 (86.4%) 185 (77.1%) 474 (60.1%) 
Diabetes mellitus (Yes%) 52 (11.8%) 21 (19.1%) 71 (29.6%) 144 (18.3%) 
Smoking (Yes%) 307 (69.9%) 67 (60.9%) 53 (22.1%) 427 (54.1%) 
White matter lesion load Median (IQR) 0.29 (0.10, 0.98) 3.06 (1.60, 4.54) 0.24 (0.05, 0.81) 0.37 (0.11, 1.42) 
Lacune count Median (IQR) 0 (0, 0) 2 (0, 5) 0 (0, 1) 0 (0, 1) 
Presence of cerebral microbleeds (Yes%) 69 (15.7%) 43 (39.1%) 89 (37.1%) 201 (25.5%) 
Total brain volume (ml) Mean (SD) 1069.13 (77.22) 1043.10 (104.14) 896.86 (96.40) 1013.10 (116.78) 
PSMD Mean (SD) 3.46 × 10− 4 (7.55 × 10− 5) 3.77 × 10− 4 (1.11 × 10− 4) 3.40 × 10− 4 (7.31 × 10− 5) 3.49 × 10− 4 (8.16 × 10− 5) 
Global cognition Mean (SD) 0.03 (0.73) − 0.65 (0.81) − 0.56 (0.82) − 0.25 (0.83) 
Executive function Mean (SD) 0.02 (0.76) − 0.86 (1.05) − 0.68 (1.45) − 0.32 (1.12) 
Processing speed Mean (SD) 0.04 (0.85) − 0.99 (0.88) − 0.51 (1.05) − 0.27 (1.00) 

AD = Alzheimer’s dementia; VD = Vascular dementia; LBD = Lewy body dementia; IQR = Interquartile range (25%, 75%); SD = Standard deviation; PSMD = Peak 
width of skeletonised mean diffusivity. 

* Statistics of the input features are for the sample included in the survival analysis. 

Fig. 1. Heatmaps showing the average test performance of each survival model-feature set combination from cross-validation experiments. 
Survival models: CoxPH = Cox proportional hazards model; Reg_Cox = Regularised CoxPH model with elastic net penalty; RSF = Random survival forests; GBT =
Gradient boosted survival trees. 
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Fig. 2. Heatmaps showing the average test performance of each classification model-feature set combination from cross-validation experiments. 
Classification models: Logistic = Logistic regression; Reg_Logistic = Regularised logistic regression with elastic net penalty; SVM = Support vector machine; 
GMLVQ = Generalised matrix learning vector quantisation; GRLVQ = Generalised relevance learning vector quantisation. 

Fig. 3. Rankings of feature importance by each survival and classification model. 
Linked features have tied rankings. 
Models: CoxPH = Cox proportional hazards model; Reg_Cox = Regularised CoxPH model with elastic net penalty; RSF = Random survival forests; GBT = Gradient 
boosted survival trees; Logistic = Logistic regression; Reg_Logistic = Regularised logistic regression with elastic net penalty; SVM = Support vector machine; GMLVQ 
= Generalised matrix learning vector quantisation; GRLVQ = Generalised relevance learning vector quantisation. 
Input Features: PSMD = Peak width of skeletonised mean diffusivity; CMB = Presence of cerebral microbleeds; HC = hypercholesterolaemia; WMLL = White matter 
lesion load. 

R. Li et al.                                                                                                                                                                                                                                        



Cerebral Circulation - Cognition and Behavior 5 (2023) 100179

7

Discussion 

Advances in machine learning have increasing led to its use in de
mentia prediction. In this study of 789 participants from three cohorts 
with SVD, we investigated whether common ML methods can better 
predict incident dementia in SVD than traditional statistical methods 
when using baseline SVD-related features. 

Both our survival and classification analyses showed very limited 
improvement by ML methods over statistical approaches, though most 
models performed well. In both analyses, only regularised Cox/logistic 
regression outperformed their statistical counterparts in testing, though 
the improvement was insignificant in the survival context. Other more 
complex ML survival or classification models achieved even worse or 
comparable performance than the statistical models on average. We also 
determined the relative contribution of different features to prediction 
and found adding imaging features when cognitive features were 
included brought little improvement. Global cognition was the most 
predictive feature to all models. 

Our results showing limited improvement by ML are consistent with 
conclusions from a systematic review [39] and other comparative 
studies, especially when similar numbers of features are selected [26,40, 
41]. The observed benefit from regularisation also agrees with past 
literature [26], and the benefit might come from the fact that the reg
ularisation minimised the influence of noisy, less important features by 
shrinking their coefficients down to zero. These regularised models also 
had much fewer parameters to train compared with other ML models, 
which was desirable given the limited sample size. 

On the other hand, the worse performance of other more complex, 
nonlinear ML models in comparison to linear Cox/logistic regression 
may suggest a genuine linear relationship amongst the features for 
predicting dementia, which was better captured by the linear models. 
This might be true given the relatively small number of features 
included. In addition, our datasets might not have been large enough to 
train some of these ML models, which would have led to overfitting and 
suboptimal performance in testing – this was the case for the RSF model, 
but other ML models did show reasonable generalisability from training 
to internal testing. 

Moreover, our feature importance analyses showed the predominant 
importance of current cognition in dementia prediction. However, the 
cognitive assessments in these cohorts were time consuming, taking 1–2 
h. Therefore, prediction based on demographic and imaging data alone 
could provide an alternative approach in clinical practice. Whether 
simple cognitive assessments using a short screening battery are equally 
predictive remains an important unresolved clinical question. 

Our study has several strengths. First, we used a relatively large 
dataset from multiple cohorts encompassing a broad range of SVD 
severity and ethnic diversity. Second, we conducted both survival and 
classification analyses that arrived at similar conclusions, thereby 
reducing the potential for bias that could be imposed by using only one 
analysis type. Moreover, we evaluated a variety of ML models with 
different underlying structure, which strengthened the robustness of the 
findings. 

However, there were also limitations. First, our focus in this analysis 
was on well-established SVD features, which were relatively limited. For 
the prediction of all-cause dementia, the inclusion of other markers such 
as regional cortical brain volumes, particularly hippocampal volumes, 
might improve prediction for all models, because those markers can 
reflect the pathological processes of cortical dementias, which may act 
additively with SVD changes to increase the chance of mixed dementia. 
Furthermore, it is possible that with higher dimensional data (i.e., more 
input variables, such as using the original MRI images on a voxel-by- 
voxel basis), in which the relationships amongst variables are more 
complex, advanced ML methods may better model these relationships 
and confer greater advantages in predicting dementia in SVD pop
ulations, though this remains to be evaluated in future studies. 

Other limitations include differences in the MRI and cognitive 

assessment protocols across cohorts, but despite these inconsistencies, 
cognitive features still exhibited high predictive value. Furthermore, our 
approach of addressing class imbalance in the classification analysis 
may not have been ideal [39], though we applied the same oversampling 
to all classification models to maintain fairness. Finally, we did not 
perform external validation, so it is not known to what extent our 
findings are generalizable to other cohorts. 

Conclusions 

When using baseline SVD-related features to predict incident de
mentia in SVD, the ML survival or classification models we evaluated 
brought little improvement over traditional statistical approaches. Our 
results suggest the use of Cox or logistic regression with regularisation. 
In general, the prediction model should be chosen carefully for each 
project based on the sample size, predictors available and requirements 
on interpretability. The benefits of ML should be evaluated with caution 
especially when using small-to-medium-sized datasets with a limited 
number of features. 
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