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Abstract 

The heart is a muscular organ that pumps blood throughout the body and is one of the most vital organs in human 
body. While cardiomyocytes are essential for maintaining the normal function of the heart, a variety of cardiovascular 
diseases such as coronary artery occlusion, arrhythmia, and myocarditis can lead to cardiomyocyte death, resulting 
in deterioration of heart function. The adult mammalian heart is incapable of regenerating sufficient cardiomyocytes 
following cardiac injuries, eventually leading to heart failure and death. Cardiac macrophages are ubiquitously distrib-
uted in the healthy heart and accumulated at the site of injury. Macrophages play essential roles in regulating homeo-
stasis and proliferation of cardiomyocyte, promoting electrical conduction, and removing dead cardiomyocytes 
and debris through direct and indirect cell–cell crosstalk. In this review, we summarize the latest insights into the role 
of macrophages in maintaining cardiac homeostasis and the macrophage-cardiomyocyte crosstalk in both healthy 
and injured scenarios.
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Background
Cardiovascular diseases (CVDs) remain the leading cause 
of disease burden worldwide [1]. Heart failure is usu-
ally the end stage of many CVDs, with a five-year sur-
vival rate of less than 50%. Cardiomyocytes (CMs) are 
the main cellular components of the heart, and keep the 

heart functioning properly. However, adult CMs hardly 
regenerate and many of them will be lost after cardiac 
injuries such as ischemia, mechanical injury, and myo-
cardial inflammation, eventually leading to cardiac fibro-
sis and heart failure.

With a spindle-shaped and elongated appearance, 
cardiac macrophage is the most abundant immune cell 
component that is ubiquitously distributed in the heart 
[2]. Providing immune defense and maintaining tis-
sue homeostasis are the two fundamental functions of 
cardiac macrophages [3]. Pattern recognition recep-
tors (PRR) expressed on the macrophages can recog-
nize pathogen-associated molecular patterns (PAMPs) 
and damage-associated molecular patterns (DAMPs) 
and initiate the innate immune response [4]. Accord-
ing to their origins, macrophages can be classified into 
embryo-derived resident macrophages and recruited 
monocyte-derived macrophages [5]. In addition, mac-
rophages can be activated into M1 or M2 subtype in 
response to different signals [6].
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Beyond phagocytic function, macrophages have been 
regarded as one of the major cellular components of the 
heart as they are involved in electric activity [2], acute 
inflammatory response [7], and reparative processes 
[8] under steady state and pathological conditions. Spe-
cifically, each macrophage interacts with several CMs 
through various physiological and pathological processes 
[9]. Typically, macrophage-cardiomyocyte crosstalk can 
be achieved through physical interactions, paracrine 
signaling, or extracellular vesicles (EVs). This review aims 
to summarize recent findings on macrophage-CM inter-
action and communication during steady state and disor-
ders and to discuss a therapeutic opportunity for CVDs.

Characteristics of cardiac macrophages
Macrophage phenotypes
Macrophages are an inherent part of cardiac tissue, where 
they are involved not only in maintaining normal cardiac 
homeostasis [2, 9] but also in resolving inflammatory 

responses and pathological progression [7, 10]. Impor-
tantly, cardiac macrophages are highly heterogeneous 
and dynamically change in response to environmental 
stimuli. In the normal heart, there are mostly resident 
macrophages and a few monocyte-derived macrophages 
[11]. After injury, CMs undergo necrosis and release 
DAMPs, which attract CCR2+ circulating monocytes. 
These monocytes and monocyte-derived macrophages 
remove dead cells and debris, secrete pro-inflammatory 
cytokines, and induce extracellular matrix degradation 
during the early stages of cardiac injury. Subsequently, 
a subset of resident macrophages secrete high levels of 
anti-inflammatory cytokines and facilitate tissue repair 
during inflammation resolution [12–14].

Macrophages can be broadly classified as M1 or M2 
subtypes (Fig.  1a). M1 macrophages are pro-inflamma-
tory subsets that secrete pro-inflammatory cytokines 
such as interleukin-6 (IL-6), interleukin-12 (IL-12), and 
interleukin-1β (IL-1β), whereas M2 macrophages are 

Fig. 1  Macrophage Classification Modes. a M0 macrophages can be polarized into M1 macrophages by LPS/IFN-γ stimulation. M1 macrophages 
are pro-inflammatory subtypes that secrete pro-inflammatory cytokines such as IL-6, IL-12, and IL-1β. M0 macrophages can be polarized 
into M2 macrophages by IL-4 stimulation. M2 macrophages are associated with inflammation resolution and tissue repair through the secretion 
of anti-inflammatory cytokines such as IL-10, VEGF, and TGF-β. b Cardiac macrophages can be classified into CCR2+ monocyte-derived macrophage 
and CX3CR1+ resident macrophage according to their function and origins. Monocyte-derived macrophages are pro-inflammatory and lack 
reparative activities, whereas resident macrophages promote cardiac repair through anti-inflammatory activities, angiogenesis, and cardiomyocyte 
proliferation. Furthermore, TIMD4+ macrophages are regarded as a pure population of resident macrophages that reside in cardiac tissue. CD72hi 
macrophages are pro-inflammatory macrophage subsets
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associated with inflammation resolution and tissue repair 
by secreting anti-inflammatory cytokines such as inter-
leukin-10 (IL-10), vascular endothelial growth factor 
(VEGF), and transforming growth factor-β (TGF-β) [6]. 
Some recent studies have attempted to facilitate cardiac 
recovery by inhibiting the inflammatory response of M1 
macrophages or enhancing the repair activities of M2 
subsets [15–17].

Another classification mode classifies macrophages 
according to their function and origin (Fig. 1b). CX3CR1+ 
macrophages are resident cardiac macrophages mainly 
derived from embryonic development, either from early 
erythromyeloid progenitors or from fetal monocytes 
[14]. After birth, CCR2+ macrophages from circulating 
monocytes, known as monocyte-derived macrophages, 
constantly infiltrate cardiac tissue [11]. After cardiac 
injury, these two macrophage subsets from different ori-
gins play opposite roles [8, 18, 19]. Monocyte-derived 
macrophages are pro-inflammatory and lack repara-
tive activities. Selective inhibition of these macrophages 
enhances tissue repair by blocking monocyte recruitment 
and reducing inflammatory response [8, 20]. In contrast, 
embryonic-derived resident cardiac macrophages pro-
mote cardiac repair through anti-inflammatory activi-
ties, angiogenesis, and CM proliferation by secreting 
cytokines such as oncostatin M (OSM), myeloid-derived 
growth factor (Mydgf) and METRNL (meteorin-like) 
[8, 18, 19, 21]. Furthermore, recent studies have identi-
fied additional macrophage phenotypes with special-
ized functions using single-cell transcriptomics and fate 
mapping [22, 23]. For example, TIMD4+ macrophages 
were considered to be a pure population of resident 
macrophages residing in cardiac tissue [22]. Legumain 
(Lgmn) was a gene specifically expressed by cardiac resi-
dent macrophages that mediated efferocytosis after car-
diac injury [23]. Using single-cell transcriptomic analyses 
of cardiac immune cells, Ni et  al. identified monocyte-
derived CD72hi macrophages as a pro-inflammatory 
macrophage subset that mediated CM oxidative stress 
and apoptosis, which was similar to CCR2+ monocyte-
derived macrophages [24]. Since the cardiac microen-
vironment is complicated and cardiac macrophages are 
dynamic, more detailed macrophage subsets and func-
tions need to be further explored.

Phagocytic function of macrophages
During the innate immune response, macrophages rec-
ognize PAMPs and DAMPs released by pathogens and 
damaged cells and exert effects of phagocytosis, comple-
ment activation, and cell apoptosis induction [4]. Car-
diac macrophages remove necrotic and apoptotic CMs 
and metabolites during cardiac homeostasis and injury 
states (Fig. 2). In a recent study, CMs shed dysfunctional 

mitochondria and other cargos into dedicated mem-
branous particles to maintain cardiac homeostasis, 
and these particles were termed “cardiac exophers” [9]. 
Macrophages engulfed the exophers through the phago-
cytic receptor mer tyrosine kinase (MerTK). Notably, 
depletion of macrophages prior to ischemia resulted in 
the accumulation of anomalous mitochondria in CMs, 
metabolic alterations, and ventricular dysfunction [9]. 
Similarly, a cardiomyocyte-macrophage co-culture 
experiment showed that CMs could internalize mac-
rophage-derived mitochondria through clathrin- or lipid 
raft-mediated endocytosis, thereby inducing CM injury 
by triggering ferroptosis [25]. In a skeletal muscle regen-
eration study, macrophage-derived glutamine boosted 
satellite cell proliferation and muscle regeneration [26]. 
Therefore, there may be other metabolites in cardiomyo-
cyte-macrophage interactions.

The mechanisms regulating macrophage phagocyto-
sis are not fully understood. A recent study showed that 
Lgmn, which is specifically expressed in cardiac resident 
macrophages, was a potential candidate gene to regulate 
macrophages in the clearance of dying CMs [23]. Spe-
cifically, Lgmn deficiency severely inhibited the clearance 
and degradation of dying CMs by impairing macrophage 
efferocytosis pathways [23]. Conversely, selective over-
expression of Lgmn in resident macrophages improved 
cardiac function after myocardial infarction, providing a 
therapeutic approach for cardiac repair [23]. Macrophage 
SMAD family member 3 (SMAD3) signaling also pro-
tected the infarcted heart by mediating phagocytosis of 
dead CMs [27]. Taken together, further characterization 
of the signals that regulate phagocytosis has the potential 
to provide meaningful therapeutic avenues for the failing 
heart.

Crosstalk between macrophages 
and cardiomyocytes in physiological 
and pathological conditions
Physical interaction
The myocardium is composed of various cell types, with 
CMs accounting for approximately one-third [12]. How-
ever, the population of macrophages is much smaller than 
that of CMs [2]. They are present in higher density in the 
ventricles and atrioventricular (AV) nodes [2, 9]. It has 
been reported that each CM is surrounded by an aver-
age of five macrophages [2, 9]. Notably, different mac-
rophages are present in different ways. A recent study 
confirmed that CCR2− macrophages physically contacted 
neighboring CMs, while CCR2+ macrophages did not 
directly contact CMs but extended their processes into 
the interstitial space [10]. In addition, it was reported 
that CCR2+ macrophages resided in the endocardial tra-
beculae, whereas CCR2− macrophages remained in the 
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compact myocardium [19]. Another study reported that 
CCR2− macrophages were replenished through local 
proliferation, whereas CCR2+ macrophages were main-
tained by monocyte recruitment and proliferation [28]. 
These two macrophage subtypes may derive from diverse 
progenitor cells and localize within different regions of 
the embryonic heart, leading to their different modes of 
contact with CMs.

In a mouse model of dilated cardiomyopathy, CCR2− 
macrophages interacted with neighboring CMs through 
focal adhesion complexes to promote left ventricle (LV) 
dilation and coronary dilation and to maintain adequate 
cardiac output. Mechanistically, these macrophages were 
activated in response to mechanical stretch through a 
transient receptor potential vanilloid 4 (TRPV4)-depend-
ent pathway that controls the expression of growth fac-
tors [10]. This finding implicates mechanical sensing in 
cardiac macrophage activation under adaptive cardiac 
remodeling (Fig. 3a).

Normal electrical activity is fundamental to the regu-
lar beating of the heart, and the AV node plays an essen-
tial role in the electrical connection between the atrium 
and the ventricles. One study reported that macrophages 

interacted with CMs through connexin 43 and facilitated 
electrical conduction through the distal atrioventricular 
node [2] (Fig.  3a). Additionally, a recent study reported 
the actions of macrophages during right ventricular (RV) 
dysfunction [29]. They found that macrophage-derived 
amphiregulin (AREG) induced gap junctional inter-
cellular communication between CMs by controlling 
connexin 43 phosphorylation and translocation via an 
EGFR/MEK/ERK pathway [29]. Conversely, macrophage 
ablation induced progressive atrioventricular block [2] 
and severe arrhythmia [29], suggesting macrophages 
are required for the communication and regulation of 
CMs. However, a similar study showed that arrhythmias 
or alterations in conduction could not be identified fol-
lowing CCR2− macrophage depletion [10], suggesting 
further research is needed to identify how different mac-
rophage populations regulate cardiac electrical activities.

Paracrine signaling
Both CMs and macrophages exert paracrine effects 
by secreting various cytokines (Fig.  3b). CMs induce 
inflammatory gene expression and activate the NOD-
like receptor thermal protein domain associated protein 

Fig. 2  Phagocytic Function of Macrophages (Mø). Macrophages phagocytize CM debris. The phagocytic function of macrophages is regulated 
by Lgmn and Smad3 signaling. In addition, macrophages engulf dysfunctional mitochondria from CMs via MerTK. Similarly, CMs internalize 
macrophage-derived mitochondria by clathrin- or lipid raft-mediated endocytosis and induce CM injury by triggering ferroptosis
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Fig. 3  Modes of Communication between Macrophages and CMs. a Physical interaction. Macrophages interact with neighboring CMs 
through physical interaction. Macrophages mediate adaptive myocardial remodeling by sensing mechanical stretch of CMs and facilitate CMs 
electrical conduction by connexin 43. b Paracrine signaling. Macrophages secrete cytokines or other molecules such as IL-1β, OSM, Hepcidin, 
and Mydgf to regulate CM proliferation, hypertrophy, apoptosis, and electrical conduction. CMs also secrete cytokines such as IL-1β, IL-18, 
and MCP-1 to recruit macrophages and regulate the phagocytic function of macrophages. c Extracellular vesicles. Macrophages produce vesicles 
such as miRNA-378a, miRNA-148a, and miRNA-29a to regulate CM death, and CMs also secrete vesicles such as MSC-Exos and CDC-Exos to regulate 
macrophage polarization and phagocytosis
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3 (NLRP3) inflammasome following cardiac injury, and 
these responses elicit macrophage recruitment [30]. 
Previous research has revealed a direct cardiomyocyte-
macrophage crosstalk in sepsis-associated cardiomyopa-
thy [31]. It was found that unstimulated CMs maintained 
macrophage functional quiescence by secreting soluble 
inhibitors. Furthermore, when stimulated by group A 
streptococcus, CMs produced several stimulators that 
boosted the macrophage production of IL-6, IL-1β, nitric 
oxide synthase (iNOS), and matrix metalloproteinase 
(MMP9) [31]. Interestingly, a recent cell culture study 
confirmed that macrophage-derived sulfur dioxide (SO2) 
was involved in macrophage chemotaxis and activation 
[32]. Thus, the cell-derived SO2 may regulate the inter-
actions among cardiac cells in addition to macrophages 
themselves.

In adult mammals, the loss of proliferation and renewal 
capacity of CMs prevents full regenerative repair and 
ultimately leads to heart failure. One promising approach 
to improve the prognosis of heart failure is to promote 
CM proliferation. It was reported in 2014 that acute 
inflammation characterized by macrophage recruitment 
is required for CM proliferation and cardiac regeneration 
in neonatal mice [7]. Macrophage-derived OSM is an 
important upstream cytokine in promoting CM prolifer-
ation and cardiac regeneration through the OSMR/gp130 
heterodimer receptor [33]. And Mydgf is a paracrine pro-
tein secreted by monocytes and macrophages that pro-
mote CM proliferation and cardiac regeneration through 
the c-Myc/FoxM1 pathway [34]. In contrast, the presence 
of some substances (e.g., the iron regulator hepcidin) in 
macrophages refrained CM proliferation and cardiac 
repair by modulating the IL-4/IL-13 pathways [35].

Unlike adult mammals, zebrafish can fully regenerate 
an injured heart through CM proliferation [36]. A lar-
val zebrafish cardiac injury study confirmed that mac-
rophages were recruited to the epicardial-myocardial 
niche after cardiac injury and induced CM proliferation 
by regulating epicardial vascular endothelial growth fac-
tor aa (Vegfaa) and endocardial Notch signaling [37]. The 
identification of this macrophage-cardiomyocyte interac-
tion mechanism highlights the important regulatory role 
of macrophage in CM proliferation.

Macrophages are highly heterogeneous. Although there is 
literature in this area, the specific subtypes of cardiac mac-
rophages and their exact identities are not currently clear. 
What we do know is that the neonatal heart has a remark-
able capacity for cardiac repair, whereas the adult heart 
does not [38], and that neonatal cardiac macrophages are 
quite different from adult macrophages [8]. Macrophage 
characterization and lineage tracing studies revealed that 
the neonatal heart contained an embryonic-derived lineage 
of CCR2− macrophages that caused minimal inflammation 

and promoted coronary angiogenesis and CM prolifera-
tion after cardiac injury. The in vitro co-culture experiment 
also showed that only neonatal CCR2− macrophages could 
promote CM proliferation [8]. Transplantation of murine 
neonatal cardiac embryonic-derived CX3CR1+ mac-
rophages could improve adult CM proliferation and car-
diac repair after myocardial infarction [18]. The underlying 
mechanism via which neonatal macrophages or CX3CR1+ 
macrophages mediate CM proliferation may involve the 
secretion of cytokines such as OSM, Mydgf, and IL-4 [33–
35]. In contrast, the injured adult heart recruited mainly 
CCR2+ monocytes and macrophages, which had a reduced 
capacity to promote angiogenesis or CM proliferation 
and instead enhanced inflammatory response [8]. Selec-
tive inhibition of CCR2+ monocytes and macrophages in 
the adult heart could preserve embryonic-derived mac-
rophages and enhance cardiac repair, suggesting a thera-
peutic effect by blocking monocyte recruitment and 
reducing the inflammatory response [8, 20].

Hypertension, cardiomyopathy, or other cardiovascular 
diseases cause cardiac pressure overload and hypertro-
phy. Sustained pressure overload induces cardiac remod-
eling and consequent heart failure [39]. In an angiotensin 
II (Ang II)-induced pressure-overloaded mouse model, 
pressure overload-induced cardiac infiltration of miR-
155-expressing monocytes and macrophages was consist-
ent with the finding in a human study, in which miR-155 
expression was increased in hypertrophic patients [40]. 
Furthermore, miR-155 regulated cardiac monocyte and 
macrophage infiltration, CM hypertrophy, and heart 
failure. Inhibition of miR-155 protected against cardiac 
hypertrophy and heart failure. Mechanistically, miR-155 
expressing in macrophages promoted CM hypertrophic 
growth targeting suppressor of cytokine signaling 1 
(Socs1) and signal transducer and activator of transcrip-
tion 3 (Stat3) [40]. Another study used an α1-adrenergic 
agonist phenylephrine (PE) to mimic chronic pressure 
overload and hypertrophic cardiac remodeling processes, 
and showed that chronic PE infusion induced activat-
ing transcription 3 (ATF3) expression in CMs, which 
resulted in macrophage activation and recruitment, 
and finally cardiac maladaptive remodeling. In addition, 
inhibition of ATF3 expression in either macrophages or 
CMs attenuated cardiac remodeling processes [41]. This 
study identified a unique ATF3-dependent cross-talk 
between macrophages and CMs during maladaptive car-
diac remodeling. However, the interaction mechanism 
between macrophages and CMs remained unclear, and 
the authors did not identify whether recruited mac-
rophages contributed to maladaptive cardiac remodeling 
by secreting various cytokines and chemokines. It also 
remains to be determined whether ATF3 regulates other 
cardiac cells during cardiac hypertrophy.
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Atrial fibrillation (AF) is the most common type of car-
diac arrhythmia. Evidence suggests that both inflamma-
tion and macrophages are involved in the development of 
AF [42, 43]. There is a functional cross-talk between atrial 
CMs and macrophages in AF. Specifically, AF increases 
macrophage infiltration into the atria and polarizes them 
to a pro-inflammatory subtype. On the other hand, pro-
inflammatory macrophages further aggravate atrial elec-
trical remodeling by secreting IL-1β and tumor necrosis 
factor-α (TNF-α). Mechanically, Il-1β inhibits the expres-
sion of quaking protein (QKI) and further downregulates 
L-type calcium currents (I Ca-L) in CMs [44]. These find-
ings provide novel insights into AF therapy from the per-
spective of inflammatory macrophages.

In the injured heart, oxidative stress occurs in the myo-
cardium and then massive CMs die from hypoxia [45]. 
Macrophage-derived reactive oxygen species (ROS) is a 
mediator in the pathogenesis of cardiac injury. Inhibit-
ing ROS generation may attenuate CM death and restore 
heart function [46]. By using human pluripotent stem 
cell (hPSC)-derived CMs and macrophages co-culture 
system, Yang et al. found that macrophages could induce 
increased ROS production and apoptosis in CMs after 
exposure to severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), whereas tofacitinib (a JAK inhibi-
tor) and ranolazine (an anti-anginal drug) protected CMs 
from macrophage-induced cardiotoxicity by decreasing 
ROS production [47]. Similar to the CCR2+ macrophage 
subset, CD72hi macrophages, as a subset of pro-inflam-
matory macrophages can induce oxidative stress and 
apoptosis in CMs after cardiac injury. In addition, Rel is 
the upstream transcription factor that induces myeloid 
cells to differentiate into CD72hi macrophages. Although 
CD72 cannot be used in knockout animal models due to 
its broad expression in various immune cells, Rel knock-
out may decrease the levels of ROS and inflammatory 
cytokines, inhibit CM apoptosis, and ultimately mitigate 
cardiac injury. Thus, Rel may serve as a therapeutic target 
for CVDs [24].

Extracellular vesicles (EVs)
EVs are derivatives of cell debris released from various cell 
types and act as information carriers. EVs can be divided 
into exosomes, microvesicles, and apoptotic bodies 
according to their different types of cellular or intracellular 
origin [48]. EVs are key mediators of intercellular commu-
nication in the cardiac microenvironment by exchanging 
cellular substances, such as microRNAs (miRNAs).

Macrophage-derived exosomes have specific effects on 
CM death (Fig.  3c). For example, macrophage-derived 
exosomes such as microRNA-29a (miRNA-29a) mediate 
CM pyroptosis [49], whereas M2 macrophage-derived 
exosomes such as microRNA-148a (miR-NA-148a) [50] 

and microRNA-378a-3p (miRNA-378a-3p) [51] reduce 
CM apoptosis and pyroptosis after cardiac injury. In 
addition, chemotherapeutic drugs such as programmed 
cell death 1 (PD-1) inhibitors are cardiotoxic. Xia et  al. 
reported that PD-1 inhibitor-treated macrophages had 
a pro-senescent effect on CMs through the microRNA-
34a-5p/PNUTS signaling pathway and induced cardiac 
senescence-related injury [52].

CM-derived vesicles can modulate macrophage polari-
zation in a specialized profile, including increasing the 
expressions of iNOS, IL‐1β, and IL‐6, and regulating their 
phagocytosis and adhesion [53–55] (Fig.  3c). A co-cul-
ture experiment showed that Ang II-treated atrial myo-
cytes could secrete mi-croRNA-23a (miRNA-23a), which 
inhibited macrophage M2 polarization. Furthermore, 
inhibiting the expression of microRNA-23a in atrial myo-
cytes suppressed atrial fibroblast activation by promoting 
M2 macrophage polarization [56].

Exosomes from other cell types also regulate the 
phagocytosis and repair of macrophages (Fig.  3c). Mes-
enchymal stem cell-derived exosomes (MSC-exos) can 
enhance the opsonization of dead CMs and activate the 
phagocytic and pro-reparative signaling of macrophages, 
thereby promoting cardiac recovery after injury [57]. Fur-
thermore, cardiosphere-derived cell secreted exosomes 
(CDC-exos) confers cardioprotective effects after car-
diac injury by polarizing monocytes and macrophages 
towards reparative phenotypes and enhancing their 
phagocytic capacity through the key component micro-
RNA-181b [58].

Notably, most of these studies have been conducted 
in vitro, and therefore additional in vivo experiments are 
needed to explore the effects of vesicles between CMs and 
macrophages. Overall, as cardiac macrophages are hetero-
geneous, further research is needed to characterize the dif-
ferent roles of EVs among different macrophage subtypes.

Therapeutic implications
Studies on the communications between macrophages 
and CMs provide a mechanistic basis for the progression 
of CVDs. It is currently known that the acute immune 
response underlies the benefit of cardiac therapy [59, 
60]. For example, the sodium-glucose co-transporter 
2 (SGLT2) inhibitor empagliflozin displayed a cardio-
protective effect by stimulating macrophages into anti-
inflammatory subsets [61]. Some biomaterials, such as 
melanin nanoparticles (MNPs)/alginate (Alg) hydrogels, 
promoted cardiac repair by scavenging ROS to inhibit 
oxidative stress-induced CM damage and by target-
ing macrophage polarization [62]. Interleukin-7 (IL‐7), 
mainly produced by thymic stromal cells, aggravated 
myocardial ischemia/reperfusion (I/R) injury by promot-
ing CM apoptosis through the regulation of macrophage 
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M1 polarization and chemotaxis [63]. Accordingly, inhibi-
tion of IL-7 had a therapeutic effect [63]. Furthermore, the 
rapid clearance of MSC-derived EVs by the mononuclear 
macrophage system inhibited the protective effect of EVs, 
whereas EVs modified with membrane protein CD47 and 
anti-apoptotic miRNA-21a efficiently improved the bio-
distribution of EVs in the heart and further promoted car-
diac repair after myocardial I/R injury [64].

The stimulator of interferon genes (STING) signal-
ing pathway is a key signal transduction molecule in the 
innate immune response. STING deficiency or inhibi-
tion of STING signaling can alleviate monocyte and 
macrophage infiltration and reverse cardiac fibrosis after 
cardiac hypertrophy [65, 66]. Likewise, targeting CMs 
and inhibiting inflammation signaling in CMs are also 
important therapeutic directions. For example, sucrose‐
nonfermenting-related kinase (SNRK) was a CM‐specific 
repressor that inhibited macrophage recruitment and 
cardiac inflammation [67]. Thus, targeting SNRK in CMs 
may be a therapeutic strategy for cardiac repair.

Conclusions
In this article, we summarize the modes of interactions 
between macrophages and CMs and divide them into 
three categories: physical interactions, paracrine sign-
aling, and extracellular vesicles. In particular, direct 
physical interaction is the main mode of communication 
between macrophages and CMs. Macrophages secrete 
cytokines and other molecules to regulate CM prolif-
eration, hypertrophy, and electrical conduction, whereas 
CMs secrete cytokines to recruit macrophages and reg-
ulate the phagocytic function of macrophages. Finally, 
both macrophages and CMs produce different types of 
vesicles to regulate their functions.

Cardiac immune cells are diverse, with complex cell–
cell interactions. The impact of immune cells and car-
diac cell interactions, especially macrophages and CMs, 
on the regulation of cardiac function may be a future 
research direction. The emergence of multi-omics tech-
nologies, including transcriptomics, single-cell RNA 
sequencing, spatial transcriptomics, proteomics, and 
metabolomics, makes it possible to precisely resolve the 
information in cardiac tissue at the DNA, transcriptional, 
protein, and metabolic levels.

Although there is a wealth of basic research targeting 
immune inflammation and myocardial injury, few clini-
cally translatable drugs or treatments have been available. 
Moreover, macrophages are highly heterogeneous and 
can dynamically change. A better understanding of the 
typologies and functions of different macrophage sub-
sets will enable us to precisely target specific macrophage 
subtypes that regulate cardiac function, thus providing 
opportunities for optimized CVD treatment.
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Mydgf	� Myeloid-derived growth factor
Vegfaa	� Vascular endothelial growth factor aa
Ang II	� Angiotensin II
Socs1	� Suppressor of cytokine signaling 1
Stat3	� Signal transducer and activator of transcription 3
PE	� Phenylephrine
ATF3	� Activating transcription 3
AF	� Atrial fibrillation
TNF-α	� Tumor necrosis factor-α
QKI	� Quaking protein
I Ca-L	� L-type calcium currents
miRNAs	� MicroRNAs
miRNA-29a	� MicroRNA-29a
miR-NA-148a	� MicroRNA-148a
miRNA-378a-3p	� MicroRNA-378a-3p
PD-1	� Programmed cell death-1
miRNA-23a	� Mi-croRNA-23a
MSC-exos	� Mesenchymal stem cell-derived exosomes
CDC-exos	� Cardiosphere-derived cell secreted exosomes
ROS	� Reactive oxygen species
hPSC	� Human pluripotent stem cell
SARS-CoV-2	� Severe acute respiratory syndrome coronavirus 2
SGLT2	� Sodium-glucose co-transporter 2
MNPs	� Melanin nanoparticles
Alg	� Alginate
IL‐7	� Interleukin-7
I/R	� Ischemia/reperfusion
STING	� Stimulator of interferon genes
SNRK	� Sucrose‐nonfermenting–related kinase
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