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Abstract

Focused Ultrasound (FUS) is emerging as a promising primary and adjunct therapy for the 

treatment of cancer. This includes histotripsy, which is a non-invasive, non-ionizing, non-thermal 

ultrasound guided ablation modality. As histotripsy has progressed from bench-to-bedside, it has 

become evident that this therapy has benefits beyond local tumor ablation. Specifically, histotripsy 

has the potential to shift the local tumor microenvironment from immunologically “cold” to “hot”. 

This is associated with the production of damage associated molecular patterns, the release of a 

selection of proinflammatory mediators, and the induction of inflammatory forms of cell death 

in cells just outside of the treatment zone. In addition to the induction of this innate immune 

response, histotripsy can also improve engagement of the adaptive immune system and promote 

systemic anti-tumor immunity targeting distal tumors and metastatic lesions. These tantalizing 

observations suggest that, in settings of widely metastatic disease burden, selective histotripsy of a 

limited number of accessible tumors could be a means of maximizing responsiveness to systemic 

immunotherapy. More work is certainly needed to optimize treatment strategies that best synergize 

histotripsy parameters with innate and adaptive immune responses. Likewise, rigorous clinical 

studies are still necessary to verify the presence and repeatability of these phenomena in human 

patients. As this technology nears regulatory approval for clinical use, it is our expectation that the 
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insights and immunomodulatory mechanisms summarized in this review will serve as directional 

guides for rational clinical studies to validate and optimize the potential immunotherapeutic role of 

histotripsy tumor ablation.
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HISTROTRIPSY:

Focused Ultrasound (FUS) is a non-invasive technology that is currently in development as a 

primary or adjunct therapy for the treatment of cancer. In FUS procedures, sound waves are 

non-invasively applied by an external transducer to a precise focal region within a targeted 

tumor in order to elicit a desired bioeffect. FUS procedures currently in development for 

the treatment of cancer include low intensity focused ultrasound (LIFU), high intensity 

focused ultrasound (HIFU), and histotripsy. These FUS methods are capable of inducing 

a large range of different bioeffects ranging from reversible tissue modulation (LIFU) to 

complete ablation of the targeted tumors (HIFU, histotripsy). In LIFU procedures, low 

intensity FUS is applied to a targeted tumor in order to induce bioeffects such as mild 

heating (1-2°C) to enhance circulation or activate cellular pathways, mechanical tissue 

disruption to enhance tissue permeability and drug delivery, or direct cell stimulation in 

order to induce cell death (1–3). LIFU procedures can also be combined with microbubbles 

or acoustically-active nanoparticles for opening the blood brain barrier and enhancing drug 

delivery(4–6), inducing sonodynamic therapy (7, 8), or enabling targeted ablation (9–11). 

In contrast to LIFU, thermal HIFU and histotripsy procedures utilize higher intensity FUS 

in order to directly induce cell death within the targeted tumor through either thermal or 

mechanical mechanisms. Thermal ablation by HIFU has shown promise for the treatment 

of tumors and other tissues by non-invasively generating thermal necrosis within the 

targeted tissue (12–17). While thermal HIFU has shown success for certain applications, 

some limitations include relatively long treatment times, reliance on MRI thermometry for 

treatment feedback, and the potential for inconsistent ablation in highly perfused tissues 

(18–22). To address these challenges, histotripsy has been developed as a non-thermal FUS 

ablation method.

As a non-thermal ablation method, histotripsy non-invasively disintegrates and effectively 

removes tissue through the control of acoustic cavitation or boiling, without inducing 

thermal necrosis (23–26). Histotripsy utilizes short, high amplitude acoustic pulses to 

generate cavitation “bubble clouds” within the targeted tissue, resulting in the complete 

breakdown of the tissue into an acellular homogenate (23, 24, 27–30). Due to the non-

thermal mechanism of action, histotripsy has been demonstrated to be capable of producing 

extremely precise ablation guided by real-time imaging using ultrasound or MRI (27, 31–

38). Studies have also demonstrated that histotripsy can be used to selectively ablate tissues 

and tumors while preserving critical tissue structures including vessels, nerves, bile ducts, 

and bone due to their higher mechanical strength (11, 29, 38–42). Furthermore, multiple 
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studies have demonstrated that the tissue ablated by histotripsy is rapidly resorbed and 

removed by the body after treatment (43–45), as opposed to a necrotic mass that may remain 

for months or years after thermal ablation procedures (46, 47).

Although the term histotripsy is often used to describe all cavitation-based non-thermal 

FUS ablation, it is worth noting that there are multiple types of histotripsy that are used 

to generate the cavitation bubble clouds. The three most commonly used approaches for 

generating histotripsy are intrinsic-threshold histotripsy, shock-scattering histotripsy, and 

boiling histotripsy. In intrinsic-threshold histotripsy, bubble clouds are generated using 

single cycle acoustic pulses with a sufficient peak negative pressure, p-, (>25-30MPa) 

to form cavitation directly from cavitation nuclei that are intrinsic to the tissue. Shock-

scattering histotripsy procedures use longer pulses of 3-20 cycles in duration at slightly 

lower pressures (p- ~10-25 MPa) to generate cavitation bubble clouds through a multi-

step shock scattering process in which initial bubbles scatter the incident shock waves 

geometrically in order to grow a dense bubble cloud over the course of multiple pulses 

(42, 48). Finally, boiling histotripsy uses much longer pulses (1-20 ms in duration) at lower 

pressures (p- ~6-15MPa) to generate large boiling bubbles at the transducer focus through 

a process of shock-enhanced heating (49, 50). For all forms of histotripsy, studies have 

shown that that dominant mechanism of tissue ablation is non-thermal and due to cavitation 

activity, resulting in the breakdown of tissue into an acellular tissue homogenate with no 

apparent thermal necrosis to cells within the treated tissues. The description of histotripsy 

as a non-thermal ablation method has been well-established in the literature and refers to 

the type of tissue damage induced by histotripsy. More specifically, the histotripsy-induced 

tissue damage is a result of the mechanical forces applied by the expanding/collapsing 

bubble cloud, which results in the mechanical breakdown of the tissue into acellular debris. 

In contrast to thermal HIFU, histological analysis of histotripsy-treated tissues shows no 

signs of thermal necrosis, with the tissue damage being due to the non-thermal (cavitation) 

mechanism. Although it is likely that some mild temperature rises are observed after each 

pulse, the low duty cycle used in histotripsy allows sufficient cooling to occur between 

pulses, minimizing any thermal buildup in the tissue over the course of the treatment, with 

the resulting ablation being induced through purely non-thermal bioeffects.

Due to the unique features of histotripsy described above, a large number of studies have 

been conducted in order to investigate histotripsy for the treatment of cancer in both 

preclinical (11, 33, 42, 45, 51) and early clinical studies (52). Results from preclinical 

studies have demonstrated that histotripsy can be used to produce precise and tissue-

selective tumor ablation for a large number of potential applications discussed in more 

detail throughout this review, including tumors of the liver, pancreas, breast, kidney, muscle, 

bone, skin, and brain. In addition to these preclinical studies, recent results from a Phase 

I clinical trial showed histotripsy was capable of achieving precise and complete ablation 

of liver tumors in 8 patients with either primary or metastatic liver cancer, with follow up 

imaging showing rapid resorption of the ablation zones matching preclinical studies(52). 

This study further showed that histotripsy was generally well-tolerated with no significant 

device-related adverse events, suggesting that histotripsy has the potential to be developed 

further for the treatment of liver tumors and other cancers in humans.
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Intriguingly, in 2 of the 8 patients treated, a significant reduction in the volume of the 

nontreated tumor lesions in the liver were also observed suggesting a histotripsy mediated 

abscopal effect (53). The abscopal effect is a hypothesized systemic anti-tumor immune 

response induced by various tumor ablation modalities. This effect has been observed in 

various pre-clinical animal models and sporadically observed in human patients with a 

number of cancer types. Here, we review the ability of histotripsy to (1) shift the local 

anti-inflammatory tumor microenvironment from immunologically cold to immunologically 

hot; (2) enhance innate immune signaling and recognition of damage associated molecular 

patterns (DAMPs); and (3) improve systemic anti-tumor adaptive immune system activation 

in a variety of cancers. Together, each of these functions converge and ultimate contribute to 

both local and systemic anti-tumor immune responses that are predicted to improve patient 

outcomes.

SHIFTING THE TUMOR MICROENVIRONMENT FROM COLD TO HOT:

The immunosuppressive nature and lack of immune cell infiltration in major subsets 

of patients with advanced solid tumors presents a significant therapeutic limitation. 

These tumors are colloquially termed “cold” tumors and are reflective of biological 

processes that are associated with poor patient outcomes. This immunosuppressive tumor 

microenvironment (TME) is directly associated with more aggressive disease progression, 

poor responses to many of the most promising immunotherapeutic strategies, and contributes 

to metastatic disease. Thus, there is significant interest in shifting this pro-tumor, cold 

immunosuppressive microenvironment to one that is more immunologically “hot” and 

pro-inflammatory. The TME consists of tumor cells, stromal cells, the extracellular 

matrix surrounding the tumor mass, and anti-inflammatory immune cells. Each of these 

components contributes to the immunosuppressive TME (54). Focusing on the immune 

cell niche, tumors commonly recruit immune cells to the TME and through various 

methods, such as selective cytokine and chemokine secretion or decoy surface receptor 

expression, differentiate or polarize these immune cells into pro-tumor phenotypes (55–

57). In the tumors described later in this review, these immunosuppressive cells include 

regulatory T cells, myeloid derived suppressor cells, tumor associated neutrophils, and 

tumor associated macrophages (56, 58). Together, these cells secrete a variety of anti-

inflammatory mediators, including cytokines and signaling molecules that cloak the tumor 

or create an impregnable chemical gradient around the tumor to restrict pro-inflammatory, 

anti-tumor immune cell access (Figure 1). While the TME is, by definition, a local 

phenotype, the immunosuppressive nature of the tumor has significant impacts on both local 

and systemic immune responses that must be overcome for effective therapeutic strategies.

Histotripsy has shown significant potential in shifting the immune cell population in the 

TME (Figure 1). As discussed above, histotripsy is effective at ablating cancer cells, 

both in vitro and in vivo/in situ, which significantly debulks the targeted tumors and 

reduces the production of immunomodulatory factors such as cytokines and chemokines 

(59, 60). In addition to the cancer cells, immunosuppressive immune cells in the treatment 

zone are also effectively ablated, which directly impacts the anti-inflammatory mediator 

milieu protecting the remaining tumor cells. Flow cytometry assessments post-histotripsy 

have found significant reductions in regulatory T cells, myeloid-derived suppressor cells 
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(MDSCs), and tumor associated macrophage populations (61–63) (Figure 1). Consistent 

with this, a significant shift has been observed from immunosuppressive cytokines to pro-

inflammatory cytokines in the TME, including IL-1, IL-6, IL-10 and TNF (61, 63, 64). 

(Figure 1). In addition to impacting the immune niche, histotripsy has also been shown to 

significantly alter the stromal cell niche and extracellular matrix (65). Reducing the density 

of each of these components of the TME improves immune cell access to the remaining 

cancer cells to enhance recognition, killing, and clearance.

INNATE IMMUNE SENSING OF THE CHAOS FOLLOWING ABLATION:

As discussed above, histotripsy results in the complete breakdown of tumor tissue into an 

acellular homogenate within the ablation zone. This acellular homogenate contains a rich 

mixture of damage associated molecular patterns (DAMPs) that can be immunostimulatory 

and further promote the shift from the “cold” TME to a “hot” TME. DAMPs are 

recognized by both extracellular and intracellular pattern recognition receptors, including 

Toll-like receptors (TLRs) and Nod-like receptors (NLRs) (66, 67) (Figure 1). A variety of 

DAMPs have been identified both locally and systemically following histotripsy, including 

extracellular/extranuclear DNA, HMGB1, and ATP and HMGB1(59, 68) (Figure 1). DNA 

outside of either the nucleus or the cell is a potent DAMP that is sensed by a range of pattern 

recognition receptors, including AIM2 and NLRP3 (68–71). HMGB1 is a protein typically 

found in the nucleus of healthy cells. However, HMGB1 is a potent DAMP that is also 

sensed by pattern recognition receptors, including NLRP3, whenever it is located outside of 

the cell nucleus (72, 73). ATP is critical for cell function and bioenergetics, among other 

biological functions. In addition, during cellular stress or following damage, excess ATP is 

released from injured cells and serves as a potent DAMP, which is also sensed by pattern 

recognition receptors, including NLRP3 (74). While there are many other potential DAMPs, 

these three have been reported locally following histotripsy, and HMGB1 has been found 

both locally and systemically increased in serum (75, 76). DAMP recognition by pattern 

recognition receptors on both immune cells and stromal cells facilitates a robust immune 

response through the activation of intracellular signaling networks, which can include 

NF-κB signaling, that eventually results in pro-inflammatory cytokine production and the 

recruitment of additional pro-inflammatory immune cells (60, 72, 73) (Figure 1). This 

cytokine response effectively creates a local Th1/Th17 microenvironment, characterized by 

the production of a combination of IL-1β, IL-18, IL-6, TNF, and IFNγ, depending on tumor 

type (52, 75, 77) (Figure 1).

In addition to the DAMPs generated following histotripsy, the type of cell death induced by 

the ablation in cells that are injured, but not destroyed, is also a critical aspect of immune 

system activation. Programmed cell death would be expected to occur in cells at the margins 

of the ablation zone. Cell death can proceed through a variety of pathways following 

histotripsy and each pathway can be further regulated by genetic, epigenetic, and regulatory 

factors depending on the cell type and tissue (78). During tumor ablation, the primary types 

of cell death commonly observed includes apoptosis, necrosis, pyroptosis, and necroptosis 

(79). In general terms, apoptosis is non-inflammatory and is characterized by limited DAMP 

release and minimal cytokine responses (78). Markers of apoptosis include effector caspases 

like caspase 3, annexin V, and phosphatidylserine which is exposed on the outer surface 
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of the plasma membrane that serves as a signal for phagocytic cells during apoptosis (78). 

Conversely, necrosis is moderately inflammatory and is characterized by spontaneous cell 

lysis or rapid cell death and the release of DAMPs (79). Markers of necrosis include 

RIP-1 activation, increased NF-κB signaling, and upregulation of TNF signaling (78, 80). 

Similarly, necroptosis is pro-inflammatory and is commonly described as programmed lysis 

(79). Compared to necrosis, necroptosis is a slower process that results in the release of 

RAMPs, cytokines, and is also associated with enhanced antigen presentation (78, 79). 

Markers of necroptosis include RIPK3 and MLKL activation (78). Finally, pyroptosis is 

a highly inflammatory form of cell death that is characterized by the release of DAMPs, 

pro-inflammatory cytokine production, and enhanced antigen presentation (78). Markers 

of pyroptosis include cleaved caspase-1/−11, cleaved gasdermin D, and inflammasome 

activation (78).

The non-thermal, mechanical, nature of histotripsy has also been suggested to improve 

antigen generation and presentation following tumor ablation (76). Previous studies 

comparing thermal ablation, cryoablation, IRE, and histotripsy demonstrated that the non-

thermal modalities appear to generate increased quantities of antigens that are significantly 

better at driving predictable and effective antigen presentation compared to the thermal 

approaches (59, 81, 82). It has been postulated that the antigens generated by histotripsy 

are in a more natural conformation compared to those exposed to heat (76). These 

antigens are also more accessible to the antigen presenting cells, which are recruited in 

higher numbers to the site of the ablation due to the pro-inflammatory shift in the tumor 

microenvironment (76) The breakdown in the tumor stroma has also been hypothesized 

to improve antigen presenting cell accessibility. This has been demonstrated in vivo in 

studies using the B16F10 mouse melanoma cell line and a genetically modified variant of 

the cell that expressed the lymphocytic choriomeningitis virus antigen GP33 (60). Here, 

animals with tumors engrafted from the GP33 cell line and treated with histotripsy generated 

robust CD8+ T cells that generated IFNγ after stimulation with IL-2 and brefeldin A 

to stimulate memory CD8+ T cells (60) These data demonstrate that the GP33 antigen 

remains stimulatory and viable following histotripsy and that the adaptive immune response 

is activated following ablation. Complementing the CD8+ T cell studies, the activation and 

migration of the antigen presenting dendritic cells and the proliferation of CD4+ T cells 

have also been suggested to be impacted by histotripsy (76). It is important to note that 

the differences in field size between mouse models and humans can indeed influence the 

observed outcomes, such as inflammation, immune response, and cell death mechanisms. 

The larger field size in mice relative to their size may contribute to more extensive tissue 

damage and subsequent immune reactions. This can be a factor in the substantial changes 

in inflammation and immunogenic cell death (ICD) observed in mouse models. It is also 

important to note that while mouse models provide valuable insights and preclinical data, 

translating the findings to human patients requires careful consideration of the anatomical 

and physiological differences. The scale and response to treatments can vary significantly, 

and additional studies in human subjects are necessary to further evaluate the clinical 

applicability of histotripsy. This is in large part rationale for why large animal tumor models 

and healthy large animal clinical trials are also being used to investigate off target damage, 

inflammation, and recovery after ablation (83, 84). We believe that the combined use of 

Imran et al. Page 6

Int J Hyperthermia. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



murine models, as well as, large animal models and veterinary clinical studies for the 

development of histotripsy will reduce the gap in translation from preclinical animal studies 

to clinical trials.

ENGAGING THE SYSTEMIC ANTI-TUMOR ADAPTIVE IMMUNE RESPONSE

The changes described above in the local tumor microenvironment and the improved antigen 

presentation likely contribute to the more robust adaptive immune system response reported 

following histotripsy. This has been illustrated primarily in preclinical animal models. For 

example, CD8+ cytotoxic T cells have been found systemically in distal lymph nodes and 

in the spleen following histotripsy treatment and these cells can be activated following re-

challenge with the original tumor cells (60, 85) Functionally, the activation of the systemic 

anti-tumor immune response has been best observed through tumor killing in contralateral 

tumor engraftment studies and the reduction of metastatic lesions. For example, in studies 

using murine melanoma, tumors treated with histotripsy and surgically removed two days 

post-treatment showed significant improvement in metastatic burden compared to those not 

treated (86). Similar effects have also been reported in subcutaneous models of pancreatic 

cancer in mice (59). In these studies, decreases in metastasis appear to be correlated 

to systemic immune system activation and imply an abscopal response. Indeed, multiple 

studies have reported increased CD8+ cytotoxic T cells in both the treated and contralateral 

tumors that increase over time (60, 77). This effect was significantly increased compared to 

other tumor ablation modalities, including RFA, radiation therapy, and sham-control treated 

animals (60) However, it should be noted in all studies to date, while there is a reduction 

in metastasis commonly reported, the established contralateral tumors only demonstrate 

attenuated growth. This implies that the systemic immune response is effective, but not 

potent enough to fully prevent tumor growth or be curative without other combination 

therapeutic approaches or treatment strategies.

The most promising combination therapeutic approaches for pairing with histotripsy 

include immunotherapeutics. Specifically, the use of checkpoint inhibitors is emerging 

as a promising approach to pair with histotripsy. Many tumors are immunologically 

resistant to current checkpoint inhibitor strategies, due in part to the “cold” and generally 

immunosuppressive tumor microenvironment. However, the ability of histotripsy to shift 

this tumor microenvironment from “cold” to immunologically “hot” has the potential 

to significantly improve therapeutic response. The increase in DAMPs, pro-inflammatory 

mediators, influx of immune cells into the tumor microenvironment, and increased systemic 

anti-tumor immune response all have the potential to significantly improve checkpoint 

inhibitor functions. Likewise, it should be noted that many of the immune checkpoint 

molecules, such as PD-L1, are inducible. Thus, a tumor that is negative for such ligand 

before treatment could upregulate the ligand during or after therapy. This has been shown 

for histotripsy, whereby the release of IFN-γ following treatment can upregulate PD-L1 

by some tumor cell types (54, 87). This upregulation appears to be temporal, tumor cell 

type, and tissue specific (87). Thus, a better understanding of which checkpoints are 

up-regulated following histotripsy will be critical for pairing with appropriate checkpoint 

inhibitor strategies.
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CLINICAL PERSPECTIVES AND COMBINATIONAL THERAPY

Emerging insights into the mechanistic underpinnings of histotripsy immune stimulation 

shed light on potential clinical applications and combinatorial strategies that could be 

developed for clinical application. As early as 2019, investigators in South Korea and the 

United States began observing evidence of pro-inflammatory immunogenic cell death (ICD) 

when boiling histotripsy was applied to experimental models of breast cancer and renal cell 

carcinoma (77, 88). In 2020, Qu and co-authors used immunocompetent murine models of 

melanoma and hepatocellular carcinoma to demonstrate that, in contrast to thermal modes 

of tissue ablation, non-thermal histotripsy was capable of liberating immunogenically-intact 

tumor antigens from treated tumors. The ability of histotripsy ability to promote ICD as 

evidenced by the concurrent release of immunogenic antigens and pro-inflammatory damage 

associated molecular patterns (DAMPs) gave rise to an early local influx of inflammatory 

innate immune cells followed by progressive intratumoral infiltration of CD8+ T cells 

and natural killer cells (60). In 2021, Hendricks-Wenger and colleagues used a murine 

model of pancreatic adenocarcinoma to demonstrate local release of nucleotides, proteins, 

and DAMPs with upregulation of inflammatory signaling pathways following histotripsy 

ablation (59).

These demonstrations of post-histotripsy ICD suggest that histotripsy is not merely capable 

of mechanically killing cells, but of triggering specific programmed pathways of cellular 

suicide to create a local pro-inflammatory milieu that favors the genesis of tumor-directed 

immune responses. This unique capacity implies that histotripsy could be a means to 

sensitize tumors to checkpoint inhibition immunotherapy. Indeed, Qu observed that the 

immunostimulatory effects of histotripsy powerfully enhanced the efficacy of checkpoint 

inhibition immunotherapy against melanoma and hepatocellular carcinoma (60). In 2021, 

Singh and colleagues employed a combinatorial strategy of boiling histotripsy with agonistic 

anti-CD40 mAb costimulation to induce favorable T cell and macrophage polarization that 

augmented the effects of checkpoint inhibition against melanoma (89). In 2023, Pepple 

and co-authors observed that histotripsy induced significant transcriptomic changes among 

tumor cell and immune cell populations consistent with inflammatory induction of ICD 

and innate immune cell activation (90). They observed that tumor cells within and just 

outside the histotripsy ablation zone underwent necroptosis. Moreover, they showed that 

activated CD8+ T cells primed by histotripsy to infiltrate into distant tumors were uniquely 

capable of inducing a specific pathway of cancer ICD called ferroptosis – an oxidative 

cell death pathway that has recently been shown to be the critical mechanism by which 

checkpoint inhibition immunotherapy-primed CD8+ T cells kill their cancer cell targets (91). 

This shared mechanism of cytotoxicity may explain the therapeutic cooperativity between 

histotripsy and checkpoint inhibition; indeed, the combination of histotripsy and checkpoint 

inhibition appeared to cause a synergistic increase in cancer cell ferroptotic death (90).

Another observation that has been made in the preclinical and clinical settings is the 

apparent ability of histotripsy to trigger abscopal inhibition of distant tumors. Qu observed 

that the systemic tumor antigen-specific T cell responses generated by local histotripsy 

tumor ablation were strong enough to induce abscopal inhibition of distant, non-ablated 

tumors(60). In comparing the immune landscape of treated versus distant tumors, Pepple 
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noted that, whereas the treated tumor underwent a biphasic pattern of early inflammatory 

innate immune cell infiltration followed by delayed but progressive adaptive immune cell 

infiltration, distant tumors exhibited no early inflammatory response to histotripsy but 

did exhibit a delayed adaptive immune response that was proteomically indistinguishable 

from that seen in ablated tumors (90). The combination of boiling histotripsy plus CD40 

costimulation and checkpoint inhibition also triggered abscopal inhibition of distant, non-

ablated murine melanoma tumors (89). In 2022, Worlikar and her team used an aggressive 

rat model of hepatocellular carcinoma to show that early partial histotripsy not only 

caused eventual regression of the non-ablated tumor remnant, but abrogated the onset 

of intrahepatic metastases that were universally observed in the absence of histotripsy 

treatment (92). Interestingly, these experimental findings were not dissimilar from a clinical 

report reported by Vidal-Jove and partners in 2021, who observed a case of a patient 

with widely metastatic colon adenocarcinoma who exhibited durable regression of distant, 

non-ablated liver metastases following partial histotripsy tumor ablation on a clinical trial 

(53). These tantalizing observations suggest that, in settings of widely metastatic disease 

burden, selective histotripsy of a limited number of accessible tumors could be a means of 

maximizing responsiveness to systemic immunotherapy.

COMPARISON OF IMMUNE MODULATION BETWEEN HISTOTRIPSY AND 

HIFU

In contrast to the relative recency of publications exploring the immunostimulatory effects 

of histotripsy, there is a larger and older body of work demonstrating the immune effects 

of high intensity focused ultrasound (HIFU). In 2005, Hu and colleagues demonstrated 

liberation of DAMPs from murine colon adenocarcinoma cells treated with ex vivo HIFU, 

with antigen presenting cell activation seen in response to co-culture with HIFU-generated 

tumor homogenates (93). They drew in vivo parallels to this observation in 2007, when 

they identified dendritic cell accumulation in tumor-draining lymph nodes and evidence of 

tumor-reactive T cells in the peripheral blood of mice bearing colon adenocarcinoma tumors 

treated with HIFU (94). In 2008, Xing and colleagues used a murine melanoma tumor model 

to demonstrate abscopal inhibition of distant tumors following HIFU tumor ablation (94), 

and Zhang and co-authors used HIFU to generate immunoprotective vaccines in a murine 

hepatocellular carcinoma model in 2010 (95).

To date, there have been no direct comparisons of the immunostimulatory effects of 

histotripsy and HIFU in a clinical setting. However, unlike histotripsy, HIFU has yielded 

only modest evidence of anti-tumor immune responses when used as monotherapy. The 

strongest observations of ICD, antigen presenting cell activation, and T cell activation 

following HIFU have been seen using combinatorial strategies with immune adjuvants 

like the TLR9 agonist cytosine guanine dinucleotide (CpG) and checkpoint inhibitors 

(96–100). One study showed that HIFU combined with immune checkpoint inhibitors 

like αCTLA-4 and αPD-L1 leads to abscopal effects and shows evidence of systemic 

antitumor effects by upregulating DC, tumor-infiltrating T-cells, effector memory T-cells, 

proinflammatory cytokines, and DAMPs while downregulating Foxp3, IL10 and VEGF-α 
which are pro-tumorigenic regulators thereby increasing long term survival of mice with 
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neuroblastoma tumors (97). Another study with pulsed focused ultrasound and immune 

checkpoint inhibitors (anti-CTLA-4/PD-1 antibodies) in murine pancreatic cancer showed 

increasing pro-immune cells infiltration and decreasing regulatory T cells and MDSCs in the 

tumors to basal levels (101).

One potential limitation of HIFU is its thermal nature, as the potentially denaturing effects 

of heat might negatively impact the integrity of tumor antigens or DAMPs. Qu observed 

that the ability to mobilize intratumoral CD8+ T cell infiltration in vivo and to release 

immunogenic tumor antigens was far stronger for histotripsy than for thermal ablation 

(60). Hendricks-Wenger similarly observed that histotripsy released higher levels of tumor-

derived nucleotide and protein than thermal ablation (59). Indeed, two recent comparisons 

between mechanical and thermal modes of HIFU identified more potent antigen presenting 

cell and T cell responses with combinatorial strategies that employed mechanical HIFU (99, 

100).

LIMITATIONS AND FUTURE ASPECTS

The landscape of cancer therapy has been transformed by immunotherapy. With the advent 

of checkpoint inhibitor therapy, diseases like advanced melanoma have gone from having 

no meaningful therapeutic options to being potentially curable. However, a sizable majority 

of cancers remain refractory to checkpoint inhibition, and this shortcoming has sparked 

great interest in the immunostimulatory effects of tumor-directed therapies like histotripsy 

focused ultrasound ablation. There is an abundance of experimental evidence indicating that 

histotripsy is capable of inducing ICD of treated cancer cells, leading to systemic anti-tumor 

immune responses. The great promise of these data is the possibility that histotripsy ablation 

could be used in conjunction with contemporary and future immunotherapies to extend 

their transformative benefits to more patients and more cancer types. Of course, all of 

this will remain in the domain of unrealized expectations until rigorous clinical studies 

verify the presence and repeatability of these phenomena in patients. As the technology 

nears regulatory approval for clinical use, the insights and immunomodulatory mechanisms 

summarized in this review will serve as directional guides for rational clinical studies to 

validate and optimize the potential immunotherapeutic role of histotripsy tumor ablation.
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Figure 1: Schematic of Histotripsy Mediated Immune System Modulation.
Histotripsy significantly alters the tumor microenvironment through the elimination of 

immunosuppressive cells in the ablation zone. Likewise, cells adjacent to the ablation zone 

that are damaged may undergo a range of cell death processes, including inflammatory 

cell death and apoptosis. The reduction in immunosuppression appears to be countered 

by an increase in a selection of damage associated molecular patterns and the production 

of inflammatory mediators, including cytokines and chemokines. Together, these changes 

shift the immunologically “cold” tumor microenvironment towards one that is more pro-

inflammatory and “hot”. This is characterized by an influx of inflammatory cells into the 

tumor microenvironment. It has been postulated that histotripsy treatment generates higher 

quality and quantity antigens. The improved antigen presentation has been suggested to 

augment the systemic, anti-tumor immune response, which has been characterized by an 

increase in cytotoxic T cell recruitment to local and distal tumors and reduced metastatic 

burden. Ultimately, these changes may improve immunotherapy responsiveness.
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