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Human immunodeficiency virus type 1 (HIV-1) non-syncytium-inducing (NSI) strains predominantly use the
chemokine receptor CCRS5, while syncytium-inducing (SI) strains use CXCR4. In vitro, SI isolates infect and
replicate in a range of CD4* CXCR4* T-cell lines, whereas NSI isolates usually do not. Here we describe three
NSI strains that are able to infect two CD4* T-cell lines, Molt4 and SupT1. For one strain, a variant of JRCSF
selected in vitro, replication on Molt4 was previously shown to be conferred by a single amino-acid change in
the V1 loop (M.T. Boyd et al., J. Virol. 67:3649-3652, 1993). On CD4™* cell lines expressing different corecep-
tors, these strains use CCR5 predominantly and do not replicate in CCR5-negative peripheral blood mono-
nuclear cells derived from individuals homozygous for A32 CCRS. Furthermore, infection of Molt4 and SupT1
by each of these three strains is potently inhibited by ligands for CCRS, including 2D7, a monoclonal antibody
specific for CCR5. CCR5 mRNA was present in both Molt4 and SupT1 by reverse transcription-PCR, although
CCRS protein could not be detected either on the cell surface or in intracellular vesicles. The expanded tropism
of the three strains shown here is therefore not due to adaptation to a new coreceptor but due to the capacity
to exploit extremely low levels of CCR5 on Molt4 and SupT1 cells. This novel tropism observed for a subset of

primary HIV-1 isolates may represent an extended tropism to new CD4™" cell types in vivo.

CD4™ T cells and macrophages are important cell targets of
human immunodeficiency virus (HIV) infection. HIV strains
have been classified into two main types: (i) syncytium-induc-
ing (SI), T-cell line tropic (T-tropic), rapid/high strains and (ii)
non-syncytium-inducing (NSI), macrophage-tropic (M-tropic),
slow/low strains. In vitro, NSI viruses infect both macrophages
and T-cell cultures but rarely T-cell lines. SI strains, however,
replicate in a range of transformed CD4" T-cell lines (31),
while their capacity to infect macrophages is controversial (29,
38, 60, 66, 67, 81, 82). During primary acute infection, the
majority of HIV type 1 (HIV-1) isolates are NSI (84), while SI
strains emerge during disease progression in about 50% of
AIDS patients (70). This emergence often precedes or coin-
cides with a rapid decline in CD4™ cells in blood (41).

Two receptors are required on the surface of the target cell
to trigger HIV entry: the CD4 receptor and a coreceptor (22,
28, 30). Coreceptors have seven transmembrane domains
(7TM) and are either members of or related to the chemokine
receptor family. More than 10 7TM receptors have been shown
to act as coreceptors for entry of different HIV-1 strains in
vitro (reviewed in references 4, 19, 26, and 47). All HIV-1
strains studied so far use either CCR5 or CXCR4 or both (67,
83). The discovery of HIV coreceptors has mainly explained
the NSI/M-tropic versus SI/T-tropic phenotype, by showing
that the former strains use CCRS (1, 17, 22, 27, 28), a receptor
for CC chemokines RANTES, MIP-1a, MIP-1B, and MCP-2
(21, 33, 54, 58), while the latter use CXCR4 (30), a receptor for
the CXC chemokine stromal cell-derived factor 1 (10, 50). A
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new nomenclature for HIV strains has been adopted, so that
isolates that use CCRS are termed RS viruses, those using
CXCR4 are designated X4 viruses, and viruses able to use both
coreceptors are called R5X4 viruses (5). CCRS is predomi-
nantly expressed on macrophages (53, 73, 79, 82), dendritic
cells (3, 9, 34, 82), brain microglial cells (32, 36, 62), and
memory T cells (11) but absent on most T-cell lines, while
CXCR4 is more widely expressed and present on both naive
and memory T cells (11, 46). Thus, the cellular tropism of
different strains of HIV-1 is largely determined by differential
usage of chemokine receptors. However, this simple picture
has several exceptions. Hence, some CCR5-dependent HIV-1
strains do not infect macrophages, although they express
high levels of CCRS (14, 23). Moreover, particular primary
CXCR4-using strains do not replicate in several cell lines that
express high levels of CXCR4 (43).

In this study, we show that while the majority of CCR5-using
viruses do not infect T-cell lines, some strains (called Molt4/
SupT1 strains) can infect the T-cell lines Molt4 and SupT1
(12). These strains include a molecularly cloned variant virus
(C3) that was adapted in vitro for Molt4 replication and de-
rived from JRCSF. A single amino acid change in the V1 loop
accounts for C3’s extended tropism for both Molt4 and SupT1
cells. The V3 loop on gp120 is a major determinant of both cell
tropism (7, 15, 16, 37, 45, 61, 64, 72, 74) and more recently of
coreceptor usage (8, 56, 68, 80). However, other envelope
elements are also involved (39, 55, 56, 71), and several reports
have implicated the V1 and V2 loops of gp120 (2, 12, 35, 40, 57,
69), which in addition to the required V3 domain influence the
efficiency of replication of HIV-1 in primary macrophages (40,
63, 75) and in Jurkat T cells (13). Groenink et al. (35) de-
scribed the configuration of a hypervariable locus in the V2
domain that appeared to be predictive for a switch from an NSI
to an SI phenotype. V1 and V2 sequences act in conjunction
with a CCRS5-tropic V3 loop to confer CCR3 usage to some
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TABLE 1. Molt4 and SupT1 infection and coreceptor use by RS5 strains®
Infectivity
TCIDs,/ml FFU/ml
HIV-1 strains On US7/CD4 cells On CCC/CD4 cells
On SupT1 On Molt4 CXCR4, GPR-1,
CCR1, CCR2b CCR3 CCRS5 CCR8 GPR-15 STRL-33 CX3CR1, D6

C3 1.7 1 > — 3.5 x10* — — — —
C3/SupT1 1.7 X 10 1.7 x 10 — — 7 X 10° — — 20 —
JRCSF — — — — 4% 10° — — — —
E80 1 1 — 3 X 10* 2.4 % 10* — — — —
E80/SupT1 1.7 x 10 1.7 x 10* — 6 X 10? 5x10° — — — —
BR92 1x 10! 1.7 — — 2.4 X 10° — 3.5 x 107 10 —
BR92/SupT1 1.7 X 10° 1.7 X 102 — — 2 X 10° — 5% 10? 102 —
BR53 — — — — 5% 10° — — — —
BR90 — — — — 1.2 x10° — — — —
SL2 — — — 4% 10% 3% 10° — 3 X 10% 10 —
SL3 — — — — 2.2 x 10 — — — —
SL4 — — — — 2% 10° — — — —
JRFL — — — 2 x 10 7 % 10° — — — —
ADA — — — 6 X 10* 7 % 10* 10? 2 X 107 — —

“ U8T cells stably expressing human CD4 and either human CCR1, CCR2b, CCR3, CCRS, or CXCR4 as well as CCC/CD#4 cells transfected with expression vectors
encoding either human CCR8, GPR-15, STRL-33, GPR-1, CX3CR1, or D6 (49) were seeded into 48-well trays (Costar) at 6 X 10* cells per well. After 24 h, the cells
were challenged with 100 pl of serial dilutions of NSI HIV-1 strains for 3 h at 37°C. After 4 days, the wells were fixed and immunostained as previously described (18).
The number of positively stained foci was estimated by light microscopy, and the average number of FFU per milliliter was calculated from duplicate wells.

> no infection detected on SupT1 or Molt4 cells, and <10 FFU/ml on U87/CD4 or CCC/CD4 cells.

NSI strains (57). Kwong et al. (44) have recently reported the
crystal structure of gp120 complexed with CD4 and a neutral-
izing antibody. This structure shows that the stems of the V1
and V2 loops and the V3 loops are located, respectively, on
inner and outer domains of gp120 and on either side of a
bridging sheet that spans these two domains. The coreceptor
binding site is thought to contain amino acids in this bridging
sheet and probably residues in the V3 loop. In some circum-
stances, the V1 and V2 loops are dispensible for high-affinity
binding to coreceptors (77) and viral replication (13), yet when
present on gp120 they can have a profound influence on tro-
pism and coreceptor use.

In our study, we aimed to assess the coreceptor(s) used by
the C3 variant of JRCSF that differs by a single amino acid in
the V1 loop yet can infect the T-cell lines Molt4 and SupT1.
We also assessed if the tropism of C3 for Molt4 and SupT1
cells reflected the phenotype of any unselected primary HIV-1
strains and may therefore represent tropism with in vivo rele-
vance.

Replication of RS viruses in Molt4 and SupT1 T-cell lines.
We assessed if primary HIV-1 RS strains passaged only in
peripheral blood mononuclear cells could infect Molt4 or
SupT1 cells. JRCSF and JRFL (42), ADA (74), and E80 (67)
are previously described RS strains. BR49, BR53, BR90,
BR92, SL2, SL3, and SL4 are primary RS5 isolates provided by
St. Mary’s Hospital, London, England. BR49, BR53, BR90,
and BR92 were obtained from Brazilian patients (Infectious
Disease Service, Porto Alegre, Brazil), while SL2, SL3, and
SL4 were from asymptomatic patients from Thailand (Siriraj
Hospital, Bangkok) (24, 67).

Of 10 NSI viruses tested, 2 strains (E80 and BR92) consis-
tently replicated in Molt4 or SupT1; 8 other isolates failed to
yield supernatant reverse transcriptase activity during 38 days
culture. For one of these isolates, ADA, we prepared pseu-
dotype virus that carried the vesicular stomatitis virus envelope
glycoprotein G. This pseudotype efficiently infected both
Molt4 and SupT1, thus confirming that the block to infection
occurred early in the replication cycle and could be bypassed
by virions carrying a foreign envelope glycoprotein.

The efficiency of ES80 and BR92 as well as the C3 variant of
JRCSF to infect SupT1 or Molt4 cells was assessed by estimat-
ing endpoint infectivity titers (expressed as 50% tissue culture
infective dose [TCIDs,] per milliliter) (Table 1). These were
lower than titers for U87/CD4/CCRS cells, which express high
cell surface concentrations of CCR5. When stocks of ES80,
BR92, or the C3 variant were prepared from and retitrated
back on SupT1 or Molt4 cells, slightly higher titers were noted.
For instance, over an endpoint titer of 10° TCIDs,/ml was
observed for BR92 passaged through SupT1 cells. However,
these viruses also had higher infectivity titers for U87/CD4/
CCRS cells; therefore, there was no convincing evidence of
further adaptation for SupT1 and Molt4 replication (Table 1).

Coreceptor use of Molt4/SupT1 RS strains. It was possible
that Molt4 and SupT1 infection was due to the capacity of
these strains to use a novel Molt4/SupT1 coreceptor. We there-
fore tested the coreceptors that were used by each strain. To
determine the coreceptor usage of the isolates studied, we
challenged U87 cells stably expressing human CD4 and either
human CCR1, CCR2b, CCR3, CCRS, or CXCR4 with HIV-1
strains and monitored infection after 4 to 5 days by immuno-
staining with an anti-p24 antibody as the primary antibody,
followed by incubation with a secondary antibody conjugated
to B-galactosidase as described previously (18). For other co-
receptors, CCC/CD4 cells were transiently transfected with
either CCR8, GPR-15, STRL-33, GPR-1, CX3CR1, or D6 as
previously described (67). Table 1 shows infectivity titers in
focus-forming units (FFU) per milliliter. JRCSF and C3 in-
fected only cell lines expressing CCRS5. All the other M-tropic
viruses efficiently infected CCR5™ cells but additionally uti-
lized one or more of the following coreceptors, albeit less
efficiently: CCR3 (E80, SL2, ADA, and JRFL), GPR-15
(BR92, SL2, and ADA), STRL-33 (BR92 and SL2), and CCRS8
(ADA). None of the viruses used CXCR4 on either U87/CD4
or GHOST/CD4 cells (data not shown). Thus, there was no
correlation between Molt4 or SupT1 infection and the use of a
particular coreceptor, except for CCRS. Moreover, none of
these strains were able to replicate in peripheral blood mono-
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FIG. 1. Inhibition of C3, E80, and BR92 infection by chemokine receptor ligands. SupT1 and Molt4 cells were treated with virus alone (triangles) or virus plus
chemokine receptor ligand (AOP-RANTES, MIP-1, eotaxin, AMD3100, or the CCR5-specific MAb 2D7, as indicated) (squares). p24 antigen or RT activity (E) in
supernatants was measured every 3 to 4 days as previously described (65, 67). For 2D7 inhibition, a control anti-CXCR4 antibody was also tested (circles).
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nuclear cells from patients homozygous for the CCRS A32
deletion (data not shown).

Inhibition of Molt4 and SupT1 infection by using coreceptor
ligands. To assess the coreceptors used by C3, E80, and BR92
for SupT1 or Molt4 infection, we tried to inhibit infection by
using various coreceptor ligands, including chemokines, mod-
ified chemokines, monoclonal antibodies (MAbs), and small
organic molecules (reviewed in reference 52). AOP-RANTES
is a chemically modified form of RANTES and a potent inhib-
itor of infection via CCRS5 (65). We also tested RANTES itself
as well as MIP-1B (20) and eotaxin, a chemokine specific for
CCR3 (76). To assess if CXCR4 was involved, we tested inhi-
bition by AMD3100, a bicyclam that is a potent and specific
inhibitor of CXCR4 infection (25, 59). SupT1 and Molt4 cells
were seeded at 10° cells per well in 96-well trays; 50 ul of
medium containing an appropriate chemokine receptor ligand
was added at twice the final concentration and incubated at
37°C for 30 min; 50 wl of virus was then added, and the
medium was incubated for 3 h at 37°C. The cells were washed
four times, and fresh medium containing the relevant chemo-
kine at the required concentration (500, 1,500, or 3,000 ng/ml)
was added. For the time course experiment, supernatants were
harvested every 3 to 4 days from days O to 40, and fresh
medium containing appropriate ligands was added.

The results for chemokine receptor ligands used on SupT1
are shown in Fig. 1A to D. Similar results were obtained
on Molt4 (data not shown). AOP-RANTES (Fig. 1A) and
MIP-1B (Fig. 1B) completely inhibited the replication of C3,
E80, and BR92, as did RANTES (data not shown), while
eotaxin (Fig. 1C) and AMD3100 (Fig. 1D) had no effect. Al-
though RANTES and MIP-1B bind CCRS, they also bind
other 7TM receptors that are potential coreceptors. For in-
stance, MIP-1B binds CCRS (6) and D6 (49) as well as CCRS.
However, C3, E80, and BR92 do not use either as coreceptor
(Table 1).

To confirm that C3, E80, and BR92 used CCRS5 to infect
Molt4 and SupT1 cells, we tested inhibition by using 2D7, a
MAD specific for CCRS that was previously used to block RS
entry or infection in other studies (73, 78). Complete inhibition
of replication was observed by 2D7 used at 20 pg/ml but not by
a control MADb, used at the same concentration, that recog-
nized CXCR4 (Fig. 1E). Thus, data shown in Fig. 1A, B, and
D indicate that CCRS is the coreceptor used for infectivity of
Molt4 and SupT1 cells, even though it could not be detected on
the cell surface or internally by immunofluorescence (data not
shown).

A single amino acid change in the V1 loop of JRCSF allows
the C3 variant to enter and replicate in Molt4 and SupT1 but
not several other T-cell lines (12). Two primary R5 isolates out
of ten also infected Molt4 and SupT1, providing evidence that
viruses like the C3 variant do exist in vivo. In this study, we
aimed to investigate whether Molt4/SupT1 tropism was con-
ferred by the use of a specific coreceptor. Our results show that
several CCRS ligands including 2D7 (a MAD specific for
CCRS5) blocked infection of Molt4 and SupT1 cells, indicating
that these strains were able to exploit undetectable levels of
CCRS on these cell lines. Most of the M-tropic CCR5-using
strains tested could not infect Molt4 or SupT1 cells, indicating
that the use of CCRS as a coreceptor does not accurately
predict the cell tropism of any particular HIV-1 strain. In other
systems, receptor expression level has been shown to influence
virus entry (48, 79). For instance, the concentrations of CD4
and CCRS required for efficient infection by RS viruses are
interdependent and the requirement for either is increased
when the other is limiting (51). CCRS expression is variable in
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vivo (46). Moreover, JRCSF was unable to produce infection
in culture when less than 2% of the cells expressed CCRS5 (79).

A striking point is that although CCRS mRNA was present
in both Molt4 and SupT1 cells, the protein was not clearly
identified, either on the cell surface or internally in permeabil-
ized cells (data not shown). This presumably reflects a very low
level of expression, although we cannot rule out that a different
conformation of CCRS or yet unidentified factors impair de-
tection by interfering with the binding of the CCRS5-specific
MADs. The CCRS cDNAs obtained from mRNA extracted
from Molt4 and SupT1 were sequenced and found to be 100%
homologous to the GenBank sequence. Furthermore, neither
of these cell lines produced significant amounts of B-chemo-
kines in the cell supernatant (data not shown). Thus, C3, E80,
and BR92 are able to exploit apparently undetectable levels of
CCRS on Molt4 and SupT1 to trigger entry into cells whereas
other strains cannot.

To conclude, our results show that a small subset of primary
HIV-1 RS strains are able to infect CD4* T-cell lines, Molt4
and SupT1. These strains do not use an alternative coreceptor
but are able to exploit low concentrations of CCRS5 for infec-
tion. Molt4/SupT1 tropism therefore identifies primary HIV
RS strains that are likely to have an expanded or altered tro-
pism for CD4™ cells in vivo.
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