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Abstract

Background

Patients with systemic lupus erythematosus (SLE) have a lower risk of breast cancer

(BRCA) than the general population. In this study, we explored the underlying molecular

mechanism that is dysregulated in both diseases.

Methods

Weighted gene coexpression network analysis (WGCNA) was executed with the SLE and

BRCA datasets from the Gene Expression Omnibus (GEO) website and identified the

potential role of membrane metalloendopeptidase (MME) in both diseases. Then, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analy-

ses of related proteins and miRNAs were performed to investigate the potential molecular

pathways.

Results

WGCNA revealed that MME was positively related to SLE but negatively related to BRCA.

In BRCA, MME expression was significantly decreased in tumor tissues, especially in lumi-

nal B and infiltrating ductal carcinoma subtypes. Receiver operating characteristic (ROC)

analysis identified MME as a valuable diagnostic biomarker of BRCA, with an area under

the curve (AUC) value equal to 0.984 (95% confidence interval = 0.976–0.992). KEGG

enrichment analysis suggested that MME-related proteins and targeted miRNAs may

reduce the incidence of BRCA in SLE patients via the PI3K/AKT/FOXO signaling pathway.

Low MME expression was associated with favorable relapse-free survival (RFS) but no

other clinical outcomes and may contribute to resistance to chemotherapy in BRCA, with an

AUC equal to 0.527 (P value < 0.05).
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Conclusions

In summary, MME expression was significantly decreased in BRCA but positively correlated

with SLE, and it might reduce the incidence of BRCA in SLE patients via the PI3K/AKT/

FOXO signaling pathway.

Introduction

Breast cancer (BRCA) is recognized as the most common cancer and the leading cause of can-

cer-related mortality in women worldwide [1]. However, several cohort studies and meta-anal-

yses have revealed that systemic lupus erythematosus (SLE) patients have a decreased risk for

BRCA compared with the general population, suggesting a potential protective role of SLE in

BRCA [2, 3]. As a devastating chronic autoimmune disease, SLE is a connective tissue disease

that affects the risk of several cancers [4]. SLE patients form multiple circulating autoantibod-

ies, including anti-dsDNA antibodies, lupus anticoagulant, and anticardiolipin, which may

exert anticancer effects against BRCA [5]. Moreover, BRCA in SLE patients presents a different

histologic type and receptor status than that in patients without SLE, with a population-based

case–control study reporting that SLE patients have a decreased risk of estrogen receptor (ER)-

negative cancers [6]. Thus, we assume that there might be several molecular pathways inhibit-

ing the occurrence of BRCA in SLE patients.

However, few studies have focused on the mechanism of the potential protective role of SLE

in BRCA at the genetic level. Due to the rapid development and wide applications of gene micro-

array technology, large quantities of gene expression data in various diseases have been obtained,

which allows us to explore the potential relationship of BRCA and systemic lupus erythematosus

at the genetic level. To examine our hypothesis, we performed weighted gene coexpression net-

work analysis (WGCNA) to identify the gene clusters of genes associated with SLE and BRCA.

Consistent with our study, changes in membrane metalloendopeptidase (MME) expression

have been identified in several types of cancers. For example, MME is overexpressed in pancre-

atic endocrine tumors and colorectal carcinoma but decreased in lung and ovarian cancer,

suggesting cell type-specific effects of MME [7, 8]. As a type II transmembrane glycoprotein,

MME participates in various significant biological processes and usually serves as a tumor sup-

pressor in tumors, such as prostate carcinogenesis and esophageal squamous cell carcinoma

[8, 9]. In prostate carcinogenesis, MME often downregulates and attenuates the effects of gas-

trin-releasing peptide to control the activities of prostate stem/progenitor cells [9]. In esoph-

ageal squamous cell carcinoma, MME inhibits the focal adhesion kinase (FAK)- Ras homolog

family member A (RhoA) signaling axis to interrupt tumor cell adhesion and metastasis, with

a high MME expression level representing a favorable prognosis [8]. However, the literature

contains no reports about the effects of MME on BRCA. Therefore, it is crucial to explore the

correlation between MME expression and the clinical characteristics of BRCA.

We performed WGCNA with the published gene expression data of SLE and BRCA from

the Gene Expression Omnibus (GEO) website. After identifying the potential role of MME in

SLE and BRCA, we downloaded the clinical data of BRCA from The Cancer Genome Atlas

(TCGA) and further investigated the effects of MME on BRCA.

Methods

Acquisition of expression data from GEO

We entered the keywords “breast cancer” or “system lupus erythematosus” in the GEO website

to acquire BRCA and SLE gene expression profiles. To ensure the reliability of our results,
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suitable datasets were selected with the following criteria: 1) the chosen gene expression profile

should contain control and case groups; 2) to confirm the credibility of the WGCNA, each

group should have more than 10 samples; 3) the tissues gathered for sequencing should be

peripheral blood mononuclear cells; and 4) the raw or processed data of these datasets are

available to access [10]. Finally, the training dataset of normal controls and breast cancer

patients in GSE27562 and GSE81622 were selected. The expression data were downloaded

from the GEO via the “GEOquery” package, and then the probes were annotated with their

gene symbols [11].

WGCNA and identification of shared genes

We performed WGCNA on the Bioinfo Intelligent Cloud website to identify the coexpressed

gene modules of SLE and BRCA and chose the modules that were significantly positively

related to SLE and negatively related to BRCA [12]. The shared genes in the selected modules

were obtained with a Venn diagram on the Bioinformatics & Evolutionary Genomics website.

Expression and clinical correlation analysis

The RNA-seq data obtained from the TCGA were analyzed to compare the expression level of

MME, the shared gene signature, in normal and cancer tissues, and then the results were visu-

alized with “ggplot2” (version 3.3.3) in R language. Additionally, the UALCAN website was

used to explore the protein expression level of MME in the CPTAC dataset [13]. The Kruskal–

Wallis test was used for the correlation analysis between clinical features and MME expression

levels [14].

Construction of ROC curves

The “pROC” package (version 1.17.0.1) was employed to construct receiver operating charac-

teristic (ROC) curves to test the sensitivity and specificity of diagnosis via the MME expression

level. Ranging from 0.5 to 1, an area under the ROC curve (AUC) close to 1 represents flawless

predictive ability.

DNA methylation and transcription factor analysis

DNA methylation can regulate gene expression levels without altering the sequence. Thus, the

MEXPRESS web server was chosen to explore the MME DNA methylation level of multiple

probes in BRCA samples from TCGA datasets [15]. To explore the upstream regulator, we also

used the TRRUST website to identify the transcription factors regulating the expression of

MME [16].

Functional enrichment analysis

With the STRING web server, we acquired the top 20 MME-related proteins [17]. Gene Ontol-

ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were

used to enrich potential pathways with the KOBAS web server [18], and then the results were

visualized using the “ggplot2” package (version 3.3.3) in the R language.

Identification of the target ncRNA and enrichment analysis

Using the miRNet website, we identified the potential upstream miRNAs of MME and the

miRNA-related circRNAs. Then, from the webpage, we obtained the miRNA-circRNA net-

works and circRNAs with the top degrees that may be involved in the molecular pathways of
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MME [19]. KEGG pathway analysis was performed with DIANA-miRPath v3.0 to explore

their biological functions [20].

Analysis of MME and survival, immunotherapy response and drug

sensitivity

With the Kaplan–Meier plotter web server, survival plots were created to explore the associa-

tions between MME expression and relapse-free survival (RFS), postprogression survival

(PPS), overall survival (OS), and distant metastasis-free survival (DMFS) in breast cancer, and

the corresponding log rank P value was calculated to compare the difference in survival curves

[21]. Then, the ROC plotter website was used to investigate the relationship between MME

expression and the response to therapy of breast cancer patients [22]. The GSCA web server

was employed to analyze the correlation between MME expression and the sensitivity (IC50)

to 265 small molecules from the Genomics of Drug Sensitivity in Cancer (GDSC) database by

Pearson correlation analysis [23].

Tumor-infiltrating immune cell evaluation

The “GSVA” (gene set variation analysis) package in R language was employed to explore the

associations between MME and 24 types of immune cells [24]. The following immune cell

types were analyzed: macrophages, pDC (plasmacytoid dendritic cells), aDC (activated den-

dritic cells), iDC (immature dendritic cells), DC (dendritic cells), mast cells, eosinophils, NK

CD56bright cells, NK cells, NK CD56dim cells, neutrophils, cytotoxic cells, B cells, T cells,

CD8 + T cells, Treg cells, Tcm (T central memory) cells, follicular Tfh (T follicular helper

cells), T helper (Th) cells, T gamma delta (Tgd) cells, T effector memory cells, Th1 cells, Th2

cells, and Th17 cells.

Results

WCGNA: The coexpression gene module

With the Spearman correlation coefficients, heatmaps were plotted to assess the correlation

between each gene module and SLE or BRCA, and each color signifies a different gene module

(Fig 1A and 1B). Three modules, “tan”, “midnight blue”, and “green”, that were positively cor-

related with SLE were selected (tan module: r = 0.539, p = 0.00034; midnight blue module:

r = 0.602, p = 4e−05; and green module: r = 0.623, p = 1.7e−05), and they included 280 genes

overall. For BRCA, “red”, “purple”, and “green yellow” were negatively correlated with BRCA

(red module: r = -0.854, p = 1.6e-06, purple module: r = -0.681, p = 0.00096, and green yellow

module: r = -0.499, p = 0.025), and they included 233 genes overall (Fig 1C and 1D). The only

overlapping gene between the selected modules positively correlated with SLE and negatively

correlated with BRCA was MME (Fig 1E), which is expected to be related to the pathogenesis

of both diseases.

Association between MME expression and clinical outcomes

To analyze the potential role of MME in BRCA, we compared MME expression between

tumor and matched normal tissues. The MME expression level was significantly decreased in

tumor tissues at the mRNA and protein levels compared with the corresponding noncancerous

tissues (S1A and S1B Fig), suggesting a potential role in the occurrence and development of

tumors. ROC analysis was performed to test the diagnostic value of MME in BRCA cases. The

AUC value of MME was 0.984 with a 95% confidence interval equaling 0.976–0.992, indicating
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the excellent diagnostic value of MME in BRCA (S1C Fig). In total, 1222 samples with expres-

sion profile and clinical feature data obtained from TCGA were included in the analysis.

Then, we downloaded data for BRCA cases from the TCGA and divided these cases into

low and high expression groups according to the median MME expression level. Statistical

analysis identified a significant association between high MME expression and normal tissue

status (Fig 2A–2D and 2F) and age under 60 (Fig 2E), but there was no significant correlation

between MME expression and different TNM or pathologic stages (Table 1). Interestingly, low

MME expression was significantly correlated with the subtypes luminal B (LumB) (Fig 2G)

and infiltrating ductal carcinoma (Fig 2H); thus, MME may serve as a specific biomarker for

BRCA types. To further examine the role of MME in BRCA progression, we compared the

MME expression level between primary breast tumor samples and bone metastasis samples

(GSE146661) and lung or brain metastasis samples (GSE191230) with the Wilcoxon rank sum

test. The results showed that MME expression was significantly decreased in the metastasis

samples (Fig 2I and 2J), suggesting that MME may inhibit the proliferation and metastasis of

BRCA.

DNA methylation analysis

To investigate the potential regulatory mechanism of MME, we visualized the DNA methyla-

tion levels of MME with the MEXPRESS tool. Most probes showed a significantly negative

association with MME mRNA levels (S2 Fig), suggesting that MME expression was

Fig 1. WGCNA analysis of systemic lupus erythematosus (SLE) and breast cancer (BC). (A) The cluster dendrogram of co-expression genes in SLE.

(B) The cluster dendrogram of co-expression genes in BC. (C) Module–trait relationships in SLE. (D) Module–trait relationships in BC. (E) The

common gene shared in SLE and BC.

https://doi.org/10.1371/journal.pone.0289960.g001
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significantly decreased in tumor tissues and may be negatively regulated by DNA methylation.

Moreover, MME expression was significantly related to histological type (p = 3.632e-13),

HER2 receptor status (p = 4.560e-4), sample type (p = 6.152e-103), and subtype of BRCA

(p = 4.432e-4).

Enrichment analysis of MME-related proteins

The top 20 MME-binding proteins were obtained with the STRING tool (Fig 3A). Then, the

protein–protein interaction (PPI) network of these selected proteins was drawn with the

Cytoscape (Fig 3B) [25]. Next, GO and KEGG enrichment analyses for MME-related proteins

were executed to obtain a better understanding of their biological functions and examine the

potential relationship of MME with SLE and BRCA (Fig 3C and 3D). Enrichment analysis

identified several pathways associated with tumorigenesis, such as the “FoxO (forkhead

Box O) signaling pathway”, “PI3k-Akt (phosphatidylinositol 3-kinase/Protein Kinase-B) sig-

naling pathway”, and “B-cell receptor signaling pathway”. More detailed GO and KEGG

Fig 2. MME expression in BRCA were compared in different clinicopathological parameters. (A) MME expression between normal tissues and

cancer tissues. (B) MME expression among different T stages. (C) MME expression among different N stages. (D) MME expression among different M

stage. (E) MME expression between patients over or under age 60. (F) MME expression among different pathologic stages. (G) MME expression among

patients with different PAM50 (prediction analysis of microarray50). (H) MME expression among different histological types. (I) MME expression

between primary breast cancer and lung or brain metastasis samples. (J) MME expression between primary breast cancer and bone metastasis samples.

*p< .05, **p< .01, and ***p < .001.

https://doi.org/10.1371/journal.pone.0289960.g002
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enrichment analysis data are shown in S1 Table. With the KEGG pathway database, we further

identified that the MME-binding proteins PTEN and BCL6 were involved in the FoxO signal-

ing pathway, and PTEN and CD19 were involved in the PI3k-Akt signaling pathway.

Prediction and enrichment analysis of target miRNAs, circRNAs and

transcription factors

Considering the role of miRNAs and circRNAs in gene expression regulation and cancer pro-

gression [26], we predicted the potential MME-related miRNAs and miRNA–target circRNAs

in BRCA tissues to construct a miRNA-circRNA network. Finally, we obtained 10 potential

upstream miRNAs of MME, of which the interaction networks are shown in S3A Fig. Then,

we screened 14 potential miRNA–target circRNAs with the “Minimum Network” tool to

reduce the number of circRNAs to obtain the most relevant circRNAs, and the miRNA-cir-

cRNA network is displayed in S3B Fig. The degree and betweenness of the selected miRNAs

and circRNAs in the miRNA-circRNA network are shown in S2 Table. Then, the identified

Table 1. Clinicopathologic features of BRCA from the TCGA.

Characteristics Low expression of MME High expression of MME p

Total 543 544

Age, n (%) 0.001

< = 60 275 (25.3%) 328 (30.2%)

> 60 268 (24.7%) 216 (19.9%)

PR status, n (%) 0.040

Negative 188 (18.1%) 154 (14.8%)

Indeterminate 1 (0.1%) 3 (0.3%)

Positive 327 (31.5%) 365 (35.2%)

ER status, n (%) 0.778

Negative 124 (11.9%) 116 (11.2%)

Indeterminate 1 (0.1%) 1 (0.1%)

Positive 391 (37.6%) 406 (39.1%)

HER2 status, n (%) 0.946

Negative 256 (35.1%) 304 (41.7%)

Indeterminate 6 (0.8%) 6 (0.8%)

Positive 73 (10%) 84 (11.5%)

Pathologic T stage, n (%) 0.070

T1 122 (11.3%) 156 (14.4%)

T2 326 (30.1%) 305 (28.1%)

T3&T4 92 (8.5%) 83 (7.7%)

Pathologic N stage, n (%) 0.432

N0 259 (24.3%) 257 (24.1%)

N1 182 (17%) 177 (16.6%)

N2 49 (4.6%) 67 (6.3%)

N3 38 (3.6%) 39 (3.7%)

Pathologic M stage, n (%) 0.520

M0 432 (46.7%) 473 (51.1%)

M1 11 (1.2%) 9 (1%)

Abbreviation: MME: Membrane metalloendopeptidase; TCGA: The cancer genome atlas; T stage: Tumor stage; M stage: Metastasis stage; N stage: Node stage; PR:

progesterone receptor; ER: estrogen receptor; HER2: human epidermal growth factor receptor 2.

https://doi.org/10.1371/journal.pone.0289960.t001
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miRNAs were further explored by KEGG enrichment analysis. The results revealed that these

miRNAs were involved in multiple biological processes, such as ECM-receptor interaction,

amoebiasis, and fatty acid biosynthesis. Interestingly, the KEGG results for miRNAs and

MME-related proteins showed enrichment of the “FoxO signaling pathway” and “PI3k-Akt

signaling pathway” in both analyses, indicating the important role of the PI3K/AKT/FOXO

signaling pathway in the pathogenesis of SLE and BRCA (S3C Fig). More detailed results of

the enrichment analysis are shown in S3 Table. To explore the upstream regulator of MME, we

employed the TRRUST website, which revealed HOXC6, MYC, SP1, and SPI1 as the transcrip-

tion factors that regulate the expression of MME (S4 Table).

Fig 3. MME-related gene enrichment analysis. (A) The top 20 available experimentally determined MME-binding proteins obtained from STRING

website. (B) The protein-protein interaction (PPI) network of the MME-binding proteins. (C) GO analysis of the MME-binding and interacted

proteins. (D) KEGG pathway analysis of the MME-binding and interacted proteins. The color from blue to red was correlated with -log(p value).

https://doi.org/10.1371/journal.pone.0289960.g003
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Survival, immunotherapy response and drug sensitivity analysis

The survival analysis revealed that low MME expression was related to favorable RFS (P<0.05)

in BRCA but not other clinical outcomes (Fig 4A–4D). A low MME expression level was

related to resistance to chemotherapy in BRCA. Moreover, low MME expression was associ-

ated with resistance to chemotherapy for several GDSC small molecules across cancers. The

association between MME expression and sensitivity to the top 30 GDSC drugs across cancers

is shown in Fig 4C, and more data are shown in S5 Table.

Analysis of immune infiltration

According to the median MME expression level, the selected samples were divided into high

and low expression groups. The infiltration levels of a total of 19 types of immune cells were

affected by the expression level of MME, including T cells, Th1 cells, Th2 cells, TFH cells, Tgd

cells, Tcm cells, Tem cells, T helper cells, neutrophils, mast cells, NK cells, NK CD56dim cells,

macrophages, iDCs, eosinophils, DCs, cytotoxic cells, CD8 T cells, and B cells (S4A Fig).

Among the 24 types of immune cells, the levels of 20 types were significantly positively corre-

lated with MME expression levels, while Th2 cells were the only type that was significantly neg-

atively correlated with MME (S4B Fig). Macrophages and neutrophils had the most significant

positive correlation with MME expression (S4C and S4D Fig).

Discussion

Despite decades of research, the BRCA incidence continues to rise and remains the leading

cancer type in women, affecting one in 20 women worldwide and up to one in eight women in

Fig 4. Analysis of MME expression of survival, immunotherapy response and drug sensitivity. (A) The correlation of MME expression and RFS. (B)

The correlation of MME expression and PPS. (C) The correlation of MME expression and OS. (D) The correlation of MME expression and DMFS.

(E-F) The ROC plot of the association between MME expression and the response to therapy of BRCA. (G) Bubble plot of the correlation between

MME mRNA expression and GDSC drug sensitivity for the top 30 ranked drugs. The color from blue to red represents the correlation between mRNA

expression level and drug sensitivity (IC50, 50%inhibiting concentration).

https://doi.org/10.1371/journal.pone.0289960.g004
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high-income countries [27, 28]. Surprisingly, several cohort studies and meta-analyses

revealed that BRCA incidence is decreased in SLE patients vs. the general population, which

inspired our interest in exploring the potential pathways involved in the reduced incidence of

BRCA in SLE patients [2]. Therefore, we used WGCNA to identify the crosstalk of SLE- and

BRCA-related molecular mechanisms and revealed that MME was positively correlated with

SLE but negatively correlated with BRCA.

The MME gene, located on human chromosome 3q21-27, encodes a 100-kD transmem-

brane glycoprotein, and its active site is located in the extracellular environment [29]. MME is

usually downregulated in cancers and serves as a tumor suppressor. For example, downregu-

lated MME was correlated with advanced tumor stage, and overexpression of MME inter-

rupted the FAK-RhoA axis to inhibit tumor cell metastasis in esophageal squamous cell

carcinoma [8]. In prostate carcinogenesis, MME is downregulated in nearly 50% of cancers

and inhibits carcinogenesis by regulating the activity of prostate stem/progenitor cells in coop-

eration with PTEN [9]. Similar to the abovementioned tumors, MME expression levels were

significantly decreased in BRCA tumor tissues compared with corresponding noncancerous

tissues. Moreover, downregulation of MME markedly correlated with the BRCA subtypes

LumB and infiltrating ductal carcinoma. ROC curve analysis indicated the potential diagnostic

value of MME in BRCA, with an AUC value equal to 0.984 (95% CI = 0.976–0.992). Low

MME expression was associated with favorable RFS (P<0.05) but was also associated with

resistance to chemotherapy (P<0.05) in BRCA.

To explore the molecular mechanisms responsible for the reduced morbidity of BRCA in

SLE patients, we obtained MME-related proteins and miRNAs and then performed GO and

KEGG enrichment analyses. Finally, the PI3K/AKT/FOXO signaling pathway was identified

as a potential target mechanism that reduced the incidence of BRCA in SLE patients with both

MME-related proteins and miRNAs. The PI3K-AKT pathway is one of the most commonly

activated cancer drivers induced by activated membranous receptor tyrosine kinases to pro-

mote tumor cell survival, proliferation, growth, and angiogenesis in human cancers [30]. Acti-

vated PI3K induces the transformation of PIP2 (phosphatidylinositol 4,5-bisphosphate) to

PIP3 (phosphatidylinositol 3,4,5-trisphosphate), and then PIP3 activates downstream protein

kinases. Activated by PIP3, AKT regulates cellular metabolism partly via downstream mTOR

(mechanistic target of rapamycin) and FoxO transcription factors [31]. The PI3K-AKT-

mTOR signal transduction pathway is a major molecular mechanism involved in cellular resis-

tance to extracellular stimulation, including various growth factors and inflammatory cyto-

kines, and it has an important influence on tumor cell survival, proliferation, and growth [32].

Recognized as the dominant oncogenic mechanism, PI3K/Akt/mTOR is activated in most

breast cancers, and inhibitors of this pathway exhibit therapeutic potential in clinical practice

[33]. Commonly considered tumor suppressors, FoxO family members have a conserved

DNA-binding domain and play a highly cell-type-specific role in oxidative stress resistance,

cell cycle progression, apoptosis, and differentiation by entering the nucleus and triggering the

transcription of various genes [34]. However, activated AKT inhibits the translocation of

FoxO1 from the cytosol to the nucleus by stimulating the phosphorylation of FoxO1, which is

then ubiquitinated and degraded by proteasomes [35]. As MME was significantly downregu-

lated in tumor tissues and is involved in the PI3K/Akt pathway, we suggest that MME may act

as a tumor suppressor in breast cancer by regulating the PI3K/Akt signaling pathway, espe-

cially its downstream FoxO signaling pathway. Moreover, the mechanism responsible for

metastasis inhibition by MME seems to be associated with decreased activation of FAK, RhoA,

and downstream MEK/ERK, which are involved in tumor migration and metastasis [8]. How-

ever, due to the limited current research, the specific mechanism of MME in BRCA still needs

further study.
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Due to the moderating role of the mRNA–miRNA-circRNA network in tumorigenesis and

tumor growth, we considered that noncoding RNAs (ncRNAs) might also participate in

MME-mediated regulatory mechanisms in BRCA. In our study, we identified hsa-miR-1-3p

and NBPF9 as the most important miRNA and circRNA, respectively. miRNAs alter the

expression of oncogenic or tumor-suppressive target genes to participate in the pathogenesis

of cancers [36]. By targeting certain genes, hsa-miR-1-3p represses the invasion and growth of

tumor cells [37]. CircRNAs, namely, miRNA sponges, can bind miRNAs and then inhibit

their expression to competitively suppress their interaction with target mRNAs, indirectly reg-

ulating the expression of certain genes and finally modulating tumor progression [38]. Above

all, we considered that miRNAs and circRNAs regulate the tumorigenesis of BRCA in part by

controlling MME expression.

Immune infiltration may also be involved in the occurrence and growth of BRCA, and

MME most significantly correlates with macrophages and neutrophils. Macrophages are the

most common tumor-associated stromal cells in the tumor microenvironment, and their

phagocytosis leads to tumor elimination, inflammatory activation, and antigen presentation,

thereby inducing adaptive immunity to tumors [39, 40]. Neutrophils, recognized as inflamma-

tory immune cells, can function as tumor suppressive regulators via neutrophil extracellular

trap formation. This extracellular fiber network negatively impacts surrounding cells due to

the high local concentrations of a toxic mixture of nuclear DNA and granule proteins induced

by neutrophil DNA [41].

We identified the commonly dysregulated molecular mechanisms in both SLE and BRCA,

which may partly explain the low risk of BRCA in SLE patients and offer novel methods for

the prophylaxis and treatment of BRCA. The limitations of this study should be addressed. We

assessed expression levels in PMBCs, which may not fully reflect the expression profile of

BRCA. In addition, these findings should be validated and explored in in vitro or in vivo

experiments to draw a more reliable conclusion.

Conclusion

In summary, we identified that MME was positively related to SLE but negatively related to

BRCA. MME expression is decreased in breast tumor tissues and was identified as a diagnostic

biomarker for BRCA with high accuracy. Low MME expression was related to better RFS and

resistance to chemotherapy. The PI3K/AKT/FOXO signaling pathway could be dysregulated

and reduce BRCA risk in SLE patients. The crosstalk between MME and the PI3K/AKT/

FOXO signaling pathway in BRCA needs further investigation.
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correlation and p-value of neutrophils.
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