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ARTICLE

Genotype error due to low-coverage sequencing
induces uncertainty in polygenic scoring

Ella Petter,1,* Yi Ding,2 Kangcheng Hou,2 Arjun Bhattacharya,3 Alexander Gusev,4,5,6 Noah Zaitlen,2,7,9

and Bogdan Pasaniuc2,3,8,9,10,*
Summary
Polygenic scores (PGSs) have emerged as a standard approach to predict phenotypes from genotype data in a wide array of applications

from socio-genomics to personalized medicine. Traditional PGSs assume genotype data to be error-free, ignoring possible errors and un-

certainties introduced from genotyping, sequencing, and/or imputation. In this work, we investigate the effects of genotyping error due

to low coverage sequencing on PGS estimation. We leverage SNP array and low-coverage whole-genome sequencing data (lcWGS, me-

dian coverage 0.043) of 802 individuals from the Dana-Farber PROFILE cohort to show that PGS error correlates with sequencing depth

(p¼ 1.23 10�7). We develop a probabilistic approach that incorporates genotype error in PGS estimation to produce well-calibrated PGS

credible intervals and show that the probabilistic approach increases classification accuracy by up to 6% as compared to traditional PGSs

that ignore genotyping error. Finally, we use simulations to explore the combined effect of genotyping and effect size errors and their

implication on PGS-based risk-stratification. Our results illustrate the importance of considering genotyping error as a source of PGS error

especially for cohorts with varying genotyping technologies and/or low-coverage sequencing.
Introduction

Polygenic scores (PGSs) carry potential for predicting

disease risk from an individual’s genomic profile and are a

promising tool for a wide array of applications from socio-

genomic studies to personalized medicine.1–4 For example,

integration of PGSs with clinical data and personal history

may enable prevention or early diagnosis of disease.5–7

PGSs are estimated by a linear combination of the allele

counts of the individual of interest weighted by their effect

sizes. Both the effect size and the allele count components

of the PGSs are unknown and are estimatedwith some level

of error that is then propagated to the PGS estimate itself.

The error in effect size occurs when non-causal SNPs are as-

signed non-zero effect sizes or when the wrong magnitude

of effect size is assigned to a causal variant. Error in the

estimated allele count (i.e., genotype), also referred to as

genotyping error, occurs when an individual’s genotype is

estimated incorrectly leading to awrong value at a genomic

site of interest. Unfortunately, traditional applications of

PGSs usually assume the genotype data (in the formof allele

counts at each site) to be error free,while genotype error still

exists and may impact application and downstream anal-

ysis based on PGS if ignored. The extent of genotype-based

PGS error depends on the genotyping assay in use and the

different genotype-calling algorithm used, both reflecting

different choices regarding the tradeoff between quality,

noise, and cost.8,9 In whole-genome sequencing (WGS),
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sequencing reads are sampled from the target genome,

followed by assembly and variant calling generating the

reported genotype. Higher coverage allows for improved

genotyping accuracy with the tradeoff of greater cost; the

expected accuracy of WGS (with coverage higher than

0.53) is above 90%10 with heterozygous concordance

between arrays and sequencing genotypes reaching 99%

at a coverage of �183.11 Balancing cost with accuracy,

low-coverage whole-genome sequencing (lcWGS) has

been proposed as a useful approach to balance sample size

with accuracy for improved statistical power.10,12,13 lcWGS

uses lower coverage for each site and thus increases the

level of uncertainty in genotype calling at the benefit of

sequencing more individuals within the same budget.

Overall, the choice between high-coverage sequencing,

low-coverage sequencing, or array genotyping is dependent

on the application and the desired balance between cost

and expected accuracy, with limited investigation and

consideration of the impact of errors from low-coverage

sequencing on PGS estimation. Recent work by our group

focused on the propagation of error from effect size estima-

tion to the error of the final PGS and calculated individual

PGS uncertainty as the standard deviation of the individ-

ual’s PGS estimate.14 In this work, we focus on the propaga-

tion of error from the genotype estimation into individual

PGS and show that both sources of error—effect-size error

andgenotype error—contribute jointly to theoverall uncer-

tainty of the PGS.
Angeles, CA 90095, USA; 2Bioinformatics Interdepartmental Program, Uni-

of Pathology and Laboratory Medicine, David Geffen School of Medicine,

r Cancer Institute, Boston, MA, USA; 5Brigham andWomen’s Hospital, Bos-

eurology, UCLA, Los Angeles, CA, USA; 8Department of Human Genetics,

geles, CA 90095, USA; 9Department of Computational Medicine, David Gef-

90095, USA; 10Institute for Precision Health, University of California, Los

Journal of Human Genetics 110, 1319–1329, August 3, 2023 1319

mailto:ellapetter@ucla.edu
mailto:pasaniuc@ucla.edu
https://doi.org/10.1016/j.ajhg.2023.06.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2023.06.015&domain=pdf


We investigate the impact of genotype error arising from

low-coverage WGS on PGS error. We leverage real data

from 802 individuals from the Dana-Farber PROFILE

cohort15,16 with both lcWGS (median genome wide

coverage 0.0363) as well as array genotypes at 1M com-

mon SNPs across the genome. We find a strong correlation

between the sequencing depth and individual PGS error,

thus confirming that lcWGS introduces genotyping errors

that propagate to PGS uncertainty. Next, we explore the

impact of genotype error in PGS-based risk stratification

and show that approaches that take uncertainty into ac-

count outperform traditional approaches; for example,

increasing the percentage of high-risk individuals in a sam-

ple selected based on PGS. Finally, using simulated effect

sizes and real lcWGS data, we show that ignoring genotype

errors leads to miscalibrated 90% confidence intervals for

the PGS predictions based on effect-size error alone. Taken

together, our results showcase that genotyping errors need

to be accounted for in PGS applications for datasets where

lcWGS is the primary approach for obtaining genotypes.
Subjects and methods

Ethics approval and consent to participate
Dana-Farber Cancer Institute PROFILE15,16 samples were selected

and sequenced from patients who were consented under institu-

tional review board (IRB)-approved protocol 11-104 and 17-000

from the Dana-Farber/Partners Cancer Care Office for the Protec-

tion of Research Subjects. Written informed consent was obtained

from participants prior to inclusion in this study. Secondary ana-

lyses of previously collected data were performed with approval

from the Dana-Farber IRB (DFCI IRB protocol 19-033 and 19-

025; waiver of HIPAA authorization approved for both protocols).

The research conformed to the principles of the Helsinki

Declaration.

Dataset
In this work, we used a subset of data from the Dana-Farber Cancer

Institute PROFILE cohort. The cohort includes �25K samples that

were obtained as part of patients’ routine cancer care and

were sequenced on the OncoPanel17 platform targeting exons of

275–447 cancer genes, selected based on their involvement in

cancer-related signaling pathways and their labeling as oncogenes

or tumor-suppressor genes.16 The mean on-target coverage ob-

tained was 1523, the mean off-target coverage was 0.013, and

themean genome-wide coverage was 0.0363. Low coverage impu-

tation was performed using STITCH18 with the 1000 Genomes

Phase 319 as a reference panel, using variants with >1% frequency

in the European population. We focused on a subset of the

PROFILE cohort containing 802 European ancestry individuals

who also had their whole blood samples genotyped on the Illu-

mina Multi-Ethnic Genotyping Array (MEGA) platform20 and

imputed using the Haplotype Reference Consortium (HRC) refer-

ence panel.21 Both sequencing and genotyping data were

restricted after imputation to �1.1 million SNPs in HapMap3

that usually exhibit high imputation accuracy and capture com-

mon SNP variation. lcWGS accuracy was measured using the Pear-

son correlation between array and tumor imputed genotypes, re-

ported to be mean 0.79 (SE 0.001) across all 1.1 million SNPs.15
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PGS point estimation: Array-PGS vs. dosage-PGS
We distinguish between two types of PGS point estimation, each

using a different method for genotype calling. As we initially focus

on the effects of only the genotype uncertainty on the variance ofgPGSi , we consider the effect sizes b to be estimated and fixed to a

certain value, W. Array-PGS is defined as Xa
tW where Xa is the

array genotype of an individual. Dosage-PGS is defined as Xd
tW

where Xd is the dosage of the genotype, defined as the expected

number of non-reference alleles an individual carries. More spe-

cifically, dosage can be calculated as 0$p0 þ 1$p1 þ 2$p2 : The prob-

abilities p0, p1, and p2 of SNP j are the posterior probabilities of a

genotype matching 0, 1, or 2, respectively, as obtained from a

method for genotype imputation.
Obtaining PGS distribution accounting for genotype

error
The input for calculating the individual PGS distribution is lcWGS

allele count posterior probabilities. Instead of fixing the genotype

to a single value for each variant (dosage), we draw S ¼ 1,000

different genotypes for SNP j of individual i set to be 0, 1, or 2 ac-

cording to a multinomial distribution with the probabilities (p0,

p1, p2) described previously. Repeating independently for all M

SNPs, an individual i is assigned S different M sized genotypes,
~Xi;1;

~Xi;2;:::~Xi;S;: By combining ~X; the different genotype samples

of individual i, withW, the effect sizes weights we can obtain a dis-

tribution of PGS values for individual i, gPGSi;1 , gPGSi;2. gPGSi;S . This
distribution is a sample of size S from the distribution of PGSi, from

which we can learn about the PGS estimate’s variance and credible

interval. It should be noted that the expected value of gPGSi is

exactly the value of the dosage-PGS. The PGS CIs are obtained

by calculating the empirical quantiles of gPGSi for the desired con-

fidence level, r.
Simulations
To confirm the calibration of the PGS CI, we simulated effect sizes

and combined themwith real genotypes from the PROFILE lcWGS

data. We ran this experiment several times for different genetic ar-

chitectures, while changing the values of the proportion of causal

SNPs (PcausalÞ and the variance parameter ( ~h2Þ: In each experiment

we ran ten iterations of selectingM$Pcausal SNPs (out of a total of M

SNPs), for which the effect sizes are drawn fromW � N
�
0;

~h2

M$Pcausal

�
independently across SNPs, and independent of SNP minor allele

frequency. Our simulations covered a wide array of genetic archi-

tectures, with ~h2 ˛ f0:1;0:25;0:5g and Pcausal ˛ f0:001; 0:01; 0:1g.
We note that as the genotypes are not standardized, the variance

explained is not equal to ~h2. This is because the contribution of

the genotype variance needs to be accounted for, resulting in

average h2 levels of 0.03, 0.08, and 0.16, respectively, for the ~h2

values above. For the empirical coverage calculations, we used

the sets of simulated effect sizes with the same parameters and

ran ten iterations of the following procedure: (1) calculate gPGSi
and obtain the individual PGS credible intervals for all confidence

levels, as described above; (2) calculate the matching array-PGS

values for all individuals; (3) calculate the percentage of individ-

uals whose array-PGS value falls within the CI calculated.

We repeated the same procedure for h2 ˛ f0:1;0:25;0:5g and

Pcausal ˛ f0:001;0:01;0:1g under an effect size distribution with

variance inversely proportional to the SNPminor allele frequency:

Wscaled;m � N
�
0; h2

M$Pcausal$2qmð1� qmÞ
�
, where qm represents the minor

allele frequency of SNP m. Under this model, the expected SNP
ust 3, 2023



heritability is equal for all sites, and the total variance explained

will be h2.

We tested calibration for different LD settings by selecting two

sets of simulated effect sizes. The first set included 1,000 SNPs

with strong LD selected by obtaining variant pairs with a

HapMap r2 above 0.7 and maximizing the set so it included the

most SNPs with strong LD. The second set was similarly optimized

to include SNPs with low LD (HapMap r2 < 0.05). We set ~h2 ¼ 0:1

and drew the effect sizes from the distribution described above.

To explore differences in coverage, we used simulated lcWGS

genotypes as follows. First, we simulate reads followed by calcu-

lating genotype probabilities, as would be obtained from imputa-

tion algorithms. We sample reads at the desired coverage level (for

example, for 103 we sample 10 reads for each site) based on the

genotyping array of each individual—if the array genotype is

0 or 2, we sample all reads tomatch it. If the genotype is 1, we sam-

ple 1 or 0 alleles with a probability of 0.5. To allow for some level of

sequencing error, we flip the read alleles at a rate of 1%. The second

step is to use the obtained reads and calculate the likelihoods of

observing the reads assuming the individual carries a genotype

of 0, 1, or 2. The likelihood is calculated as follows:

LðRjGÞ ¼
�

Rt

Ralt

�
½ð1 � eÞpþ eð1 � pÞ�Ralt

$½ð1 � eÞð1 � pÞ þ ep�Rt �Ralt

where Rt represents the total number of reads, Ralt represents the

number of reads matching the alternate allele, e is the error rate

(fixed to 0.01 in our simulations), and p is the probability that

the true value of the allele sampled (out of the two alleles in

each site) is 1: p ¼ 0;0:5;1 for a genotype G ¼ 0;1;2 respectively.

As we wish to obtain genotype posterior probabilities similarly to

those obtained from imputation algorithms, we use a flat prior and

calculate the posterior probability for each genotype possibility

based on the likelihoods. The procedure yields a new set of 103

and 53 genotype probabilities for each individual in our original

dataset.
Empirical data PGS calculation and risk stratification
For evaluating the effects of genotype-based PGS uncertainty on

PGS robustness and risk stratification, we used a set of seven

different PGSs22—asthma, diabetes, pulmonary heart disease,

height, thyroid cancer, breast cancer, and skin cancer—as pub-

lished in the PGS Catalog23 (partial R scores: 0.2284, 0.0824,

0.0397, 0.6133, 0.0295, 0.1132, and 0.1242, respectively). All of

the scores were trained using 391,124 individuals from the

UKBB24 with Northern European ancestry. The PGSs were built

for sites included in HapMap3 and that were in the LD reference

used and estimated using LDPred2-auto.25 All models included

the following covariates: sex, age, birth date, deprivation index,

and 16 PCs.

For the analysis presented in Figure 3, we split all the individuals

into two equal-sized groups based on their off-target sequencing

depth. We then used the effect sizes for the height PGS to obtain

the dosage PGS, array PGS, and PGS distribution following the pro-

cedure described previously. For each individual in the cohort, we

calculated the standard deviation of the PGS distribution obtained

as well as the absolute value distance between the estimates of

array PGS and dosage PGS. We compared these values across the

two sequencing depth groups using a t test. We repeated the

same analysis while restricting both array PGS and dosage PGS

to be calculated using only the set of SNPs for which the lcWGS
The American
imputation score was above 0.4 or 0.7. Since changing the SNPs

included in the PGS alters the population PGS distribution, the dif-

ferences in error and standard deviation are not directly compara-

ble. For this purpose we scaled the error and standard deviation by

the matching array-PGS standard error, as marked on the y axis

label.

For the calculation of the standard deviation of the PGS distribu-

tion for array imputation, we use the set of imputation probabili-

ties obtained from the HRC imputation of the array results. We

perform the same procedure as for the lcWGS PGS distribution

while changing the imputation probabilities from which we

draw the set of S ¼ 1,000 genotypes.

We assessed the use of a probabilistic approach for PGS stratifi-

cation as follows. Using the 90% dosage PGS value of the popula-

tion as a threshold, we label all individuals with a higher dosage

PGS as ‘‘above the threshold.’’ We then look to see whether that

classification holds when also considering the PGS credible inter-

vals. If the CI overlaps with the threshold, we label the individual

as ‘‘uncertain above threshold,’’ while those who have their CI

entirely above the 90% threshold are labeled ‘‘certain above

threshold.’’ For each trait we calculate how many of the individ-

uals initially labeled as ‘‘above the threshold’’ belong in each un-

certainty group. We repeat the same process for individuals below

the 90% threshold. We used the same procedure for the simulated

set of effect sizes with different genetic architectures. For each

combination of Pcausal and variance parameters, we calculated

the percentage of individuals with high dosage PGS values reclas-

sified as ‘‘uncertain above threshold.’’ We then performed a t test

between the values obtained for different variance levels (not sepa-

rated by Pcausal) and separately for Pcausal (without separating by the

variance level).

Finally, we investigated the impact of differential sequencing

depth across individuals using a synthetic dataset as follows. We

estimate the dosage PGS for all individuals across three sequencing

depth levels: simulated 53 and 103 and the real unmodified

lcWGS, as described previously. In each cohort, we separately set

the mean dosage PGS to zero and adjust the distributions gPGSi
accordingly to avoid any biases caused by our simulation pipeline.

In order to produce a mixed sequencing depth cohort, we

randomly divided the individuals into three groups, so that each

third has a different sequencing depth.We set t to be the 0.8 quan-

tile of the dosage PGS values in the mixed cohort and calculated

the individual probability Pr
�
PGSi

�
> t

�
as the proportion of

values in the distribution gPGSi that exceed it. As a last step, for n

values varying between 0 and 160 (20% of the cohort), we selected

the top n ranking individuals according to Pr
�
PGSi

�
> t

�
and

separately according to their dosage PGS. We then calculated the

percentage of individuals in each group having their array PGS

in the top two deciles of the population array PGSs. We repeat

the experiment 20 times, randomly changing the assignment of

individual to sequencing depth levels and report the mean per-

centage of true high risk based on their array PGS and its standard

error. When there was a tie in scores, we select all individuals who

have equal scores and calculate the proportion of the entire group

with a high array-PGS value, reflecting the expected accuracy we

would obtain if we selected exactly n individuals out of this group.

For Figure S7, for each value of n between 0 and 160, we also

obtain the sequencing depth of all individuals selected as part of

the top n ranking individuals in the thyroid cancer experiment.

We further record the randomly assigned sequencing depth of

all individuals with an array PGS in the top deciles and their

Pr
�
PGSi

�
> t

�
values.
Journal of Human Genetics 110, 1319–1329, August 3, 2023 1321



Simulations investigating combined effect size

uncertainty and genotype uncertainty
In the following set of simulations, we first randomly

sampled genotypes to a set of causal SNPs of size Mc. We

then simulated casual effect values for these Mc SNPs according

to the prior bm � N
�
0; h2

Mc$2qmð1� qmÞ
�
, where qm is minor allele

frequency of SNP m, with h2 ¼ 0.1. This prior matches the

previous set of simulations with average equal SNP

heritability. Following previous work14,26 and the derivation

provided in the supplemental methods, the GWAS marginal ef-

fects are distributed as bbmjbm � N

�
b;

1�h2

Mc

NGWAS$2qmð1� qmÞ

�
whereNGWAS

is the GWAS sample size, and the posterior distribution of bm

is bm
��bbm � N

�
sp

2

sp2þsl
2 $bb; sp

2sl
2

sp2þsl
2

�
, where sp

2 ¼ h2

Mc$2qmð1� qmÞ and

sl
2 ¼ 1� h2

Mc

NGWAS$2qmð1� qmÞ. We set Mc ¼ 1,000 and NGWAS ¼ 200,000,

and draw N ¼ 1,000 samples from bjbb marked as ~b. We also ob-

tained N samples from the genotype distribution: ~x. We then

calculate three different sets of N PGS values, to get three differentgPGSi types:
(1) ~x bb, accounting only for the uncertainty in the genotype

(2) bx ~b, with bx standing for the lcWGS dosage values, account-

ing only for the uncertainty in effect sizes

(3) ~x ~b, accounting for both uncertainty types

After obtaining the three distributions of PGSs, we calculated

the credible intervals and the empirical coverage for each of the

distributions, following the procedure described previously. We

repeated the same procedure for different NGWAS values ranging

between 100,000 and 500,000.

For estimating the effects of the different uncertainty sources

onto PGS risk stratification, we split individuals into four risk

groups based on their dosage PGS and the overlap between their

PGS CI and the risk threshold (90% of the population’s dosage

PGS). Individuals who have their dosage PGS above the threshold

were labeled as ‘‘certainly above’’ or ‘‘uncertainly above’’ the

threshold, if their CI didn’t or did overlap with the threshold

(respectively). The same classification was done for ‘‘certainly

below’’ and ‘‘uncertainly below’’ the threshold. We created a

confusion matrix demonstrating the change in classification

when adding the genotype-based uncertainty into PGS CI calcu-

lated based on effect-size uncertainty only.
Results

Overview

PGS can be viewed as an estimate of the individual genetic

valueGVi¼Xt
ib, whereXi is the vector of the true genotype

values of individual i and b is the vector of causal effect

sizes. Thus, a PGS can be described as PGSi ¼ dGVi ¼dXt
ib. For most of this work, we focus on uncertainty in

PGSs conditional on a fixed set of PGS weights (W) and

focus on errors in bX and how they impact PGS estimation

and downstream analyses. bX is estimated either from array

genotyping plus imputation or from sequencing data with

or without imputation. Errors in genotyping calls are

affected by many factors such as sequencing depth and/
1322 The American Journal of Human Genetics 110, 1319–1329, Aug
or minor allele frequencies (Figure 1A) and can vary across

individuals and across experiments. We evaluate the con-

sistency between PGSs calculated based on the expected

allele count (dosage PGS) and PGSs calculated based on

array genotypes (array PGS) and its connection to the

sequencing depth by which the genotypes are obtained

(see subjects and methods). As a motivating example,

consider a situation where PGSs are used to identify

high-risk individuals if their PGS is above the population’s

90% PGS value. The standard approach ignores genotyp-

ing error and uses the PGS point estimate for classification.

Consider the situation of two individuals, 1 and 2 (colored

red and blue, respectively, in Figure 1), where the PGS

point estimate of 1 is much higher than 2. Also consider

that individual 2 is sequenced at high coverage and thus

has a low rate of genotyping error whereas individual 1 is

sequenced at low coverage and thus has a higher level of

genotyping errors. Differential coverage induces differen-

tial confidence in the PGS estimate, leading to higher un-

certainty (error) for the PGS of individual 1 versus 2

(Figure 1). However, this larger uncertainty in the PGS of

individual 1 can also imply that the probability of the

true PGS of individual 1 to be over the risk threshold is

actually smaller than for individual 2 (since the probability

depends both on the point PGS and its uncertainty, see

Figure 1C). This exemplifies the need for considering

both the PGS point estimate as well as its uncertainty for

PGS-based classifications, particularly in situations when

variability in genotyping error across individuals is present

in the data.

Method calibration

We propose a probabilistic sampling technique to generate

the distribution of individual PGS values, gPGSi , build indi-

vidual PGS credible intervals (CIs), and quantify the level

of variance in PGSi due to genotyping uncertainty (Figure 1,

see subjects and methods). It is critical to calibrate any

probabilistic approach to estimate PGSi credible intervals.

Amethod is calibrated when the probability of the individ-

ual’s estimated value (in this case, the genetic value, GV) to

fall within the ranges of their CI matches the nominal

credible value of the CI.We build CI for gPGSi by combining

real genotype data from the PROFILE cohort with simu-

lated effect sizes under varying levels of variance parame-

ters ð ~h2Þ and proportion of causal SNPs (Pcausal, see subjects

and methods). Next, using the matching array PGS values,

we calculate the empirical coverage—the proportion of in-

dividuals whose array PGS falls within the credible inter-

vals (substituting array PGS as the closest approximation

for GV). We found that for different credibility levels and

genetic parameters, the expected empirical coverage is cali-

brated with the observed empirical coverage (Figure S1).

For example, at ~h2 ¼ 0:25 and Pcausal ¼ 0.01 (Figure 2), at

a credible level of 90%, the mean empirical coverage was

0.91 with a standard error of 0.003. Similarly, for a credible

level of 95%, we observed an average empirical coverage of

0.95 with a standard error of 0.002. We further validated
ust 3, 2023



A B

C

Figure 1. Differential WGS coverage induces differential uncertainty in PGS estimation
(A) High-coverage sequencing includesmore reads for each SNP, yielding a genotype distribution that is more certain compared to that of
low-coverage sequencing, when only a few if any reads are available.
(B) Calculating dosage PGS point estimates based on the expected genotype of each individual, combined with PGS weights, W. Indi-
vidual 1 (red) has a higher dosage PGS compared to individual 2 (blue).
(C) Illustration of the method to create individual PGS distributions; the possible genotypes are sampled, and we obtain a distribution of
PGSs instead of one estimate for each individual. When considering the individual PGS distribution, it is revealed that individual 1 has a
lower probability to have a PGS exceeding the threshold of interest.
that under a model where the effect sizes are drawn depen-

dent on the SNP minor allele frequency, the calibration re-

mains intact (Figure S2, see subjects and methods). It is

important to note that as the method samples variants

independently, the presence of strong LD between variants

in the PGSmay create overly dispersed PGS posterior distri-

bution, leading to an over calibration (Figure S3).

Sequencing depth impacts PGS uncertainty

Next, we investigated the effect of sequencing depth on

the uncertainty of gPGSi as measured by the standard devi-

ation of the distribution of the individual PGS values. We

split individuals into two equal-sized groups stratified by

their sequencing depth levels (subjects and methods).

Using height as an example trait, we calculated the values

of array PGS and dosage PGS for each individual, as well as

their gPGSi distribution.We compared the gPGSi distribution

The American
between the two sequencing depth groups. We found that

higher levels of sequencing depth result in lower individ-

ual standard deviation in gPGSi (Figure 3); the low

sequencing depth group had a mean PGS standard devia-

tion of 1.7 compared with 1.4 for the high sequencing

depth group (t test p value< 2.53 10�16). For comparison,

we also calculated the standard deviation of a PGS distribu-

tion built following the same procedure, using the array

imputation probabilities (see subjects and methods).

Matching our expectation about lower genotype uncer-

tainties in array-based genotyping information, we found

the mean standard deviation for height to be 0.3.

We further explored the relationship between individual

sequencing depth levels and the error in dosage PGS

estimation compared to the array PGS result. We found the

discrepancy between array PGS and dosage-PGS increases

with decreasing sequencing depth. The higher sequencing
Journal of Human Genetics 110, 1319–1329, August 3, 2023 1323



Figure 2. Individual PGS distributions and CIs obtained from
real lcWGS data are well calibrated with respect to their match-
ing array PGS values
Individual PGS distribution and credible intervals are well cali-
brated with array PGS, when using real lcWGS and simulated
PGS. The empirical coverage for a certain confidence level is calcu-
lated as the proportion of individuals having their array PGS
within the boundaries of their PGS credible interval matching
the credibility level of interest. The error bars represent one stan-
dard error of themean empirical coverage calculated across 10 sim-
ulations. The results in this plot match an effect size configuration
of ~h2 ¼ 0:25 and Pcausal ¼ 0.01.
depth group had an average absolute value difference be-

tween array PGS and dosage PGS of 1.4, compared to an

average difference of 1.89 in the lower sequencing depth

group (t test p value ¼ 1.2 3 10�7, Figure 3). These results

demonstrate that the sequencing depth is an important var-

iable even for small-scale coverage differences; even in data

originating from similar pipelines and with very similar

coverage levels, there is enough variability in sequencing

quality to cause biases and differences in the levels of PGS

uncertainty.

Finally, we wanted to investigate whether these trends

remain when restricting to high-quality imputed SNPs.

For this purpose, we assessed height PGS restricting to

SNPs with INFO scores above 0.4 and 0.7. Both the individ-

ual PGS standard deviation and the error in dosage PGS

compared to array PGS were found to be significantly

different between the two sequencing depth levels

(Figure S4). This demonstrates that restricting to higher-

quality SNPs does not fully alleviate differences in vari-

ability occurring by individual differences in coverage.

Individual PGS uncertainty affecting risk stratification in

real traits

Next we investigate the effect of genotype-based PGS un-

certainty on PGS-based stratification using real PGSs and
1324 The American Journal of Human Genetics 110, 1319–1329, Aug
traits (asthma, diabetes, pulmonary heart disease, height,

thyroid cancer, breast cancer, and skin cancer; see subjects

and methods).23 All the PGSs were estimated with

LDPred2-auto, using �390K European samples.22,25 We

stratified individuals into high-risk and low-risk groups as-

signed depending on whether their dosage PGS was above

or below a threshold of the 90% quantile of the cohort’s

dosage PGS distribution. Next, we calculated the PGS dis-

tribution for each individual and asked whether their

90% CI overlaps with the 90% threshold of the

population. Individuals who had their dosage PGS

above the 90% threshold and their CI did not cover it

were classified as ‘‘certain above threshold.’’ Those who

had their CI overlap with the threshold were classified as

‘‘uncertain above threshold.’’ We found that on average,

only 20.4% (SD 6.9) of the individuals classified as ‘‘above

threshold’’ were also classified as ‘‘certain above threshold’’

(Figures 4B and S5). The percentage of individuals in the

‘‘certain above threshold’’ category varies across traits.

For example, in height, almost 31% of the individuals clas-

sified as high risk were defined as ‘‘certain above threshold’’

versus 14% in diabetes.

Due to these differences, we investigated how the re-clas-

sification of high-risk individuals changes between

different genetic architectures. For this purpose, we uti-

lized the set of simulated effect sizes previously used for

validation of the method’s calibration (see subjects and

methods). We found that in our simulations, phenotypes

with a higher variance parameter ( ~h2 ¼ 0.5) have a higher

percentage of individuals reclassified as ‘‘uncertain above

threshold’’ compared to those with lower variance param-

eters ( ~h2 ¼ 0.1 or 0.25). We did not detect any significant

changes between simulations with different proportions

of causal SNPs (Figure S6). It is important to note that

a few different factors have a combined effect on the

proportion of individuals classified as ‘‘uncertain above

threshold.’’ For example, in the edge case where the geno-

type uncertainty of the causal SNPs is negligible, even if

the heritability is high, the PGS CIs are expected to be nar-

row and the proportion of ‘‘uncertain above threshold’’ in-

dividuals is expected to be low. This demonstrates how

there is no one genetic architecture factor that drives these

differences alone. Ultimately, the extent of genotype error

at the exact PGS sites, combined with the magnitude of

their effect sizes, will determine how much genotype un-

certainty will be propagated to PGS error and its impact

on risk stratification.

Probability based risk stratification can improve

precision in the presence of high variability in

sequencing depth

Next, we hypothesized that incorporating PGS uncertainty

in stratification could improve classification accuracy in

cohorts combining individuals with varying levels of

sequencing depth. We split the individuals into three

groups: the first group kept their original, unaltered

sequencing and coverage. The second and third groups
ust 3, 2023



Figure 3. Sequencing depth impacts PGS
distribution variability and PGS error
Individuals are split into two groups based
on their individual sequencing depth. For
each individual we obtain the PGS distribu-
tion standard deviation as well as the abso-
lute value difference between the array PGS
and dosage PGS values. The difference in
sequencing depth translates into signifi-
cant differences (t test p values marked)
in the variability of the individual PGS dis-
tribution (left) and in the discrepancy be-
tween array PGS values and dosage PGS
values (right).
were assigned imputation probabilities representing geno-

types under sequencing depths of 53 and 103 (simulated

based on their matching array genotypes, see subjects and

methods). Using a PGS for the seven example traits used

previously, we applied our method to create the individual

PGS distributions, gPGSi , for all cohort individuals. We

perform risk stratification using Pr
�
PGSi

�
> t

�
, the

area under the individual PGS distribution curve that

lies above a set population risk threshold, t (see subjects

and methods). We ranked all individuals by two methods:

first, based on their dosage PGS and second by

their Pr
�
PGSi

�
> t

�
, with t set to be equal to the 80% quan-

tile of dosage PGS scores. Using the two approaches, we ob-

tained two sets of the n highest ranking individuals

and confirmed how many of them had their matching

array PGS value in the top two deciles of the population

array PGS values. We find differential improvements

across traits, with highest boost in performance being

observed for thyroid cancer, where there is a 5.8%

improvement in precision when choosing the 100

individuals with highest risk (Figure 5). Importantly, for

no traits do we observe a decrease in performance when

using Pr
�
PGSi

�
> t

�
versus the traditional approach that

uses PGS point estimates.

It is interesting to note that in this simulation

setting, when selecting the top-ranking individuals by

Pr
�
PGSi

�
> t

�
, individuals with higher sequencing depths

tend to be prioritized over those with low sequencing

depths (Figure S7). To further examine this, we calculated

the average values of Pr
�
PGSi

�
> t

�
of all individuals in

the top two deciles by array PGS values and stratified by

their sequencing depth levels. It is important to note we

randomize the split of individuals into sequencing depths

in each iteration, so the high-array PGS individuals are split

equally between the three sequencing depth groups. We

found that for the higher sequencing depth groups,

the Pr
�
PGSi

�
> t

�
values are significantly higher. This

demonstrates two effects of sequencing depth discussed

previously. First, higher sequencing depth reduces the error

between dosage PGS and array PGS values. Second, higher
The American
sequencing depth reduces the PGS standard deviation,

allowing individuals to score higher Pr
�
PGSi

�
> t

�
values.

Finally, we examined probabilistic vs. dosage PRS

stratification using the real data that is more homogeneous

at low coverage. In contrast to the results of improved per-

formance of the probabilistic method in the mixed

sequencing depth cohort, we observed no difference be-

tween the method’s performance in the real homogeneous

data (Figure S8). We believe this is due to the fact that the

difference between the PGS standard deviation of the indi-

viduals is not strong enough to create differential rankings

between the two methods. To further clarify this, we eval-

uated the extent of variance in PGS standard deviation

across individuals in the real data and in the mixed

sequencing depths cohort. In the real data, the variance

of PGS standard deviation was 0.027, compared with

0.204 (SE 0.0012 across 10 iterations) for the mixed

sequencing depths cohort. These results demonstrate

that differential ranking based on the probabilistic method

is likely to occur only in a cohort where individuals carry

strong differences in genotype accuracies.

Combining effect size uncertainty with genotype

uncertainty in simulations

Thus far we focused on genotyping error conditional on

fixed sets of PGS weights. Next, we investigated the joint

impact of genotype and effect size based uncertainty. Us-

ing simulations (see subjects and methods) we find that

integrating only genotype uncertainty or effect size uncer-

tainty fails to generate calibrated credible intervals when

data contain both types of uncertainty (Figure 6). For

example, the observed empirical coverage for a 90% cred-

ible level of integrating genotype uncertainty only is 0.66

(SE 0.094) and that of integrating effect size uncertainty

only is 0.749 (SE 0.088). In contrast, the 90% credible in-

terval of integrating the uncertainty from both sources is

well calibrated (0.854 SE 0.06). This demonstrates that

when using lcWGS data, it is not sufficient to build CIs

based on effect size uncertainty on its own. The extent of

calibration obtained by CIs built on one type of error de-

pends on the magnitude of error they contribute to the
Journal of Human Genetics 110, 1319–1329, August 3, 2023 1325
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Figure 4. lcWGS genotype uncertainty in-
fluences PGS-based risk stratification in
real data
Individuals are defined as high risk for seven
real PGSs if their dosage PGS value is in the
top decile of the cohort’s dosage PGS values.
All high-risk individuals are further classi-
fied into risk groups based on their PGS CI.
Individuals who have their PGS CI overlap
with the dosage PGS 90% threshold are
labeled as ‘‘uncertain above threshold’’
(light orange), in contrast to individuals
whose entire PGS CI is above the threshold,
labeled as ‘‘certain above threshold’’ (dark
orange). On average only 20% of individ-
uals classified as high risk are also classified
as ‘‘certain above threshold.’’
overall error. For example, using lower sequencing depth

will increase the genotype error, making the version con-

trolling for effect size only less calibrated. By contrast,

lower GWAS sample size will increase the effect size error,

making the version controlling for genotype error only

less calibrated. In order to further explore this, we repeated

the experiment for different magnitudes of effect size error

as controlled by the simulated GWAS sample size. We

found that when the effect size error is lower, the CI for

genotype error only performs relatively well and the CI

for effect size only performs worse (Figure S9).

Finally, we investigated the extent to which risk stratifi-

cation is changed by accounting for different types of un-

certainty. For this matter, we followed the procedure

described previously to classify the individuals into four

different risk groups compared to the threshold matching

the 90% PGS value of the population—certainly below, un-

certainly below, uncertainly above, and certainly above the
1326 The American Journal of Human Genetics 110, 1319–1329, August 3, 2023
threshold. We performed this classifi-

cation using CI from two different

sets of gPGSi distributions—first ac-

counting only for effect size uncer-

tainty and the second including both

effect size and genotype uncertainty.

We repeated this procedure for 10

different simulation sets of effect sizes

and obtained the mean and standard

error of the number of individuals in

each classification category (Table S1).

We found that 69% of the classifica-

tions to the ‘‘certain above’’ category

in the effect-size uncertainty only

setting were re-classified as ‘‘uncer-

tain above’’ when also incorporating

the genotype uncertainty. Similarly,

39.5% of those classifications to the

‘‘certain below’’ threshold by the ef-

fect-size uncertainty CI were reclassi-

fied as ‘‘uncertain below’’ when also

including the genotype uncertainty.
These results further demonstrate that the procedure for

accounting for PGS uncertainty in lcWGS data is incom-

plete without accounting for genotype error.
Discussion

In this work, we investigate the effect of sequencing error

on PGS estimation. We propose a method to quantify the

individual level of genotype-based uncertainty in PGSs

calculated on low coverageWGS data, and to build individ-

ual PGS distributions and credible intervals. We further

explore the connection between sequencing depth and

the individual levels of PGS uncertainty and PGS error.

We find that individuals with lower sequencing depth

have higher PGS uncertainty/error, thus highlighting the

importance of integrating genotype error in PGS-based

risk stratification. We propose a probabilistic approach to



Figure 5. Using Pr
�
PGSi

�
> t

�
for risk stratification can improve

the rates of high array PGS individuals in a simulated mixed
sequencing depth cohort

Risk stratification based on Pr
�
PGSi

�
> t

�
yields a higher rate of

high array PGS individuals compared with risk stratification based
on dosage PGS. In this experiment, we take individuals with the

highest scores by Pr
�
PGSi

�
> t

�
and by dosage PGS and calculate

the proportion of individuals with an array PGS value in
the top two deciles. We changed the number of individuals
inspected from 0 to 160 (20% of the entire cohort) and found
we select slightly more individuals with high array PGS by using

the Pr
�
PGSi

�
> t

�
metric. Error bars represend one standard error

of the mean percent of true positives and change in precision.
risk stratification and show that it improves classification

accuracy in simulations and real data. We find that due

to differences in genotyping error levels, the comparison

of PGSs across individuals may be problematic when not

corrected by using individual PGS CIs.

Themain limitation of the proposedmethod is the fact it

does not account for LD between PGS variants. In case of

strong LD between the variants of the PGS, there may be

an over-calibration. We note however, that the LD simula-

tion presents an extremely strong structure that is unlikely

to represent true PGSs, which are commonly even inten-

tionally pruned to remove correlated SNPs. It is of note

that when combining both sources of error—genotype

and effect size—we observe an over calibration in small

GWAS sample sizes and a slight under calibration for large

sample sizes. This could be due to the miscalibration intro-

duced by unaccounted LD being amplified by varying

levels of effect size uncertainty observed for different

GWAS sample sizes. A possible direction to improve this
The American
would be to sample genotypes in haplotype groups, and

we leave this as a direction for future research. We did

not fully explore the impact of different genetic architec-

tures on the individual PGS uncertainty. In our study, we

assume the heritability is equal for all SNPs, leading to

larger effect sizes and errors for rare variants. As the rare

variants are also likely to have higher genotype error, this

assumption amplifies the contribution of rare variants to

the total individual PGS uncertainty. We leave the investi-

gation of alternative genetic architectures, assuming a

different relationship between allele frequency and effect

sizes, such as LDAK,27 for future work.

We note that we were unable to validate our framework

for probabilistic PGS risk stratification in real data, due to

lack of proper case/control data and the fact that all our in-

dividuals are sequenced in similar sequencing depths. We

conclude with several caveats and directions for future

research. First, we use the array PGS instead of the true ge-

netic value for calibration and benchmarking which can

yield extra uncertainties due to unaccounted error and

biases existing in array PGSs. While we found the extent

of PGS genotype uncertainty in array imputed data to be

low, we note that as GWAS sample sizes increase, more

rare variants are introduced into PGSs, possibly resulting

in increased uncertainty even in imputed array data. Sec-

ond, we focus on assessing PGS uncertainty due to

genotype error conditional on a fixed set of PGS weights;

we do that to match most practical uses of PGS where

weights are pre-determined from a reference catalog. In

practice, errors in the PGS weights also propagate into

PGS uncertainties, thus further increasing the credible in-

tervals of PGS predictions. Third, our simulation pipeline

for different coverage levels is based on a simplistic likeli-

hood imputation process, without accounting for either

minor allele frequencies or LD structures. While the trends

match real data, we leave a thorough investigation of un-

certainty of imputation-based genotype calling from

WGS data for future work.
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Figure 6. Combining different sources of uncertainty affects PGS CI calibration
We relax the assumption about PGS effect sizes being fixed and allow for error in effect size estimates.We evaluate the empirical coverage
of PGS distributions calculated in three different manners: (left) including genotype uncertainty but not effect-size uncertainty, (middle)
including only effect-size uncertainty while using dosages without accounting for genotype uncertainty, and (right) based on the pos-
terior distribution of both effect size and genotypes. All plots show one standard error of the mean empirical coverage across 10 inde-
pendent simulations. We find that when effect sizes are not fixed, both components must be accounted for in order to achieve proper
calibration and estimation of accurate individual PGS CI.
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