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ARTICLE

Genetic underpinning of the comorbidity
between type 2 diabetes and osteoarthritis

Ana Luiza Arruda,1,2,4 April Hartley,5 Georgia Katsoula,1,4 George Davey Smith,5 Andrew P. Morris,1,6

and Eleftheria Zeggini1,3,*
Summary
Multimorbidity is a rising public health challenge with important implications for health management and policy. The most common

multimorbidity pattern is the combination of cardiometabolic and osteoarticular diseases. Here, we study the genetic underpinning of

the comorbidity between type 2 diabetes and osteoarthritis. We find genome-wide genetic correlation between the two diseases and

robust evidence for association-signal colocalization at 18 genomic regions. We integrate multi-omics and functional information to

resolve the colocalizing signals and identify high-confidence effector genes, including FTO and IRX3, which provide proof-of-concept

insights into the epidemiologic link between obesity and both diseases. We find enrichment for lipid metabolism and skeletal formation

pathways for signals underpinning the knee and hip osteoarthritis comorbidities with type 2 diabetes, respectively. Causal inference

analysis identifies complex effects of tissue-specific gene expression on comorbidity outcomes. Our findings provide insights into the

biological basis for the type 2 diabetes-osteoarthritis disease co-occurrence.
Introduction

Multimorbidity is defined as the coexistence of multiple

chronic diseases in a single individual.1 Worldwide, over

50% of the population older than 65 years is affected by

more than one long-term medical condition simulta-

neously.2 Commensurate with the rise in life expectancy

andaverage population age,multimorbidity is an increasing

global health challenge. However, the majority of health

and drug development research is focused on treating and/

or preventing individual diseases, leading to interventions

that are currently not optimally designed to assist individ-

uals suffering frommultiple health conditions.

The most prevalent multimorbidity pattern among

women and men is the combination of cardiometabolic

and osteoarticular diseases,3 exemplified by the highly prev-

alent co-occurrenceof type2diabetes andosteoarthritis.4 Be-

tween 2009 and 2016, approximately one in three adults

with prediabetes in the US suffered from arthritis.5 Osteoar-

thritis is the most common whole-joint chronic disorder,

affectingover 520millionpeopleworldwide.6 It is a degener-

ativedisordercharacterizedbya local andsystemic low-grade

inflammation state, irreversible loss of cartilage, and addi-

tional bone formation that results in pain, itsmost prevalent

symptom.7 Across the globe, type 2 diabetes affects over 430

millionpeopleand ischaracterizedbyelevatedbloodglucose

levels and insulin resistance.6 Both osteoarthritis and type 2

diabetes are complex diseases influenced by genetic, demo-

graphic, and lifestyle factors, such as older age and obesity.8
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Themajority of observational studies have reported a pos-

itive epidemiological association between type 2 diabetes

and osteoarthritis of the hip or knee.4 In a meta-analysis

including 1,040,175 individuals, the unadjusted odds ratio

(OR) for type 2 diabetes in individuals with osteoarthritis

versus non-osteoarthritis was 1.41 (95% confidence interval

[CI]¼ [1.21, 1.65]).9 For individualswith type2diabetes, the

overall risk of osteoarthritis was also higher than for individ-

uals without type 2 diabetes (unadjusted OR ¼ 1.46, 95%

CI ¼ [1.08, 1.96], n ¼ 32,137).9 Articular joint-specific ana-

lyses have shown a stronger link between type 2 diabetes

and knee osteoarthritis than hip osteoarthritis.9

Mendelian randomization (MR) analyses10 suggest no

causal relation between liability to type 2 diabetes and knee

osteoarthritis,11 whereas body-mass index (BMI) has been

shown to be causal for both diseases.12,13 When adjusting

for BMI, studies linking type 2 diabetes and osteoarthritis

haveyieldedconflicting results.4,9,14Consideringthatobesity

is a major risk factor for both diseases studied here, genetic

variants associated with different physiological characteris-

tics of increased adiposity are expected to be shared risk vari-

ants for the comorbidity. However, those variants could exert

their effects on the comorbidity through alternative biolog-

ical pathways to obesity through horizontal pleiotropy.10

Given the increaseof theworld’s elderlypopulationand the

chronicnature of this highly prevalent pair of diseases, under-

standing their shared genetic background is important. Here,

we focus on disentangling shared genetic risk loci between

type 2 diabetes and osteoarthritis, including integration
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Table 1. Sample sizes of GWASs used in this study

OA phenotype Affected individuals Control individuals Total

All 177,517 649,173 826,690

Knee 62,497 333,557 396,054

Knee and/or hip 89,741 400,604 490,345

Hip 36,445 316,943 353,388

TKR 18,200 233,841 252,041

TJR 40,887 327,689 368,576

THR 23,021 296,016 319,037

An overview of the osteoarthritis (OA) phenotypes used in this work and the number of affected individuals, control individuals, and total number of individuals
included in the corresponding GWAS (total knee replacement [TKR], total hip replacement [THR], total joint replacement [TJR], and osteoarthritis at any site [all]).
with functional genomics data in relevant cell types, in order

to identify effector genes and provide insights into common

underpinning mechanisms of disease development.
Material and methods

Datasets
For osteoarthritis, we used a recent large genome-wide association

study (GWAS) meta-analysis from the Genetics of Osteoarthritis

(GO) consortium.15 In total, it comprises data from 826,690 individ-

uals (177,517 affected individuals) from mostly white European

ancestry for 11 different osteoarthritis phenotypes. In this study, we

used the following osteoarthritis phenotypes: knee, hip, knee and/or

hip, total knee replacement (TKR), total hip replacement (THR), total

joint replacement (TJR), andosteoarthritis at anysite (all).Anoverview

of the number of affected individuals, control individuals, and the to-

tal individuals for each study can be found in Table 1. For type 2 dia-

betes, the GWAS meta-analysis unadjusted for BMI from the DIAM

ANTE consortium was used.16 It includes data from 898,130 individ-

uals (74,124 affected individuals) of European ancestry.

We also employed molecular quantitative trait locus (QTL) data

from disease-specific tissues. For osteoarthritis, we used expression

quantitative trait locus (eQTL) data from intact cartilage (n¼ 95), de-

generated cartilage (n ¼ 87), and synovium (n ¼ 77), as well as pro-

tein abundance quantitative trait locus (pQTL) data from intact

and degenerated cartilage (n ¼ 99).17 All samples were collected

from individuals with osteoarthritis. For type 2 diabetes, we used

eQTL data from pancreatic islets from the InsPIRE consortium.18 In

the pancreatic islets dataset, 37 individuals out of 420 were diabetic.

We aligned the effect alleles of all datasets used in this paper by

inverting the sign of the effect sizes when a mismatch was de-

tected. Chromosome X was not included in any analysis. All data-

sets used the Genome Reference Consortium Human Build 37

(GRCh37) assembly.

Measures of adiposity
We used four measures of adiposity: BMI, waist-to-hip ratio (WHR)

unadjusted for BMI, whole-body fat mass, and body fat percent-

age. For BMI (n ¼ 806,834) and WHR (n ¼ 697,734), we used

the recent meta-analysis combining data from the GIANT con-

sortium and the UK biobank.19 The inverse rank-normalized

GWAS summary statistics for whole-body fat mass (n ¼ 330,762)

and body fat percentage (n¼ 331,117) were taken from the Neale’s

Lab website (http://www.nealelab.is/uk-biobank/). For each

adiposity phenotype, we looked up the effect direction and signif-
The American
icance of all variants in the 95% credible set of the colocalized re-

gions between type 2 diabetes and osteoarthritis (Table S11).
Quantification and statistical analysis
Genetic overlap of type 2 diabetes and osteoarthritis phenotypes

We conducted a linkage disequilibrium (LD) score regression anal-

ysis using the LDSC software (v.1.0.1) with –rg flag to estimate the

genetic correlation between each osteoarthritis phenotype and

type 2 diabetes (Table S1).20 Because the majority of the GWASs

used here comprise data of European ancestry individuals only,

pre-computed LD scores from the 1000 Genomes European

ancestry haplotypes were used.21 To assess the potential for chance

findings when performing multiple statistical analyses, we per-

formed a permutation-based analysis. We randomly permuted

the effects (Z scores) of the variants for the osteoarthritis pheno-

types 10,000 times while fixing the effects for type 2 diabetes.

Running LD score regression on each permuted dataset yielded

an empirical p value for the genetic correlation of type 2 diabetes

and each analyzed osteoarthritis phenotype.

Statistical colocalization analysis

We defined regions of 2 Mb (51 Mb) around established indepen-

dent association signals from each disease. For type 2 diabetes, we

selected all primary and secondary independent signals from the

BMI-unadjusted GWAS (p value threshold ¼ 53 10�8). For osteoar-

thritis, we selected the risk signals for the respective phenotype

at the adjusted genome-wide significance of 1:33 10�8. For each

osteoarthritis phenotype, we performed regional pairwise statistical

colocalization analysis with type 2 diabetes using the coloc.abf

function from the coloc R package (version 3.2.1).22 Colocalization

analyses were conducted using estimated regression coefficients (ef-

fect sizes) andstandarderrors (TableS2). In short, this functioncalcu-

lates posterior probabilities for five association configurations under

the assumption of a single causal variant per trait. These configura-

tions are summarized in the hypotheses below:
d H0: no trait has a genetic association in the region.

d H1: trait 1 has a genetic association in the region.

d H2: trait 2 has a genetic association in the region.

d H3: both traits have a genetic association in the region but

with different causal variants.

d H4: both traits share a genetic association (single causal

variant) in the region.

For all osteoarthritis phenotypes, we used the default prior proba-

bilities of the coloc R package. We considered evidence for
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colocalization if the posterior probability of H4 (PP4)> 0.8. For each

genomic locus of colocalization, we calculated a 95% credible set for

the causal variant by taking the cumulative sumof the variants’ pos-

terior probabilities to be causal conditional onH4 being true. LD be-

tween the single-nucleotide polymorphisms (SNPs) was calculated

using plink (v.2.0 alpha)23 based on the UK biobank24 and was

used for visualizing the results in regional association plots.

Knockout mouse phenotypes

We performed a schematic search for each gene in the vicinity of

the genomic loci that colocalize between type 2 diabetes and oste-

oarthritis to screen for knockout mice showing phenotypes related

to type 2 diabetes or osteoarthritis. The databases used in this scope

were the International Mouse Phenotyping Consortium (IMPC)

(https://www.mousephenotype.org/), Mouse Genome Informatics

(MGI) (http://www.informatics.jax.org/), and Rat Genome Data-

base (RGD) (https://rgd.mcw.edu/). For IMPC and RGD, we ex-

tracted the knockout mice phenotypes for each potential effector

gene using the programmatic data access via their application pro-

gramming interface (API). For MGI, we used the MGI batch query.

For type 2 diabetes, we looked for insulin- and diabetes-related

phenotypes that included the following terms: insulin, glucose, dia-

betes, hyperglycemia, pancreas, pancreatic, obesity, BMI, body

weight, body mass, body fat, beta cell, and glucosuria. For osteoar-

thritis, we looked for musculoskeletal phenotypes including the

terms skeletal, muscle, bone, osteo, arthritis, muscular, joint, body

size, growth, stature, and height.

Rare and syndromic human diseases

To investigate whether any analyzed genes are associated with a

monogenic disorder, we extracted data from the Online Mende-

lian Inheritance in Man (OMIM) (https://omim.org/) by using

their API. The terms we looked up for osteoarthritis-related pheno-

types were bone, muscle, skeleton, osteo, arthritis, muscular, joint,

body size, growth, skeletal, stature, height, hand-foot-uterus, syn-

ostosis, Martsolf, Warburg, leukodystrophy, squalene, and FINCA

(as an abbreviation of fibrosis, neurodegeneration, and cerebral

angiomatosis). For type 2 diabetes, we searched for insulin, glyce-

mia, glucose, diabetes, pancreas, pancreatic, obesity, BMI, body

weight, body mass, body fat, beta cell, glucosuria, Martsolf, acidu-

ria, Aicardi-Goutières, and FINCA.

Differential gene expression

We explored whether the analyzed genes show differential expres-

sion for type 2 diabetes and osteoarthritis using published sum-

mary statistics from RNA sequencing (RNA-seq) datasets. For oste-

oarthritis, we assessed differential expression by comparing paired

intact and degraded osteoarthritis cartilage from 124 individ-

uals.25 Because the samples were collected within person, the

data is automatically robust against cofactors such as age and pop-

ulation structure. For type 2 diabetes, we used RNA-seq data from

surgical pancreatic tissue samples from metabolically phenotyped

pancreatectomized individuals. Samples were collected from 18

non-diabetic individuals and 39 individuals who were previously

diagnosed with type 2 diabetes.26 The differential expression anal-

ysis was based on a linear model with age, sex, and BMI as covari-

ates. We considered genes that changed more than 1.5-fold in

either direction and had an adjusted p value < 0.05 to be differen-

tially expressed between degraded (high-grade) and intact (low-

grade) osteoarthritis cartilage and diabetic versus healthy pancre-

atic islets for osteoarthritis and type 2 diabetes, respectively.

Multi-trait statistical colocalization analysis with eQTL and pQTL

data

First, we superimposed molecular QTL information from disease-

specific tissues by performingmulti-trait molecular QTL-GWAS co-
1306 The American Journal of Human Genetics 110, 1304–1318, Aug
localization analyses. The analyses were performed only on the

variants in the 95% credible set. The input consisted of three sum-

mary statistics: one from the type 2 diabetes GWAS, one from the

osteoarthritis phenotype GWAS, and one from the disease-rele-

vant tissue molecular QTL dataset. Because one variant is tested

for multiple genes in an eQTL dataset or multiple proteins for

the pQTL datasets, we performed the colocalization gene-wise or

protein-wise, respectively, such that for each analysis a single mo-

lecular QTL summary statistic is available for each variant. If the

95% credible set consisted only of a single variant for each gene

or protein, we included all variants in a 1-Mb window in the

analysis.

For themulti-trait statistical colocalization analyses, we used the

R package HyPrColoc (v.1.0.0).27 We conducted regional gene-wise

analysis to assess whether all traits colocalize by switching off the

Bayesian divisive clustering algorithm (bb.alg ¼ FALSE). In a

similar manner to the coloc package, we usedHyPrColoc to estimate

the posterior probabilities and identify candidate effector genes

using multiple traits as input. For consistency, evidence for coloc-

alization was considered at a threshold of 0.8 for PP4. The type 2

diabetes and osteoarthritis GWAS meta-analyses share five co-

horts. Although the samples overlap, we assumed independence

between the datasets, as instructed by the developers of the Hy-

PrColoc package.

Using the prior knowledge that type 2 diabetes and osteoar-

thritis colocalize in the analyzed genomic loci, we adapted the

prior parameters of the HyPrColoc algorithm accordingly. The first

parameter, prior.1, which denotes the probability that a SNP is

associated with one trait only, was set to 1 3 10�10, six times

smaller than the default. We set the second parameter prior.2 to

0.7 instead of the default of 0.98. 1-prior.2 denotes the prior prob-

ability of a SNP being associated with an additional trait and 1-

(prior.2)2 with the SNP being associated with the two other traits.

LD between SNPs was again calculated using plink (v.2.0 alpha)23

based on the UK biobank.24

Scoring of potential effector genes

In genomic loci that colocalized between type 2 diabetes and at

least one osteoarthritis phenotype with a PP4 > 0.8, we analyzed

all genes in a 1-Mb window on either side of the lead variant of

the 95% credible set. We incorporated orthogonal multi-omics

and functional information to derive a list of high-confidence

effector genes for the type 2 diabetes-osteoarthritis comorbidity.

Except for the pQTL analysis, all four above-mentioned biolog-

ical lines of evidence were tested for both osteoarthritis and type 2

diabetes, yielding one separate score for each disease. Additionally,

we incorporated information about previously established high-

confidence effector genes for the individual diseases. For type 2

diabetes, we defined genes as high confidence if their top score

in the type 2 diabetes knowledge portal was at least 4 (https://

t2d.hugeamp.org/). For osteoarthritis, we selected genes scored

as high confidence by the GO consortium.15 Because our analysis

overlaps with criteria used to define a gene as high confidence for

the individual diseases, we followed an approach to incorporate

this information orthogonally: if a gene is high confidence for a

disease but scored zero in our analysis, we updated the respective

disease score to one.

We also looked up all variants in the 95% credible sets and

searched for any missense variants for the genes located in the co-

localized genomic loci. The results of this lookup were consoli-

dated into an additional score for each gene, defined as the

missense variant score. The total score was defined as the sum of

the osteoarthritis score, the type 2 diabetes score, and themissense
ust 3, 2023

https://www.mousephenotype.org/
http://www.informatics.jax.org/
https://rgd.mcw.edu/
https://omim.org/
https://t2d.hugeamp.org/
https://t2d.hugeamp.org/


variant lookup. However, if for a gene only the missense variant

score is non-zero, the total score was set to zero because it is not

relevant for the type 2 diabetes-osteoarthritis comorbidity.

Based on the scoring of the six orthogonal biological lines of ev-

idence, we defined genes as potential effector genes if they showed

at leastone lineof evidence for eitheroneof thediseases.Genes that

scored at least one line of evidence for osteoarthritis and one for

type2diabetesweredefinedas likely effector genes for comorbidity.

High-confidence effector genes were a subset of the likely effector

genes that scored at least 3 in the total score (Table S3).

To further analyze our set of effector genes, we grouped them ac-

cording to the osteoarthritis localization. If a gene is located in a

genomic locus that colocalizes only between type 2 diabetes and

the following three osteoarthritis phenotypes (osteoarthritis at

any site, knee and/or hip osteoarthritis, and/or TJR), then it was

considered to be associated equally with knee and hip osteoar-

thritis. If, in addition, the genomic locus colocalizes between

type 2 diabetes and knee and/or TKR, then we considered the

gene to be mostly associated with knee osteoarthritis. Similarly,

if it also colocalizes between type 2 diabetes and hip and/or

THR, then the gene was classified as mostly related to hip

osteoarthritis.

Multi-trait statistical colocalization analysis with adiposity measures

In the genomic regions that colocalized between type 2 diabetes

and osteoarthritis, we performed multi-trait colocalization ana-

lyses between type 2 diabetes, osteoarthritis, and the above-

mentioned measures of adiposity. The analyses were performed

only on the variants in the 95% credible set. If the 95% credible

set consisted only of a single variant, for each gene or protein,

we included all variants in a 1-Mb window on either side of the

single variant in the analysis. As for the molecular QTL colocaliza-

tion, we used the same functions of the R package HyPrColoc

(v.1.0.0) and adjusted the prior parameters accordingly (prior.1 ¼
13 10�10, prior.2¼ 0.7).27 For consistency, evidence for colocaliza-

tion was considered at a threshold of 0.8 for PP4.

Pathway analysis

We performed gene set enrichment analyses on the likely and

high-confidence effector genes stratified by knee or hip osteoar-

thritis association (Table S5). The number of genes in each set is

summarized in Table 2. We used the human resources and the

enrichment software from the ConsensusPathDB (http://cpdb.

molgen.mpg.de/) to examine the functional annotation of each

gene set by testing their enrichment among curated networks in

humans.28 We used the networks from Reactome,29 KEGG,30

WikiPathways31 and Gene Ontology.32 For the latter, we included

the subcategories molecular function, biological processes, and

cellular component up to level 4. We required a minimum overlap

of two genes for enrichment. The significance threshold was set at

false discovery rate (FDR) < 0.05.

Classification of high-confidence genes on the basis of association

with obesity

We have classified the high-confidence genes based on the level of

association with obesity. For level 1, we searched OMIM for dis-

eases or susceptibility to diseases associated with obesity. For level

2, we conducted a search on PhenoScanner (v.2, http://www.

phenoscanner.medschl.cam.ac.uk/)33 by querying their database

using their R package phenoscanner and Ensembl (GRCh37) by us-

ing their API in R. If variants in the genes were associated with

phenotypes associated with obesity, the gene was defined as level

2. We tried to capture different aspects of obesity by looking for

following adiposity phenotypes: BMI, WHR, weight, fat percent-

age, and fat mass. We combined the results of PhenoScanner
The American
and Ensembl to maximize the genes associated with adiposity

measures. The remaining genes were included in level 3 and

were defined as having no association with obesity.

Druggable genome

To outline drug repurposing targets, we queried the druggability

status of the 72 likely effector genes for the comorbidity. We

used the Druggable Genome database, which consists of 4,479

genes that are classified into three tiers depending on their prog-

ress in the drug development pipeline.34 Tier 1 included 1,427

genes that are clinical-phase drug candidates or targets of

already-approved small molecules and biotherapeutic drugs. Tier

2 consisted of 682 genes that encode targets with known bioactive

drug-like small-molecule binding partners and genes with R 50%

identity (over 75% of the sequence) with approved drug targets.

Tier 3 comprised 2,370 genes encoding secreted or extracellular

proteins, proteins with more distant similarity to approved drug

targets, and members of key druggable gene families that were

not included in tier 1 or 2. Tier 3 was further subdivided to prior-

itize genes in proximity (550 kbp) to a GWAS SNP from the GWAS

catalog35 and had an extracellular location (Tier 3A). Tier 3B is

composed of the remaining genes.

For the likely effector genes included in tier 1, we further exam-

ined the approved or in-clinical-trial drugs by using the DrugBank

online database (https://www.drugbank.com, accessed on August

1, 2022).

Causal inference analysis

Causal inference was strengthened through use of bidirectional

two-sample MR between type 2 diabetes and all analyzed osteoar-

thritis phenotypes.10 We used the TwoSampleMR R package

(v.0.5.6), which is curated by MR-Base.36 We performed causal

inference analyses on the full summary statistics (Table S6). For

all analyses, instrumental variables (IVs) were selected as the

genome-wide significant (p value % 5x10�8) and independent

SNPs from the full data. Independence was defined as LD-based

clumped SNPs with a strict LD threshold of R2 ¼ 0:001 over a

10-Mb window on either side of the index variant. To assure

that the IVs are more strongly related to the exposure than to

the outcome, we applied Steiger filtering.10 We applied the in-

verse-variance weighted (IVW) method, which performs a

random-effects meta-analysis of the Wald ratios for each SNP,

and the weighted median (WM) method. Finally, we performed

sensitivity analyses by testing for heterogeneity based on the Q

statistic using the mr_heterogeneity function from the TwoSam-

pleMR R package. Horizontal pleiotropy was assessed through the

intercept of the MR-Egger regression.37 To account for multiple

testing, p values were adjusted via the FDR approach.10

Two-step MR

We performed a two-step MR analysis between different adiposity

measures and type 2 diabetes or osteoarthritis using cis eQTLs of

each high-confidence effector gene in disease-relevant tissues as

mediators (Table S7).38 In the first step, we assessed whether

adiposity was causal for the expression of our genes in the respec-

tive analyzed tissues. To assure independence of IVs between the

two steps, we excluded independent eQTLs from the risk variants

of each adiposity measure. Independence was defined by local LD-

based clumping with R2 ¼ 0:001 over a 10-Mb window on either

side of the index variant.

For the second step, we used independent genetics variants asso-

ciated with the expression of each high-confidence gene as IVs and

conducted a two-sample MR analysis between each of our genes

and type 2 diabetes or osteoarthritis. For each analyzed tissue and

each gene-disease pair, we conducted one MR analysis using the
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Table 2. Number of genes in each gene set

Gene set Number of genes

Likely effector genes 72

Likely effector genes related to knee 67

Likely effector genes related to hip 43

HC effector genes 19

HC effector genes related to knee 18

HC effector genes related to hip 10

HC ¼ high confidence
TwoSampleMR R package (v.0.5.6).36 If only one SNP was available

after clumping and harmonizing the data, we employed the Wald

ratiomethod. Ifmore than one SNP remained after the pre-process-

ing steps, we applied the IVWmethod and tested for heterogeneity

with the mr_heterogeneity function. Moreover, if more than three

SNPs were used for the causal inference analysis, we also tested for

horizontal pleiotropy through MR-Egger regression.37 Addition-

ally, we estimated the F statistics from summary-level data as

meanðbeta2 =se2Þ to assess the strength of the IVs.10 Finally, we

adjusted the p values for multiple testing by using the FDR

approach.

Tissue-specific effects

We determined the tissue-specific role of BMI in both osteoar-

thritis and type 2 diabetes using MR restricted to BMI instruments

colocalizing with eQTLs in brain and adipose tissue, respectively,

as described in Leyden et al.39 (Table S12). In brief, summary-level

MR was performed restricted to the 86 adipose tissue-colocalizing

SNPs and the 140 brain tissue-colocalizing SNPs, where the

numerator of the Wald ratio is the SNP effect on osteoarthritis or

type 2 diabetes and the denominator is the effect estimate for

the SNP on BMI from a GWAS meta-analysis of UK Biobank and

the GIANT consortium40 available at the MR-Base platform.36

Osteoarthritis summary statistics were extracted from the recent

GWAS of hip and knee osteoarthritis from the GO consortium.15

Type 2 diabetes summary statistics were extracted from the recent

European DIAMANTE consortium GWAS.16

We used IVWmeta-analysis of the individual SNPWald ratios to

estimate the causal effects of adipose-tissue-instrumented BMI and

brain tissue-instrumented BMI on each outcome. As sensitivity an-

alyses, we performedMR-Egger37 to determine the potential role of

pleiotropic effects (i.e., mediated via BMI-independent pathways),

which gives a pleiotropy robust estimate of the causal effect

assuming that there is no correlation between instrument strength

(i.e., the association of the SNP with BMI) and the pleiotropic ef-

fect.10 We also performed WM analysis, which gives an unbiased

estimate of the causal effect as long as less than 50% of the SNPs

are invalid instruments.41 We performed a Z test to assess the ef-

fect difference between adipose tissue- and brain tissue-instru-

mented BMI MR analyses.
Results

Insights into disease biology and treatment targets

We first assessed the genetic correlation between type 2

diabetes (Ncases ¼ 74;124,Ncontrols ¼ 824;006) and osteoar-

thritis (knee: Ncases ¼ 62;497, Ncontrols ¼ 333;557; hip:
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Ncases ¼ 36;445, Ncontrols ¼ 316;943) on a genome-wide

scale by using data from the recent large GWAS meta-

analyses (Table S1andFigure1). In linewithepidemiological

evidence, we found a greater magnitude of genetic correla-

tion between type 2 diabetes and knee osteoarthritis (rg ¼
0.241, SE ¼ 0.028, p ¼ 2.65 3 10�18) than osteoarthritis of

the hip (rg ¼ 0.078, SE ¼ 0.029, p ¼ 0.008) (Figure 1A). To

assess the potential for bias due to overlapping samples

and different sample sizes, we also performed a permuta-

tion-based analysis (empirical p value for knee ¼ 0.005,

empirical p value for hip ¼ 0.142) (Figure 1B and Table S2).

Causal inference analyses using MR showed evidence

for a non-causal relationship between the two diseases

(Table S6), consistent with smaller-scale studies in the

literature.12

Using pairwise Bayesian colocalization analyses on

genome-wide significant regions for osteoarthritis (p ¼
1:33 10�8) or type 2 diabetes (p ¼ 53 10�8), we found

robust evidence of colocalization (posterior probability of

a shared causal variantR 0.8) for 51 signals. Some of those

signals colocalize between type 2 diabetes, and more than

one osteoarthritis phenotype related to the knee and/or

hip, resulting in 18 unique colocalizing genomic loci

(Table S2 and Figures S5–S22). Ten of those loci colocalize

with type 2 diabetes for both hip and knee osteoarthritis,

two colocalize for hip osteoarthritis only, and six colocalize

only for knee osteoarthritis. In three genomic loci, the 95%

credible set for the causal variant from the colocalization

analysis consisted of a single variant (Figure 2).

To resolve the colocalizing signals between type 2 dia-

betes and osteoarthritis, we have incorporated multi-omics

data and functional information. On the basis of six com-

plementary lines of evidence, we analyzed and scored all

906 genes located in the colocalized genomic loci and

identified shared high-confidence candidate effector genes

for the type 2 diabetes-osteoarthritis comorbidity (Figure 3

and Table S3). Our analysis included further statistical co-

localization of the shared signals with gene eQTLs and

pQTLs from disease-relevant tissues (cartilage chondro-

cytes, synoviocytes, and/or pancreatic beta cells). Twelve

of the 18 colocalizing regions between type 2 diabetes

and osteoarthritis showed statistical evidence for colocali-

zation with a molecular QTL. We searched the variants in

the 95% credible set for any missense variant associated
ust 3, 2023



Figure 1. Stronger evidence for a genetic
correlation between type 2 diabetes and
knee osteoarthritis than between type 2
diabetes and hip osteoarthritis
(A) Genetic correlation (rg) results between
type 2 diabetes (T2D) and knee or hip oste-
oarthritis (OA). The error bars represent the
standard error of the estimated genetic cor-
relation.
(B) Permutation-based testing results for
knee OA and hip OA, respectively. The
red line is the actual correlation.
with the candidate genes. As a further line of evidence, we

assessed whether the genes were differentially expressed in

pancreatic islets from healthy versus diabetic individuals

and intact versus degraded osteoarthritis cartilage. We

searched the genes in databases for knockout mice and

for rare and syndromic human diseases for association

with pre-defined phenotypes related to type 2 diabetes

and osteoarthritis. Finally, we included information on

curated, previously defined effector genes for the individ-

ual diseases.

We defined 72 genes as likely effector genes for the type 2

diabetes-osteoarthritis comorbidity, as they displayed at

least one line of supporting evidence for being involved in

both diseases. Of the 72 likely effector genes, 19 showed at

least three lines of evidence and were defined as high-confi-

denceeffectorgenes (Figure4). These represent relevant can-

didates for further functional and clinical research. Knock-

out mouse models for 17 out of the 19 high-scoring genes

show phenotypes associated with both type 2 diabetes and

osteoarthritis, which supports the role of those genes on

the comorbidity. Eleven of these have not previously been

defined as high-confidence effector genes for either disease

based on a recent osteoarthritis study15 and the type 2 dia-

betes knowledge portal (https://t2d.hugeamp.org/). For

two of the high-confidence genes, APOE and WSCD2, the

95% credible set for the causal variant from the colocaliza-

tion analysis includes missense variants, namely rs429358

(c.466T>C [GenBank: NM_001302688.2] [p.Cys156Arg])

and rs3764002 (c.797C>T [GenBank:NM_014653.4] [p.Thr

266Ile]). Six out of 19 high-confidence effector genes are the

nearest gene to the leadvariantof the respective colocalizing

genomic locus: WSCD2, TCF7L2, JADE2, GLIS3, FTO, and

APOE (Figure S3).
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We searched the druggable genome

for the druggability status of the likely

effector genes for the type 2 diabetes

and osteoarthritis comorbidity.34

Sixteen out of 72 genes were included

in the druggable genome (Table S4).

Of these, six genes are tier 1 druggable

targets (GIPR, TPO, PAK1, SIGMAR1,

CTSB, NOS3), i.e., they are targets of

drugs that have market authorization

or are in clinical development. The
GIPRagonist tirzepatidewas recently approved for the treat-

ment of type 2 diabetes in adults. It has glucose-lowering ef-

fects and has been shown to increase insulin sensitivity.42

The PAK1 inhibitor fostamatinib has been approved for

the treatment of chronic immune thrombocytopenia.43 It

is also in clinical trial for the treatment of rheumatoid

arthritis in order to alleviate the degree of inflammation

of the joints.44 SIGMAR1 is a target of multiple approved

drugs, including pentazocine, which is an analgesic used

to treatmoderate-to-severe pain. Naltrexone, an antagonist

used in opioid overdose that also targets SIGMAR1, is being

investigated for treating obesity.45,46 TPO encodes the thy-

roid peroxidase protein, which is the target of several

approved drugs for the treatment of hyperthyroidism.

One of these, the thyroid hormone dextrothyroxine, has

been shown to lower serum levels of cholesterol inhumans,

but the interventional study has been discontinued due to

serious adverse effects.47

The 72 likely effector genes were enriched for several

metabolic and cellular processes and for lipid localization

and storage pathways. Hip osteoarthritis-related likely

effector genes were enriched for bone-development path-

ways and metabolic processes. The 19 high-confidence

effector genes were enriched for biological pathways

related to diet and obesity (response to caloric restriction

and FTO obesity variant mechanism) and for regulation

of cell differentiation. The high-confidence genes related

to hip osteoarthritis were enriched for the FTO-obesity-

variant-mechanism pathway, regulation of lipid localiza-

tion, and for a biological pathway related to skeletal forma-

tion (proximal/distal pattern formation) (Table S5 and

Figure S4). These results provide biological support

for the link between obesity and both diseases and for
ics 110, 1304–1318, August 3, 2023 1309
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Figure 2. Overview of colocalizing regions between type 2 diabetes and osteoarthritis
The y axis depicts the posterior probability of a shared causal variant (PP4) and the x axis the number of variants in the 95% credible set
for the causal variant. Each point represents a colocalized signal between type 2 diabetes and one osteoarthritis (OA) phenotype. Point
size is proportional to the number of variants in the colocalization analysis 95% credible set. We find strong statistical evidence for co-
localization (PP4 > 0.8) for 51 signals. Some of those 51 signals colocalize between type 2 diabetes and more than one OA phenotype,
resulting in 18 unique colocalizing genomic loci.
the association between bone development and hip

osteoarthritis.7

Disentangling the effect of obesity

Obesity plays a causal role in both type 2 diabetes and oste-

oarthritis. To explore the role of obesity on the co-occur-

rence of type 2 diabetes and osteoarthritis, we studied

four different measures that capture different aspects of

obesity and adiposity: BMI, WHR, whole-body fat mass,

and body fat percentage. Sixteen out of the 18 genomic re-

gions that colocalized between type 2 diabetes and osteoar-

thritis show evidence of association or colocalization

(PP4 > 0.8) with at least one adiposity-related trait

(Table S11). Four high-confidence effector genes reside in

the two genomic regions that do not show any evidence

of colocalization or association with the analyzedmeasures

of adiposity: TMEM176A, RARRES2, SMARCD3, and GLIS3.

These may point to alternative biological mechanisms

other than adiposity in the comorbidity between type 2

diabetes and osteoarthritis for these colocalizing signals.

We classified the high-confidence effector genes accord-

ing to their level of association with obesity. Level 1 was

defined as genes with variants directly associated with

obesity or susceptibility to obesity in the OMIM database

and included only one gene: FTO. Level 2 included nine

genes for which variants in the gene were associated

with the above-mentioned adiposity phenotypes on

PhenoScanner or Ensembl. Finally, level 3 consisted of
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the remaining nine genes, which were associated with

obesity on the basis of our analysis (Table S13).

Next, we sought to investigate whether the adiposity

measures that capture different aspects of obesitywere caus-

ally associated with the expression of high-confidence

effector genes in disease-relevant tissues. Within the con-

straints of the available instruments (material and

methods), we found evidence of a causal relationship be-

tween several adipositymeasures andninehigh-confidence

effector genes (Table S7). For example, we found that all

measures of adiposity have a causal effect on higher expres-

sion of IRX3 in synovium or pancreatic islets and on lower

expression of RTN2 in osteoarthritis cartilage. For the high-

confidence effector genes located in the two genomic loci

that did not show evidence of association or colocalization

with adiposity, the direction of effect was not consistent

across the different measures employed.

We assessed the causal role of BMI-associated variants

with tissue-specific effects, selected based on evidence of

their colocalization with brain or subcutaneous adipose tis-

sue eQTLs.39 For type 2 diabetes, we replicated previous re-

sults and showed that BMI-associated variants influencing

genes expressed in brain tissue exert a stronger effect on

the disease than adipose tissue-related variants,39 although

CIs largely overlapped. For knee osteoarthritis, we

observed the same trend (Figure S23). For hip osteoar-

thritis, the results of the causal inference analysis provide

evidence for a stronger effect of BMI-associated variants
ust 3, 2023



Figure 4. Overview of the 19 high-confidence effector genes for
the type 2 diabetes and osteoarthritis comorbidity
Genes are stratified based on the joint affected by osteoarthritis. The
scoring of the six biological lines of evidence is depicted on the right
(material andmethods). OA¼ osteoarthritis; T2D¼ type 2 diabetes;
molQTLs ¼ molecular quantitative trait loci; DEG ¼ differential ex-
pressed genes; KOmice ¼ knockout mice; OMIM ¼ Online Mende-
lian Inheritance in Man; HC ¼ previously defined high-confidence
effector genes; missense ¼ missense variant.

Figure 3. Study design to derive a list of high-confidence
effector genes for the type 2 diabetes and osteoarthritis comor-
bidity
In each of the unique 18 genomic loci that colocalized between
type 2 diabetes and osteoarthritis with a posterior probability of
a single shared causal variant (PP4) R 0.8, we explored all genes
in a 1-Mb window on either side of the lead variants of the 95%
credible set for the causal variant of the colocalization analysis.
For each gene, we searched databases for knockout mice and rare
and syndromic human diseases for pre-defined type 2 diabetes-
andmusculoskeletal-related phenotypes. We also examined differ-
entially expressed genes (DEGs) in pancreatic islets of healthy
versus diabetic individuals and of degraded versus intact osteoar-
thritis cartilage. We also assessed whether the genes were already
previously defined as established effector genes for the individual
diseases. We examined all variants in the 95% credible set for the
causal variant of each colocalization locus for missense variants
within genes located in the colocalized genomic loci. We per-
formed regional multi-trait colocalization analyses between type
2 diabetes, each osteoarthritis phenotype, and molecular QTLs
from disease-relevant tissues.
that colocalize with adipose tissue eQTLs than with brain

eQTLs (Table S12). Our results suggest a similar biological

underpinning of the adiposity effect captured by BMI on

type 2 diabetes and knee osteoarthritis but potentially

different processes for hip osteoarthritis.

Insights gained from individual loci

FTO and IRX3

The obesity-related FTO locus colocalizes for type 2 dia-

betes and osteoarthritis with a posterior probability of a

shared causal variant of over 92% (Figure 5A). The 95%

credible set from the colocalization analysis consists of

multiple variants in high LD with each other. The risk-

increasing alleles for the lead causal variants are the same

across type 2 diabetes and osteoarthritis. In addition to

FTO, this locus is associated with a further high-confidence

effector gene, IRX3. IRX3 eQTLs in pancreatic islets coloc-

alize with type 2 diabetes and osteoarthritis genetic signals

with a PP4 > 0.8.

As shown above, adiposity is causally associated with an

increase in IRX3 expression in pancreatic islets and syno-
The American
vium (Table S7). Here, we performed causal inference ana-

lyses between the expression of high-confidence genes at

this locus and type 2 diabetes or osteoarthritis. We find ev-

idence for a causal effect of increased expression of IRX3 in

pancreatic islets on increased risk of type 2 diabetes (OR ¼
1.16, 95% CI ¼ [1.08, 1.25], p value ¼ 4.4 3 10�5, F

stat ¼ 16.7).

FTO is a high-confidence osteoarthritis effector gene

involved in skeletal development, adipogenesis, and

neuronal function and development.15 It is also associated

with syndromic human disease growth retardation, devel-

opmental delay, and facial dysmorphism (GDFD), which

is a lethal autosomal-recessive multiple-congenital-anom-

aly syndrome.48 IRX3 is a known functional long-range

target of FTO variants associated with obesity.49 FTO- and

IRX3-knockout mice show decreased body weight,

decreased bone mineral density, and improved glucose

tolerance (high bone mineral density is a risk factor for

hip and knee osteoarthritis50). We expected genes with an

adiposity-driven effect to be involved in the shared genetic
Journal of Human Genetics 110, 1304–1318, August 3, 2023 1311



Figure 5. Regional association plots of the highlighted colocalizing regions between type 2 diabetes and osteoarthritis
(A–D) FTO and IRX3 region; (B) TCF7L2 region; (C) WSCD2 and TMEM119 region; (D) TMEM176A region. The plots are colored on the
basis of linkage disequilibrium between the lead causal variant of the colocalization and all other variants in the region. The red dashed
line represents the genome-wide significance threshold (p value¼ 53 10�8), and the blue dashed line represents a suggestive association
threshold (pvalue¼10�6). PP4¼posteriorprobability of a single sharedcausal variant;OA¼osteoarthritis; T2D¼ type2diabetes; allOA¼
osteoarthritis at any site.
etiology of the type 2 diabetes-osteoarthritis comorbidity

because obesity constitutes a common risk factor.8

TCF7L2

TCF7L2 is one of the highest-scoring effector genes. This

genomic locus colocalizes for type 2 diabetes and knee
1312 The American Journal of Human Genetics 110, 1304–1318, Aug
osteoarthritis with a posterior probability of a shared causal

variant of over 93% (Figure 5B). Here, the 95% credible set

for the causal variant from the colocalization analysis con-

sists of three variants, which have opposite risk-increasing

alleles for type 2 diabetes and knee osteoarthritis (Table S8).
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Variants in TCF7L2 have not been associated with osteoar-

thritis at genome-wide significance levels in the recent

osteoarthritis GWAS (all variants in the credible set of the

colocalization analysis achieve nominal significance in

the recent knee osteoarthritis GWAS15). Genetic variants

associated with TCF7L2 expression in pancreatic islets

and in osteoarthritis cartilage colocalize with this associa-

tion signal. For the variants in both 95% credible sets

from these colocalization analyses, the risk-increasing al-

leles for type 2 diabetes are associated with a lower BMI,

a lower risk of knee osteoarthritis, and an increased expres-

sion of TCF7L2 in pancreatic islets and osteoarthritic

cartilage.

We found evidence that increased BMI causes decreased

expression of TCF7L2 in intact and degraded cartilage

(Table S7). Additionally, we found evidence that an in-

crease in TCF7L2 expression in pancreatic islets causes an

increase in type 2 diabetes risk (OR ¼ 5.1, 95% CI ¼ [4.7,

5.4], p value < 1 3 10�300, F stat ¼ 2,018) and a decrease

in knee osteoarthritis risk (OR ¼ 0.83, 95% CI ¼ [0.77,

0.91], p value ¼ 1.77 3 10�5, F stat ¼ 18.4). These results

are in line with the evidence shown above in support of

an opposite effect of the genetic variants associated with

the expression of TCF7L2 in knee osteoarthritis and type

2 diabetes risk.

TCF7L2 is amongthe leadingsignals for type2diabetes risk

andpersists as a top signal after adjustment forBMI.51Our re-

sults suggest that TCF7L2 exerts an effect that goes through

an alternative biological pathway to increased BMI. It has

been shown that isoforms ofTCF7L2 regulate the expression

of genes related to cartilage destruction in human chondro-

cytes.52 TCF7L2 is a key effector gene of the Wnt/b-catenin

signaling pathway. This pathway plays a role in both type 2

diabetes, through glucose homeostasis, and osteoarthritis,

through cartilage and bone formation.53,54

TMEM119 and WSCD2

Two high-confidence effector genes, WSCD2 and TMEM

119, reside in the same genomic locus, which colocalizes

for type 2 diabetes and knee osteoarthritis with a posterior

probability of 99.9% (Figure 5C). The 95% credible set

consists of two variants: rs1426371 and rs3764002, an in-

tronic and a missense variant (amino acid change: Thr

266Ile) within WSCD2, respectively. The risk-increasing

alleles of both variants are concordant for osteoarthritis

of the knee and type 2 diabetes. The variant with the

highest posterior probability of being causal for osteoar-

thritis and type 2 diabetes, rs1426371, has reached gen-

ome-wide significance levels in the recent knee osteoar-

thritis GWAS meta-analysis.15 The missense variant,

rs3764002, is associated with WHR,55 type 2 diabetes,16

lean mass,56 and anxiety and neuroticism.57 The missense

variant is predicted to alter protein function, and this

alteration is predicted to be damaging by both SIFT (https:

//sift.bii.a-star.edu.sg) and PolyPhen (http://genetics.bwh.

harvard.edu/pph2/).

WSCD2 eQTLs in degraded osteoarthritis cartilage coloc-

alize with type 2 diabetes and knee osteoarthritis with a
The American
posterior probability of 99%. The lead eQTLs are

rs1426371 and rs3764002. The expression level-increasing

alleles are the same as the risk-increasing alleles for both

diseases (Table S9). WSCD2 is also a differentially

expressed gene (DEG) in pancreatic islets from individuals

with diabetes versus healthy individuals and is downregu-

lated in diabetic islets. Moreover, it has been previously

shown that WSCD2 is functionally associated with

type 2 diabetes and positively correlated with insulin secre-

tion.58,59 Conclusions from causal inference analysis were

limited as a result of weak instruments (F statistic < 10),

which can bias causal effect inference (Table S7). Further

research is needed to better understand the biological

mechanisms through which WSCD2 influences the type

2 diabetes-osteoarthritis comorbidity.

TMEM119 is the second-most highly scoring high-confi-

dence effector gene. It is a DEG in osteoarthritis cartilage

and pancreatic islets and is more highly expressed in

degraded compared with intact cartilage and in healthy

compared with pancreatic islets. Knockout mice for

TMEM119 show phenotypes related to both osteoarthritis

and type 2 diabetes, such as decreased body weight, im-

paired osteoblast differentiation, and decreased compact

bone thickness. TMEM119 is related to bone formation

by promoting osteoblast differentiation.60 Fewer osteo-

blasts can lead to a decrease in compact bone thickness,

which is also observed in knockout mice.61 The overex-

pression of TMEM119 in degraded cartilage from individ-

uals with osteoarthritis supports the evidence of an in-

crease in bone formation in later stages of the disease.62

However, the lower expression of TMEM119 in diabetes

compared with healthy pancreatic islets points to further

potential mechanisms of effect in the comorbidity.

TMEM176A

Variants in TMEM176A, also a high-confidence effector

gene for the investigated comorbidity, have not been pre-

viously identified as implicated in either osteoarthritis or

type 2 diabetes in the previous recent GWAS for the indi-

vidual diseases. This locus colocalizes for type 2 diabetes

and knee osteoarthritis with a posterior probability of a

shared causal variant of 99.3% (Figure 5D). The index var-

iants are rs62492368 and rs7794796, both located in the

intron of AOC1. rs62492368 is associated with type 2 dia-

betes,16 and rs7794796 is associated with appendicular

lean mass.63 Type 2 diabetes and osteoarthritis show oppo-

site risk-increasing alleles for all variants in the 95% cred-

ible set from the colocalization analysis (Table S10). These

variants colocalize with PP4 > 0.8 between the diseases

and eQTL data from pancreatic islets and synovium. The

index variants from the colocalization with eQTLs also

have opposite risk-increasing alleles for both diseases.

Similar to the TCF7L2 locus case, our results suggest that

the mechanism through which TMEM176A exerts an ef-

fect on osteoarthritis and type 2 diabetes may have con-

trary directions.

We foundbody fat percentage to be linked to adecrease in

the expression ofTMEM176A in synovium (Table S7), albeit
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with weak instruments (F statistic < 10). Decreased expres-

sion of TMEM176A in intact osteoarthritis cartilage and

pancreatic islets was associated with reduced risk of type 2

diabetes (pancreatic islets: OR ¼ 1.14, 95% CI ¼ [1.07,

1.21], p value ¼ 8.5 3 10�5, F stat ¼ 15.4; cartilage: OR ¼
1.05, 95% CI ¼ [1.03, 1.08], p value ¼ 8.5 3 10�5, F stat ¼
15.4) and increased risk of knee osteoarthritis (pancreatic is-

lets: OR ¼ 0.93, 95% CI ¼ [0.87, 0.99], p value ¼ 0.048,

F stat ¼ 3.9; cartilage: OR ¼ 0.97, 95% CI ¼ [0.94, 0.99],

p value ¼ 0.048, F stat ¼ 3.9). This genomic locus is one of

the two colocalizing regions that do not show any evidence

of statistical colocalization between type 2 diabetes, osteo-

arthritis, and the adipositymeasures studied here. This sug-

gests that this region, and possibly TMEM176A, acts

through an alternative biological path to adiposity.

Results of the causal inference analysis mirror the output

of differential expression analyses conducted in pancreatic

islets and osteoarthritic cartilage.25,26 While TMEM176A is

morehighlyexpressed inpancreatic isletsofdiabetic individ-

uals than in healthy pancreatic islets, an increase of its

expression in the same tissue has a causal effect on increased

riskof type2diabetes. Similarly,whileTMEM176Awas found

to have lower expression in degraded compared with intact

cartilage, the reduced expression of this gene in intact carti-

lage has a causal effect on increased risk of TKR.
Discussion

We present a genetic databased approach to disentangle the

shared genetic etiology between two co-occurring chronic

diseases and applied it to a common comorbidity pair: type

2 diabetes and osteoarthritis. Studies have shown a stronger

association of BMIwith osteoarthritis of the knee than of the

hip.12Wefind stronger statistical evidence of a genetic corre-

lation between type 2 diabetes and knee osteoarthritis than

between type2 diabetes andhip osteoarthritis. By leveraging

recent large-scale GWASs for both diseases, we find evidence

of colocalization at 18 genomic loci, and by incorporating

multi-omics and functional genomics information, we

derive a list of 19 high-confidence effector genes for the co-

morbidity. The majority of genomic loci colocalize for type

2 diabetes and knee, rather than hip, osteoarthritis, in keep-

ing with the genome-wide-correlation analysis results.

Our findings support the epidemiological link between

obesity, osteoarthritis, and type 2 diabetes. In this case,

only two of the 18 colocalized regions do not colocalize

with measures of adiposity. Several of the high-confidence

genes, including FTO and IRX3, are associated with

obesity-related traits.We show that the identifiedhigh-con-

fidence effector genes are enriched for biological pathways

associated with adiposity. Stratifying the high-confidence

effector genes into knee or hip osteoarthritis provides

further insight into the biological mechanisms underlying

the comorbidity. High-confidence effector genes mostly

related to hip osteoarthritis are also enriched for biological
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pathways of skeletal formation, which underlines the

strong link between bone development and hip osteoar-

thritis.7 Given that two-thirds of FDA-approved drugs are

supported by genetic evidence, we explore the druggable

potential of the prioritized genes.64 We highlight approved

drugs currently used for the treatment of diabetes, obesity,

pain, and inflammation.

Observational studies report that the positive associa-

tion between type 2 diabetes and osteoarthritis persists af-

ter adjusting for BMI.9 As BMI only captures a limited sub-

set of the effect of adiposity on the comorbidity, this could

be a source of residual confounding due to measurement

error,65 and observed attenuation of association can be

underestimated. We performed in-depth analyses to disen-

tangle the role of adiposity on comorbidity and find evi-

dence that TCF7L2 and TMEM176A exert an effect on

type 2 diabetes and osteoarthritis through an alternative

biological path. Further examination, including functional

studies, is needed to dissect the precise way in which these

genes affect comorbidity.

Type 2 diabetes and insulin resistance are known to be

negatively correlated with bone strength and are also asso-

ciatedwithbone fracture.66Onepossible linkbetweenbone

and lipid metabolism is the fact that osteoblasts and adipo-

cytes share a commonprogenitor cell in adult bonemarrow

with a degree of plasticity that can lead to an imbalance be-

tween the two cell lineages.67 In support of this link, differ-

entiation regulation of osteoblasts is highlighted by one of

the identifiedhigh-confidence effector genes,TMEM119. In

summary, we highlight three potential biological mecha-

nisms underpinning the comorbidity between type 2 dia-

betes and osteoarthritis: obesity, imbalance between osteo-

blasts and adipocytes differentiation in adult bone marrow

and the Wnt/b-catenin signaling pathway.

We apply statistical colocalization analysis on regions

where at least one of the studied diseases shows evidence

of genome-wide association (p value < 5 3 10�8) but not

necessarily both. We have chosen this approach to over-

come possible power issues from the individual GWASs

due to different disease heterogeneity and sample sizes.

Further, we embellish the colocalization results with a

deep dive into biological lines of evidence for effector

gene involvement in the colocalizing regions. The genetic

and functional genomic data employed in this study are

biased toward European populations. Going forward, it

will be important to expand analyses to data from diverse

populations. We have not performed analysis adjusted for

BMI or other obesity-related phenotypes to avoid intro-

ducing collider bias. The eQTL data from pancreatic islets

used in the analyses here comprise almost four times as

many samples as the eQTL data from chondrocytes. There-

fore, molecular QTL analyses for type 2 diabetes-relevant

tissues were better powered than for osteoarthritis-relevant

tissues. MR and the subsequent sensitivity analyses were

conducted within the constraints of available instruments

for expression of the high-confidence genes. This was
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partially because the molecular QTL data used in this work

include cis QTLs only, which restricts the analyses to vari-

ants within the vicinity of the genes or proteins of interest.

Future studies should include a wider array of (as of now

unavailable) genome-wide molecular QTLs, including at

the single-cell level.

This work provides a proof of concept for the application

of a study design that is relevant to any pair of comorbid dis-

eases.We have studied one of the most frequently co-occur-

ring pairs of complex diseases: type 2 diabetes and osteoar-

thritis. Our findings offer insights into the biological

processes underpinning comorbidity and highlight poten-

tial drug repurposing opportunities in addition to new tar-

gets. As the world population life expectancy continues on

anupward trajectory, the challenge of tacklingmultimorbid-

ity will continue to be high on the healthcare agenda. Gen-

omic-data-based approaches, as exemplified here for type 2

diabetes and osteoarthritis, can help improve our under-

standing of the co-occurrence of chronic conditions.
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