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Broad-host-range synthetic biology is an emerging frontier that aims to expand our current engineerable 
domain of microbial hosts for biodesign applications. As more novel species are brought to “model status,” 
synthetic biologists are discovering that identically engineered genetic circuits can exhibit different 
performances depending on the organism it operates within, an observation referred to as the “chassis 
effect.” It remains a major challenge to uncover which genome-encoded and biological determinants 
will underpin chassis effects that govern the performance of engineered genetic devices. In this study, 
we compared model and novel bacterial hosts to ask whether phylogenomic relatedness or similarity 
in host physiology is a better predictor of genetic circuit performance. This was accomplished using a 
comparative framework based on multivariate statistical approaches to systematically demonstrate the 
chassis effect and characterize the performance dynamics of a genetic inverter circuit operating within 6 
Gammaproteobacteria. Our results solidify the notion that genetic devices are strongly impacted by the 
host context. Furthermore, we formally determined that hosts exhibiting more similar metrics of growth 
and molecular physiology also exhibit more similar performance of the genetic inverter, indicating that 
specific bacterial physiology underpins measurable chassis effects. The result of this study contributes to 
the field of broad-host-range synthetic biology by lending increased predictive power to the implementation 
of genetic devices in less-established microbial hosts.

Introduction

While the collection of modular genetic parts (e.g., promoters 
and reporter proteins) has grown rapidly over the years, the 
number of genetically tractable “domesticated” microbial hosts, 
or chassis, has remained comparatively small. Indeed, despite 
a populous collection of bacteria readily available in culture 
collections [1], contemporary biodesign efforts still prefer-
entially employ the same handful of model organisms (e.g., 
Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis, and 
Pseudomonas putida). While these model species are easy to 
work with, they do not always serve as the most optimal chassis 
for the intended objectives and could instead limit the potential 
of synthetic biology applications [2]. Broad-host-range (BHR) 
synthetic biology is an emerging field seeking to expand our 
engineerable domain beyond that of traditional model organ-
isms and, in doing so, allows us to take advantage of the rich 
phenotypic diversity of naturally evolved microorganisms [3–5] 
to construct more sophisticated bespoke systems.

The number of studies promoting novel microbes for syn-
thetic biology applications is increasing [6–12], demonstrating 
that the field of BHR synthetic biology has gained considerable 

traction. As synthetic biologists continue to explore the chassis 
design space, we (re-)discover that genetic circuits do not always 
maintain similar functional fidelity across hosts. Previous stud-
ies have shown that the same genetic circuit can exhibit signif-
icantly different behavior depending on the host environment 
it is operating within, an observation termed the “chassis effect” 
[13–16]. The chassis effect may hinder the accurate prediction 
of function from genetic composition alone [17], which can be 
disarming and lead to costly repetitions of the design–build–
test cycle. The chassis effect can also render any optimizations 
of a circuit done in the context of a “design” host (typically a 
cloning-optimized strain) obsolete once transformed into the 
cellular environment of the destination host. This often dis-
courages the use of nonmodel organisms. On the other hand, 
previous literature has demonstrated how the chassis effect can 
be exploited to expand the functionality and properties of cir-
cuits [15,16]. In this perspective, the host is viewed as a part 
that can be used to tune circuit function. The chassis effect can 
therefore act not only as an obstacle but also as an opportunity. 
However, a predictive understanding of which specific bio-
logical properties underpin observable chassis effects is lack-
ing, representing a major knowledge gap that has been left 
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unanswered partly due to default use of model organisms. 
Filling this knowledge gap will not only help mitigate the degree 
of uncertainty caused by the chassis effect but also provide more 
predictive power to BHR synthetic biology applications and 
contribute to broadening the design space available for biode-
sign applications.

Studies in the field of biosynthetic gene cluster expression 
[18] and microbial community engineering [19] have shown 
that similarities in phylogeny and genotypic profiles can pre-
dict metabolic phenotype, suggesting that genome relatedness 
could be a potential predictor of genetic circuit performance. 
On the other hand, the functional phenotype of genetic devices 
has been shown to be coupled to physiological metrics such 
as growth rate [20,21], gene copy number [22,23], codon usage 
bias [24,25], and growth burden [26,27] in a number of studies. 
However, these studies have only considered a few or single 

physiology metrics as explanatory variables within a single 
model chassis. Here, we detail a comprehensive study that 
takes account a multitude of explanatory variables within a 
comparative framework that includes model and nonmodel 
bacterial chassis. We systematically demonstrate the chassis 
effect by characterizing the performance dynamics of a genetic 
inverter circuit, as an example of an engineered genetic circuit, 
within 6 different Gammaproteobacteria species. As our guiding 
research question, we ask whether phylogenomic relatedness 
or similarity in assorted host physiology metrics is a better 
predictor of genetic inverter circuit performance. Due to the 
more extensive documentation on the coupling of host phys-
iology and gene expression, we hypothesized that variations 
in physiology between hosts will more robustly predict vari-
ations in performance of a genetic device, in comparison to 
phylogeny.

Experimental design
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Experimental design figure. This study was guided by the following research question: Is phylogenomic relatedness or host physiology a 
better predictor of circuit performance? To answer this, an l-arabinose (Ara)- and anhydrotetracycline (aTc)-inducible inverter circuit (plas-
mid pS4) was introduced into 6 Gammaproteobacteria species. Inverter performance and host physiology of hosts was quantified under 
comparable standardized conditions, and phylogenomic relationship of the species was resolved. (Dis-)Similarity between hosts in terms of 
host physiology and inverter performance was determined, resulting in 2 Euclidean distance matrices and a phylogenomic distance matrix. 
Significant correlation between distance matrices was tested in pairwise fashion using the Mantel test. For further analysis, distance matri-
ces were projected onto ordinate space by principal coordinate analysis (PCoA) and Procrustes Superimposition analysis was performed.
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Methods

Strains and plasmids
Wild-type (WT) species were purchased from the German 
Collection of Microorganisms and Cell Cultures (DSMZ), 
except for Pseudomonas fluorescens SBW25, which was donated 
by R. Wilton from the Argonne National Laboratory (Illinois, 
USA). Bacterial strains and plasmids used in this study are 
summarized in Table S2. Primers used are listed in Table S3. 
All cloning work was performed in E. coli DH5α, which was 
made chemically competent and transformed following the 
Inoue method [28].

Media and culturing conditions
All cells were cultured in lysogeny broth (LB) at 30 °C unless 
specified otherwise. Inverter-carrying strains were cultivated 
with 100 μg/ml kanamycin, while WT counterparts were grown 
without kanamycin. Overnight cultures were prepared by inoc-
ulation with single colonies from streaked plate and cultured 
with shaking. Ninety-six-well plate cultivation was done in 
black and flat clear-bottom plates (Thermo Fisher Scientific, 
165305). Medium (199 μl) was inoculated with 1 μl of culture 
and sealed with a Breathe-Easy film (Sigma-Aldrich, Z380059). 
OD600, sfGFP (485/515, gain = 75), and mKate (585/615, gain = 
125) fluorescence was measured continuously up to 42 h using 
a Synergy H1 plate reader (Agilent Biotek, serial number 
21031715) with continuous linear shaking (1096 cpm, 1 mm). 
l-Arabinose stock (1 M) was prepared by dissolving l-arabinose 
(VWR, A11921) in water, filter sterilized and stored at 4 °C. 
aTc stock (1 mg/ml) was prepared by dissolving anhydrotetra-
cycline hydrochloride (VWR, CAYM10009542) in 70% ethanol 
and stored at −20 °C away from light.

BASIC assembly
Plasmid pS4 was assembled with biopart assembly standard for 
idempotent cloning (BASIC) [29,30]. For complete protocol, 
see Storch et al. [29]. DNA parts used in this study are listed in 
Table S4. Briefly, BASIC assembly is a “one-pot” DNA assembly 
method for joining DNA parts, following their integration 
into the BASIC standard. BsaI-HFv2 restriction enzyme and 
T4 DNA ligase was purchased from New England Biolabs 
(R3733 and M0202L, respectively). Mag-Bind TotalPure NGS 
(Omega Bio-Tek, M1378-01) was used to purify restriction–
ligation reactions as per the manufacturer’s instructions. BASIC 
linkers were purchased from Biolegio (BASIC Linkers Pro-Plate 
Set, BBT-18500). pSEVA231 plasmid was donated by the SEVA 
repository and integrated into the BASIC format with B_
SEVA_F and B_SEVA_R primers using the KAPA HiFi HotStart 
ReadyMix PCR Kit with the following program: initial dena-
turation at 95 °C for 180 s, followed by 30 cycles of the follow-
ing: 98 °C for 20 s, 58 °C for 15 s, 72 °C for 150 s, and final 
extension step at 72 °C for 150 s. AraC, TetR, sfGFP, and mKate 
parts were ordered from Twist Biosciences, with the BASIC 
iP and iS sequences integrated at the 5′-end and 3′-end, 
respectively.

Preparation of electrocompetent cells  
and electroporation
All incubation steps were done at 30 °C unless specified. 
Overnight culture (5 ml) was diluted by half with fresh LB 
medium and incubated for 1 h. For Halopseudomonas oceani 

KX20 and Halopseudomonas aestusnigri VGXO14, 5 ml of cul-
ture was harvested per transformation. For all other, 1.5 ml was 
harvested per transformation. Harvesting was done by centrif-
ugation at 4,000 rpm at room temperature. Supernatant was 
discarded and cells were resuspended in sucrose electropora-
tion buffer (300 mM sucrose, 1 mM MgCl, pH 7.2). The wash-
ing step was repeated for a total of 2 washes. Cells were finally 
resuspended in 80 μl of electroporation buffer and incubated 
with 50 to 100 ng of plasmid at room temperature for 15 min. 
Cells were transferred to a 1-mm gap electroporation cuvette 
(VWR, 732-1135) and electroporated using the ECM 399 
Exponential Decay Wave Electroporation System (BTX, 45- 
0000) at 1,250 V with high voltage setting (150 resistance and 
36 capacitance). LB medium (750 μl) was immediately added 
to electroporated cells and subsequently transferred to 5 ml of 
LB for recovery by incubation with shaking for 2 h. After recov-
ery, cells were harvested and streaked on kanamycin LB agar 
plates. Colonies would appear after 1 or 2 overnight incuba-
tions. Colonies were verified by colony PCR with LMP-F and 
LMS-R primers.

Induction assay
Ninety-six-well plates with kanamycin supplemented LB 
medium and various concentrations of Ara and aTc were inoc-
ulated with overnight culture grown in the absence of inducer. 
Normalized steady-state fluorescence intensity was quantified 
by averaging fluorescence over a time window of 6 to 12 h at 
late phase (yFss) and plotted against induction concentration to 
yield induction curves. Hill coefficient (n), activation coeffi-
cient (K), maximum steady-state fluorescence output (β), and 
basal fluorescence output at 0 inducer concentration (y0) were 
estimated by fitting the Hill equation (Eq. 1) to induction 
curves using nonlinear least-square regression with the nls 
function from the stats base R package.

where x is Ara (mM) or aTc (ng/ml) inducer concentration.

Toggle and growth assay
Based on the induction assay, inducer concentrations of 20 mM 
Ara and 10 ng/ml aTc were chosen to induce all inverter-carrying 
species. Overnight culture grown in the absence of inducer 
was used to inoculate the medium in 96-well plates supple-
mented with Ara, aTc, and no inducer (NI) condition. OD600, 
sfGFP, and mKate fluorescence was continuously measured. 
To invert states, cells were harvested by centrifugation at 
4,000 rpm for 20 min at room temperature and supernatant 
removed before resuspending in equal volume LB medium; 
this washing step was repeated for a total of 2 washes. Washed 
resuspended cells (1 μl) were inoculated to 199 μl of fresh 
medium supplemented with the opposite respective inducer. 
Metrics ΔμNI, ΔμAra, and ΔμaTc were calculated using Eqs. 2, 
3, and 4, respectively.

(1)yFss =
(

�xn∕
(

Kn + xn
))

+ y0

(2)Δ�NI= ((�WT_NI−�pS4_NI)∕�WT_NI )100

(3)Δ�Ara = ((�pS4_NI − �pS4Ara
)∕�pS4NI

) 100

(4)Δ�aTc = ((�pS4_NI − �pS4aTc
)∕�pS4NI

) 100
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μWT_NI is the specific growth rate of the WT strain without 
inducer. μpS4_NI, μpS4_Ara and μpS4_aTc are the specific growth rates 
of the pS4-carrying counterpart strain in the absence of inducer, 
in the presence of 20 mM Ara, and in the presence of 10 ng/ml 
aTc, respectively. Maximum rates of OD600 and fluorescence 
curves were estimated based on a rolling regression method 
using the all_easylinear function from the growthrates (v.0.8.4, 
https://CRAN.R-project.org/package=growthrates) R package. 
Lag times and curve plateaus of OD600 and fluorescence curves 
were determined using the all_growthmodels function, fitting 
the Gompertz growth model [31] with additional lag (lambda) 
parameter.

Flow cytometry and hysteresis experiment
Ara, aTc, and noninduced cells were harvested during late 
exponential phase and fixed with formaldehyde to a final 
concentration of 1.5% and standardized to OD600 = 0.2. Flow 
cytometry was performed with the LSRFortessa Cell Analyzer 
(BD Sciences) equipped with an HTS autosampler (BD Sciences). 
sfGFP was measured using 488-nm laser and 530/30-nm detec-
tor, and mKate was measured using 561-nm laser and 610/ 
20-nm detector. Voltages for forward scatter and side scatter 
sfGFP and mKate detection was set to 680, 380, 440, and 550, 
respectively. Twenty thousand events were measured per sam-
ple with side scatter threshold set to 40,000 to filter out back-
ground debris. Hysteresis experiment was based on Zhang et al. 
[20]. Single colonies were inoculated to fresh LB medium and 
allowed to grow overnight. Cells were diluted 1:100 to fresh 
medium supplemented with 80 mM l-arabinose, 150 ng/ml 
aTc, NI-condition and grown to stationary phase. Cells were 
washed twice before being diluted 1:100 to medium containing 
increasing concentration of the inducer, and fluorescence was 
measured continuously on a plate reader.

Plasmid copy number determination
Plasmid Copy Number (PCN) per chromosome was deter-
mined through quantitative PCR (qPCR) method based on 
[32] using the single-copy rpoD gene and the bla gene in pS4 
as amplification targets. Primers for qPCR were designed with 
BatchPrimer3 [33] with the following criteria: product size = 
100 to 125 base pairs (bp), primer size = 20 to 24 bp, primer 
Tm = 58 to 62 °C, primer GC % = 45 to 55%. Cells were 
harvested at stationary phase (18 to 24 h) by centrifugation at 
4,500 rpm, 4 °C for 10 min and resuspended to OD600 = 1 
in cold PBS buffer (1×, pH 7.3). Up to 1 ml of resuspended 
culture was incubated at 95 °C for 20 min to lyse the cells and 
immediately stored at −20 °C until use as template for qPCR. 
Simultaneously, resuspended culture was serially diluted to 10−9 
and 100 μl of 10−9, 10−8, 10−7, and 10−6 dilutions was streaked 
on LB agar with kanamycin and incubated overnight at 30 °C 
for viable cell count. Lysed template samples were diluted to 
dynamic range of 102 to 105 bacteria per well. qPCR was per-
formed in 20-μl reaction volumes containing 10 μl of KAPA 
SYBR FAST qPCR Master Mix (2X) (Sigma-Aldrich, KK4605), 
200 nM final concentration of species-specific rpoD forward 
and reverse primers, and up to 3 μl of sample template in a fast 
optical 0.1-μl 96-well plate (Applied Biosystems, 4346906). 
Separate reactions were done for chromosomal and plasmid 
amplicons, each in 4 technical replicates. qPCR was performed 
using the 7500 Fast Real-Time PCR System (Applied Biosystems, 
4351107) with the following cycling conditions: 1 min at 95 °C 
followed by 40 cycles of 3 s at 95 °C and 30 s at 60 °C. A 

melt-curve analysis step was added with the following program: 
15 s at 95 °C, 1 min at 60 °C, followed by a 1% gradual increase 
in temperature to 95 °C and 15 s at 60 °C. Cycle threshold (Ct) 
values were determined after automatic adjustment of the base-
line and fluorescence thresholds in 7500 Software v2.3 (Applied 
Biosystems). Relative standard curves were constructed in R 
by plotting log value of the number of colony-forming units 
against Ct values. Slopes were determined from curves with 3 
to 5 dilutions and on condition that r2 ≥ 0.99. Amplification 
efficiency (E) for plasmid and rpoD was calculated, which was 
used in turn to determine PCN using Eq. 6.

E_c is the amplification efficiency for rpoD gene (chromo-
some), and E_p is the amplification efficiency for bla gene 
(plasmid).

Phylogenomic and phylogenetic tree building
See Table S2 for genome accession numbers. GToTree [34] 
(v.1.7.07, https://github.com/AstrobioMike/GToTree) was run 
with default settings using the Gammaproteobacteria HMM 
set for 172 orthologous single-copy genes to create an amino 
acid multilocus sequence analysis (MLSA). Tree inference and 
distance matrix construction was done in MEGAX [35] using 
the neighbor-joining method with the Jones–Taylor–Thornton 
matrix-based model [36] with uniform rates. Ambiguous posi-
tions were removed for each sequence pair (pairwise deletion 
option), and standard error estimates were obtained with boot-
strap procedure of 1000 replicates.

Codon adaption index
To determine codon adaption index (CAI), the synonymous 
codon usage of genes encoding ribosomal proteins and ribo-
somal RNA genes was used as reference for each host, which 
are genes assumed to be highly expressed and thus under selec-
tion pressure to use synonymous codons adapted to the codon 
usage bias of the organism [37,38]. Sequences of ribosomal 
proteins and 16S and 23S ribosomal RNA were retrieved using 
anvi-get-sequences-for-hmm-hits function with the Bacteria_71 
HMM set in the anvi’o [39] (v.7.1, https://github.com/meren-
lab/anvio) environment. The CAI for sfGFP, mKate, AraC, and 
TetR genes were calculated using the standard genetic code with 
the CAI python package [40] (v.1.0.2, https://github.com/
Benjamin-Lee/CodonAdaptationIndex). CAI is the geometric 
mean of the relative adaptiveness of each codon in a given 
sequence with the following implementation in the CAI python 
program:

L is the number of codons, and Wk is the relative adaptive-
ness of codon k and is calculated as follows:

Fij is the frequency of codon j for coding for amino acid i in 
a given sequence. FiMax is the frequency of the most optimal 

(5)E = 10−1/slope

(6)PCN = E_cCt_c∕E_pCt_p

(7)CAI =

(

L
∏

k=1

Wk

)1∕L

(8)Wk = Fij∕FiMax
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codon for amino acid i in the given sequence, with the most 
optimal codon being the one with the highest frequency in the 
reference set of genes.

Statistical analyses
Generation of Euclidean distance matrices (equal weights), 
Principal Coordinate Analysis (equal weights), Mantel test, and 
Procrustes Superimposition (PS) analysis was done using the 
Vegan [41] (v.2.6-4, https://CRAN.R-project.org/package=vegan) 
package in R. The Procrustean M2 statistic (scale and symmetric 
true) and Mantel R statistic (Pearson method) were tested for 
significance by a permutation approach (n = 719, maximum 
number of iterations). Briefly, observations in one matrix are 
randomly reordered while maintaining the covariance structure 
within the matrix and a test statistic is calculated and recorded 
enough times to obtain a sizeable null distribution. A P value for 
each statistic is then calculated, representing the probability of 
obtaining a statistic with a value equal to or more “extreme” of 
the experimental value.

Results

Comparative physiology and phylogeny  
between hosts
Measuring biological determinants of the chassis effect requires 
a standardizable, BHR device that is portable across multiple 
species. We therefore built a tractable experimental platform 
by transforming six Gammaproteobacteria species with a 
genetic inverter circuit cloned onto a pSEVA231-derived (kan-
amycin selection marker and pBBR1 origin of replication) vec-
tor (Fig. 1A and B) within the BASIC cloning environment 
[29,30], yielding plasmid pS4. The inverter consists of 2 induc-
ible antagonistic expression cassettes reported by mKate and/
or sfGFP fluorescence signals. This topology allows cells car-
rying the inverter to achieve 2 distinct ON states in the presence 
of either aTc or Ara input inducers. The inverter was suc-
cessfully transformed into the following six species: E. coli, H. 
aestusnigri, H. oceani, Pseudomonas deceptionensis M1, P. flu-
orescens, and P. putida. Members of the Pseudomonas and 
Halopseudomonas genus were specifically chosen because of 
their known robustness and metabolic capabilities [42,43], 
making them attractive candidates for biotechnology applica-
tions and for comparing bacterial ecophysiology.

A preliminary growth characterization of WT strains in the 
absence and presence of Ara and aTc inducer was performed 
(Fig. 1C and D). Each species revealed distinct growth physi-
ologies, allowing for quantitative comparison of the relative 
contribution that a host’s physiology plays on device perfor-
mance. In the absence of any inducer, P. putida achieved the 
highest maximum specific growth rate (μ = 0.67 h−1 ± 0.01), 
while the 2 other Pseudomonas spp. exhibited lower growth 
rates compared to P. putida, but reached similarly high specific 
carrying capacities (A; Fig. 1C and D). Meanwhile, the 2 
Halopseudomonas members showed approximately 2- to 3-fold 
lower μ compared to P. putida. Given the documented impact 
of growth rate on functional output of genetic devices, such as 
how rapid cell division results in dilution of gene expression 
machinery and expression products [20], the range of growth 
dynamics observed leads us to predict that a measurable chassis 
effect would be observed among our hosts. No appreciable dif-
ference in growth rate or carrying capacity was observed when 

the WT strains were grown in the presence of either inducer, 
suggesting negligible levels of toxicity. Furthermore, many 
Pseudomonas species are known to naturally fluoresce, which 
could mask the output of the inverter. At the excitation and 
emission wavelength settings used to detect sfGFP and mKate, 
none of the species had significant levels of autofluorescence 
(Fig. 1E and F), validating the use of the 2 fluorescent proteins 
chosen as reporters.

The relative performance of the inverter circuit is expected 
to be in part related to the genomic potential of the host. For 
example, genes encoding for the specific transcriptional and 
translational proteins used to express the genetic circuit’s 
machinery will ultimately underpin performance. We used a 
phylogenomic approach to ask if hosts more genomically related 
also share similar circuit performances. Orthologous single-copy 
genes fit for phylogeny inference in Gammaproteobacteria were 
identified in each host genome using a set of 172 hidden Markov 
models (Fig. 1G) from GToTree [34]. The set included genes 
encoding for ribosomal proteins, chaperones, and transcription 
and translation proteins, which all play some role in shaping 
the gene expression landscape of each host such as steady- 
state concentration of transcriptional/translational machin-
ery or turnover rate and are therefore expected to influence 
device performance. The genomes with the lowest gene hits 
identified after filtering for redundancy and length belonged 
to Xanthomonas fragariae PD855 (outgroup) and P. fluorescens, 
both with 159 hits, while the other 5 genomes retained between 
166 and 170 genes (Table S1). The phylogenomic tree clustered 
the hosts into distinct clades according to their genus (Fig. 1H), 
as expected. The growth characterization indicates that closely 
related hosts also shared similar growth physiologies. These 
results set the stage to comparatively investigate how the per-
formance of the inverter circuit relates the relative contribution 
of species-specific physiology as compared to phylogenomic 
relatedness (i.e., more similarly evolved genomes) and to ask 
whether host physiology or phylogeny is a more robust pre-
dictor of differences in the performance of a genetic device 
between hosts.

Quantifying the chassis effect
All hosts carrying the inverter circuit achieved uniform fluo-
rescence distribution upon induction, as revealed by flow 
cytometry (Fig. S1). Induction kinetic and expression dynamic 
assays were performed to quantify inverter performance oper-
ating under the cellular context of each chassis. Significant 
differences in performance were observed between chassis, 
establishing a clear and quantifiable chassis effect (Fig. 2).

Induction kinetics of the inverter were resolved by fitting 
the Hill equation to Ara and aTc induction response curves to 
estimate the species-specific activation constants (KAra and KaTc) 
and Hill coefficients (nAra and naTc) (Fig. 2A and B). P. fluo-
rescens exhibited the largest inducible range for both inducers 
(KAra = 31.2 mM ± 2.1 and KaTc = 29.0 ng/ml ± 1.1). Meanwhile, 
E. coli and both Halopseudomonas spp. demonstrated some of 
the lowest activation coefficients. The differences in activation 
constants between, and within, hosts represent how each host 
uniquely mediates the concentration and/or binding affinities 
of free intracellular inducer that is available to allosterically bind 
its cognate repressor. Both sigmoidal responses and damped 
“titratable responses” between hosts across induction states 
were observed, but all Hill coefficients were estimated to be 
close to or higher than 1. The Hill coefficients nAra and naTc did 

https://doi.org/10.34133/bdr.0016
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Fig. 1. The broad-host-range pS4 plasmid harboring the inverter circuit was introduced into 6 distinct hosts from the Gammaproteobacteria class. (A) Schematic of Ara- and 
aTc-inducible inverter circuit. In the presence of aTc, the upstream cassette is up-regulated, leading to production of AraC transcription factor and mKate reporter protein. 
In the absence of Ara (Ara−), AraC acts as a repressor and binds to its cognate PBAD promoter to down-regulate the downstream cassette. When bound to Ara (Ara+), AraC 
instead acts as an activator and up-regulates expression of sfGFP and TetR, creating a negative feedback loop of AraC expression. RiboA and RiboB are autocatalytic ribozyme 
insulators. Un-RBSn are BASIC linkers with a RBS in their adapter region. Number in Un indicates the BASIC linker family (1, 2, or 3). Number in RBSn indicates relative 
translational strength of the RBS, from 1 (weakest) to 3 (strongest). (B) Plasmid pS4 was transformed by electroporation into six bacterial Gammaproteobacteria hosts. Hosts 
are color-coded. E. co, E. coli; H. ae, H. aestusnigri; H. oc, H. oceani; P. de, P. deceptionensis; P. fl, P. fluorescens; P. pu, P. putida. (C) Specific growth rate (μ) and (D) carrying 
capacity (A) of WT strains in the presence of aTc (10 ng/ml) and Ara (20 mM) and no inducer (NI). Error bars show standard error of the mean (n = 3 biological replicates, with 
4 technical replicates each). sfGFP (E) and mKate (F) autofluorescence normalized by OD600 over time by WT strains in the absence of inducer. Blank is autofluorescence of 
wells containing only LB medium. (G) The 172 single-copy genes in the Gammaproteobacteria hidden Markov model set from GToTree used for phylogeny inference grouped 
by functional annotation. Numbers of genes in the largest grouped are indicated. (H) Phylogenomic tree inferred from multi-locus sequence alignment of concatenated gene 
hits. Xanthomonas fragariae PD855 was chosen as outgroup. Scale bar indicates the number of amino acid substitutions per site between 2 sequences. Tree was inferred 
using the neighbor-joining method in MEGAX. The percentage of replicate trees in which the associated taxa clustered together in bootstrap test (1,000 replicates) are shown 
next to the branches.
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Fig. 2. The chassis effect as observed through heterogeneity of performance metrics of the inverter circuit. (A) aTc and (B) Ara induction curves of pS4-carrying hosts. Y axis 
in log scale and parameter fitted Hill function are shown (n = 8). Hosts are color-coded according to the legend on the top of the figure. (C) Normalized sfGFP and mKate 
fluorescence of hosts toggled from initial OFF state (NI) to ON state (First Toggle ON) with 20 mM Ara (right, green arrow) and 10 ng/ml aTc (left, red arrow). (D) Cells were 
toggled by washing and diluted to medium with opposite inducer at the same concentration (Second Toggle ON). (E) Summary of performance metrics estimated from 
induction and toggle assay experiments for each host, with each column representing a metric. Gray dots denote continuation of table. Rate = maximum rate in unit of h−1, 
Fss = estimated fluorescence steady state at stationary phase of growth, Response time in units of hours, K = activation constant, n = Hill coefficient. Color scale denoting 
“Max” and “Min” value is relative for each column.
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not differ drastically within hosts, the only exception being P. 
deceptionensis, which exhibited a more step-like response 
behavior to aTc (naTc = 3.71 ± 0.53) compared to Ara induction 
(nAra = 1.74 ± 0.17). Clearly, the choice of chassis can greatly 
impact the operational properties of the inverter, demonstrat-
ing the importance of considering the chassis during design 
stages.

To further quantify the chassis effect, fluorescence dynamics 
of hosts under the same induction condition were character-
ized through a toggling assay (Fig. 2C). Overnight cultures 
grown under NI conditions were diluted to medium containing 
Ara or aTc to toggle each respective promoter ON. Interestingly, 
when diluted to NI conditions, cells consistently assume a low 
expression state of both fluorescent proteins (Fig. 2C, middle). 
We refer to this stable low-expression state as the OFF state. 
To quantify host-specific fluorescence dynamics, maximum 
rate (Rate) and the fluorescence steady state at stationary phase 
of growth (Fss) was estimated from normalized sfGFP and 
mKate curves across induction states. We also determined two 
additional metrics “dynamic range” (DR) and “Response Time,” 
which we define here as the ratio between induced Fss and 
noninduced OFF state Fss (DRsfGFP = FssAra-sfGFP/FssNI-sfGFP 
and DRmKate = FssaTc-mKate/FssNI-mKate) and the time it takes to 
reach half of the Fss (subtracting for time during lag phase), 
respectively.

Under Ara induction, the three Pseudomonas spp. display 
the highest FssAra-sfGFP values, which reflect the concentration 
of sfGFP attained in the population. P. putida attained the high-
est value (FssAra-sfGFP = 13,833 RFU ± 937) and the highest 
dynamic range (DRsfGFP = 33.85 ± 1.37) (Fig. 2C and E). 
However, the high sfGFP output level from these three chassis 
were also associated with long response times. E. coli, H. aes-
tusnigri, and H. oceani had not only lower DRsfGFP values but 
also shorter response times. Under aTc induction, the highest 
FssaTc-mKate values were reached by the two Halopseudomonas 
spp., again associated with long response times. E. coli, however, 
exhibited the highest DRmKate value, with an induced mKate 
output level 40-fold that of the output level in the absence of 
inducer. Even in the presence of repressor or in the absence of 
activator, some basal level of expression was observed from an 
inducible promoter, referred to as leakage [44]. We identify two 
types of leakages in our inverter circuit: output in the absence 
of inducer (OFF state, Fig. 2C, middle) and output in the pres-
ence of the expression cassette’s antagonistic inducer (i.e., 
sfGFP in the presence of aTc and mKate in the presence of Ara). 
Under these conditions, the Fss at late phase was used to quan-
tify leakage. OFF state cells exhibit relatively low expression, 
indicating similarly basal activity of the promoters among 
hosts. The exception was H. aestusnigri and H. oceani, which 
showed mKate Fss values about 10- and 7-fold higher than E. 
coli, suggesting that the PTet promoter is stronger when oper-
ating in the cellular context of the two Halopseudomonas chas-
sis. We also observed up to 4-fold lower mKate leakage in the 
two Halopseudomonas spp. under Ara induction compared to 
the leakage in the absence of inducer, which we attribute to 
repression of the PTet promoter by expressed TetR. The wide 
range of metrics observed from different species cultivated and 
induced under the same conditions further reinforces the pres-
ence of the chassis effect affecting inverter performance.

Cells toggled to Ara/aTc-ON from initial OFF were washed 
and diluted to the opposite induction state (Fig. 2D, Second 
Toggle ON) to investigate whether cells experience appreciable 

hysteresis effect [20,45,46]. When toggled from aTc-ON to 
Ara-ON, the three Pseudomonas spp. consistently experienced 
a decrease in DRsfGFP values, ranging from 0.78- to 0.42-fold 
change (Fig. 2E) compared to cells toggled to Ara-ON from the 
initial OFF state, although this was accompanied with a 0.54- to 
0.43-fold change in response time as well. As cells were washed 
of inducer and diluted, this decrease in expression can be attrib-
uted to the cells past the induction state, suggesting a depend-
ence on past induction states. When toggled from Ara-ON to 
aTc-ON, P. putida and P. deceptionensis showed a notable 0.37- 
and 0.21-fold change decrease in DRmKate, respectively. H. aes-
tusnigri and H. oceani showed similar fluorescence dynamic 
metrics regardless of past induction state. This observation 
prompted an investigation on whether our inverter-carrying 
cells can retain memory of their past induction state. Inducer-
saturated cultures were washed and diluted to NI and various 
inducer concentrations. P. deceptionensis and P. putida, and all 
other hosts to a lesser extent, exhibit a clear concentration range 
where the same aTc concentration elicits a different degree of 
fluorescence response between saturated and initial OFF cells 
(Fig. S2). Interestingly, when saturated with Ara, none of the 
hosts exhibited any appreciable retention of past induction 
state. These results indicate that, under our induction scheme, 
some hosts are more sensitive to past states of induction than 
others, another host-specific property.

Abstracting and comparing quantified performance metrics 
as “signature barcodes” reveal a clear heterogeneity in perfor-
mance among closely related hosts, despite operating the same 
genetic device. We conclude that the functional parameters of 
the inverter are highly dependent on the host context it is oper-
ating within, showing that the basis for the chassis effect stems 
from unique host-specific properties. We therefore proceeded 
to characterize the hosts in terms of relevant physiology metrics 
to encapsulate the unique host conditions each inverter circuit 
is operating under.

Physiological diversity among hosts
Host-specific parameters known to affect gene expression were 
quantified. This include PCN, maximum specific growth rate, 
carrying capacity, growth burden as a result of propagating and 
expressing the pS4 plasmid, and the CAI [25,37] for the four 
coding sequences within the inverter. We uncovered a wide range 
of physiology metrics among our hosts, suggesting that physi-
ology could explain, and therein possibly be used to predict, 
differences in performance between bacterial hosts (Fig. 3).

Despite harboring the same origin of replication, a wide 
range of PCN values was observed among our hosts (Fig. 3A). 
This shows that PCN is also subject to the chassis effect, as in 
agreement with previous studies [47,48]. Maintaining a higher 
number of plasmids has been shown to cause growth inhibition 
[49], which can be exacerbated upon circuit induction [22], a 
scenario applicable to the operation of our inverter circuit. We 
therefore quantified the growth burden of maintaining the 
inverter in the absence of inducer, given by the ΔμNI metric, 
which we define as the percent difference in specific growth 
rate of pS4-carrying strains compared to WT. We also define 
ΔμAra and ΔμaTc as the percent difference in growth rate of 
Ara and aTc induced pS4-carrying strains compared to the 
growth rate under NI conditions, respectively. The Pseudomonas 
spp. maintained the highest number of plasmid copies, with P. 
deceptionensis peaking at a PCN value of 49 ± 12. In the absence 
of inducer, P. deceptionensis showed slight but consistent 
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Fig. 3. Hosts display a wide range between values among the metrics chosen to capsulate physiology. (A) Estimated PCN in units of plasmid(s) per chromosome (n = 3 biological 
replicates each with technical replicates). Hosts are color-coded; legend at the top of figure. Violin plots of (B) growth burden (ΔμNI) in the absence of inducer. A negative ΔμNI 
value indicates that the pS4 harboring strain has a lower growth rate compared to its WT counterpart. (C) Growth burden of Ara induction (ΔμAra) and (D) aTc induction (ΔμaTc) 
(n = 3 biological replicates each with 4 technical replicates). (E) Growth dynamics of hosts from toggling assay experiment toggled from initial OFF to ON state (First Toggle 
ON) and then (F) to opposite ON state (Second Toggle ON). (G) Summary of quantified physiology metrics for each host. Gray dots denote continuation of table. μ = maximum 
specific growth rate (h−1), A = specific carrying capacity (OD600) GC % = total genomic GC content. Color scale denoting “Max” and “Min” values is relative for each column.
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reduced growth compared to their WT counterparts (ΔμNI = 
−5.4 ± 0.9%) (Fig. 3B). Meanwhile, a surprising result was the 
consistent increase in growth rate by both Halopseudomonas 
spp., with H. oceani pS4 having a specific growth rate 15.0% ± 
3.4 higher than its WT counterpart despite maintaining an 
additional plasmid, albeit at a low copy number (PCN = 2 ± 
1). Upon induction, P. deceptionensis experienced the strongest 
exacerbation of growth burden, signified by the most negative 
ΔμAra and ΔμaTc values of −9.2% ± 0.3 and −58.0% ± 5.0, 
respectively (Fig 3C and D). P. fluorescens was also sensitive to 
aTc induction, with a ΔμaTc value of −28.2% ± 3.5. The high 
growth burden of P. deceptionensis and P. fluorescens is attrib-
utable to their high PCN, but P. putida, which had the second 
highest PCN of 26 ± 5, deviated from this trend with Δμ values 
close to 0. None of the WT strains experienced appreciable 
growth inhibition when grown in the presence of either inducer 
(Fig. 1C and D), meaning the source of the observed growth 
inhibition likely stems from translational load due to resource 
limitation [50]. The results show that the degree of metabolic 
burden is unique to each host and can therefore contribute to 
the chassis effect.

Cell densities (OD600) were measured simultaneously during 
the toggle assay to characterize the specific growth rate, lag 
time, and carrying capacity of each host (Fig. 3A and B). Both 
pS4-carrying Halopseudomonas spp. revealed the lowest spe-
cific growth rates and carrying capacities across induction 
states, consistent with their WT counterparts (Fig. 3G). The 
growth metrics of the three Pseudomonas spp. (Fig. 3G) differed 
appreciably depending on their past induction history, rein-
forcing the observed host-specific hysteresis effects on growth 
phenotypes. For instance, P. deceptionensis cells toggled from 
initial OFF to aTc-ON experienced a long lag phase and reduced 
specific growth rate. But when cells were toggled from Ara-ON 
to aTc-ON, the prolonged lag phase and growth rate reduction 
was alleviated, and growth more closely resembled the dynam-
ics of noninduced control cells. A similar hysteresis effect was 
observed for P. fluorescens. It is notable that despite the low 
PCN, the two Halopseudomonas spp. reached the highest 
FssaTc-mKate values in both toggles of mKate ON, 7-fold higher 
than the FssaTc-mKate reached by P. deceptionensis, the host with 
the highest PCN. A high PCN therefore does not necessarily 
result in high Fss fluorescent protein levels. The high FssaTc-mKate 
values obtained by the Halopseudomonas spp. could be due to 
lower rate of cell division and associated dilution of the mKate 
protein, as the two hosts also exhibit the lowest specific growth 
rates. This theory is supported by the fact that when P. decep-
tionensis was alleviated of the growth inhibition (increased 
growth rate), the attained FssaTc-mKate value also decreased 
0.4-fold.

We further considered codon usage bias as an innate host 
property capable of affecting inverter performance, which we 
parameterized by determining CAI values (range from 0 to 1) 
for the sfGFP, mKate, AraC, and TetR coding sequences. Hosts 
with a codon usage bias more adapted to the synonymous 
codon usage in the four coding genes (CAI closer to 1) in the 
inverter could lead to more efficient translation of gene prod-
ucts, thereby affecting performance and vice versa. P. decep-
tionensis and P. fluorescens have the highest CAI values across 
all four genes (Fig. 3G). P. putida, on the other hand, has the 
lowest CAI values across all four genes, a property it shares 
with E. coli for the AraC and TetR genes. Previous findings 
suggest that similar GC content predicts similar codon usage 

in prokaryotes [51], yet E. coli, with the lowest GC content of 
51%, has relatively similar CAI values to Halopseudomonas and 
Pseudomonas (GC content, 59% to 62%), for all four translated 
proteins. Our results do not show the expected trend between 
CAI value and fluorescence output. Still, sequence optimization 
strategies have been reported to successfully elevate heter-
ologous protein expression [24,52]. We therefore decided to 
include the calculated CAI values in downstream analysis.

The summarized physiology metrics were abstracted to sig-
nature barcodes representing host physiology profiles. The 
expression of the inverter is inherently coupled to the unique 
network of metabolic fluxes of each host due to the dependency 
on host machinery and resources. Given this complexity, it is 
unlikely that a single variable can reliably predict the perfor-
mance metrics of our inverter circuit. Considering multiple 
explanatory variables could provide a more comprehensive 
prediction of overall performance.

Significant concordance between host physiology 
and the chassis effect
The overarching goal of this study was to determine if the chas-
sis effect is more related to differences in host physiology or 
phylogenomic relatedness. To formally assess the relationship 
between species-specific differences in performance, physiol-
ogy, and phylogeny, we employed two multivariate statistical 
approaches, namely, the Mantel test [53,54] and Procrustes 
Superimposition (PS) [55–57] analysis. Both tests revealed sig-
nificant concordance only between host physiology and inverter 
performance, indicating that the assorted host physiology met-
rics serve as a more robust predictor of inverter circuit perfor-
mance than phylogenomic distance-based phylogeny, within 
our selection of Gammaproteobacteria hosts.

The Mantel test and PS analyses are measures for “goodness-
of-fit,” where a high goodness-of-fit indicates that the two 
datasets are correlated. PS analysis acts on ordinated data by 
centering, scaling, and superimposing two projected ordination 
configurations to minimize the vector residuals between each 
item. The Mantel test considers linear correlation between two 
distance matrices and produces an R statistic similar to the 
Pearson's correlation coefficient; with increasingly similar dis-
similarity matrices, the Mantel R statistic will approach 1. PS 
analysis produces the M2 statistic, which is the sum of squared 
residuals between the best fit of two configurations such that 
an M2 value closer to 0 indicates a better fit.

To apply the Mantel test, Euclidean distance matrices were 
generated from the respective physiology and performance 
metric tables (Fig. 4A), while the phylogenomic tree was con-
verted to a distance matrix format suitable for downstream 
analysis. The Mantel test revealed a significant positive corre-
lation between performance and physiology distance matrices 
(Fig. 4F; Mantel R = 0.621, P = 0.011), indicating that hosts 
similar in terms of performance are also similar in their overall 
physiology, and vice versa. When testing performance against 
phylogeny, no significant correlation was observed (Mantel 
R = 0.160, P = 0.188). The Mantel test summarizes the results 
in a single metric that only describes the general trend, while 
PS analysis has the advantage in that the contribution of 
residuals from each individual item (host) is reported. To 
investigate the result of the Mantel test further, PS analysis was 
performed to compare the similarity of the ordination config-
urations of the hosts.
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Fig. 4. Mantel and PS analysis reveal significant concordance between clustering pattern of hosts in terms of physiology and performance variation. (A) Table of summarized 
performance (left) and physiology (middle) metrics converted to Euclidean distance metrics (black arrows) with equal weight for each column. Distances in phylogenomic 
tree from Fig. 1H were converted to a phylogenomic distance matrix that is applicable for Mantel test. (B) PCoA biplots of performance (circles), physiology (triangles), and 
phylogeny (squares) derived from respective distance matrix. Hosts are color-coded (legend in middle). Solid gray lines help visualize a “configuration” that represents the 
clustering pattern of hosts for each data type; the lines connect each species in the same arbitrary order. Values in square brackets represent proportion of variation captured 
by each axis. Symmetric pairwise PS analysis involves scaling, centering, and rotating configurations against each other to minimize vector residuals, fitting (C) phylogeny 
against performance, (D) physiology against performance, and (E) physiology against phylogeny. Hosts are color-coded, and symbol key follows (B). Colored lines connecting 
points represent the vector residuals between respective hosts; insets show bar chart of vector residuals. Intersection of dashed gray lines indicates centroid of configurations. 
Summarized statistics from pairwise (F) Mantel test and (G) PS analysis. Numbers in bold and italics are significant with P < 0.05.
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PCoA was applied to distance matrices to project the dis-
tances in ordination space (Fig. 4B). As expected, ordination 
of the phylogenomic distance matrix produces a clustering 
pattern that reflects the branching pattern of the phylogenomic 
tree (Fig. 4B, right). Halopseudomonas spp. clustered across all 
three types of data; while this is expected in terms of phylogeny, 
it indicates that they are also similar in terms of their physiology 
and circuit performance. Pairwise PS analysis confirmed and 
strengthened our main result, again reporting significant con-
cordance between the clustering pattern of the hosts in terms 
of observable variance between host-specific physiology and 
inverter performance (Fig. 4C; M2 = 0.155, P = 0.004), while 
again no significance was found between phylogeny and per-
formance (Fig. 4D; M2 = 0.813, P = 0.743). Furthermore, nei-
ther test found a significant correlation between physiology 
and phylogeny (Fig. 4E and F), questioning the commonly 
assumed predictive power of phylogeny for assessing microbial 
phenotypes or ecophysiology. Closer inspection of each PS 
comparison revealed an uneven contribution of residuals by 
each individual host. In the physiology-performance compar-
ison, E. coli alone accounts for 36% of the total residual in the 
data, more than double the theoretical even contribution 
(16.67%). The second highest contributor of residuals is H. 
aestusnigri with 21% and all other hosts contributing less. This 
suggests that these 2 hosts do not follow the significant trend 
(i.e., physiology underpins performance) as strongly as the 
other hosts. The reason for this unevenness could be because 
the underlying mechanisms that drive the chassis effect in E. 
coli and H. aestusnigri are not included in the analysis. Despite 
this, the overall low residual was still deemed significant. When 
comparing phylogeny-performance, E. coli is again responsible 
for the highest proportion of the residual (41%). This suggests 
that differences in inverter performance are trackable along the 
phylogenomic tree of species part of the Pseudomonadaceae 
family but lose reliability as they approach E. coli.

Discussion
In this study, we demonstrate within our Gammaproteobacteria 
framework that the comparative chassis effect on a genetic 
inverter circuit operated between hosts is better explained by 
the physiological differences of the host rather than genomic 
relatedness, confirming our initial hypothesis. To put our find-
ings in context, the performance profile of any new bacterial 
host transformed with the pS4 plasmid can be inferred by char-
acterizing and comparing its physiology profile against our set 
of reference hosts. Our results suggest that the new host is likely 
to have a performance profile similar to a reference host it 
shares similar physiology profile with, and vice versa. Expanding 
the reference set of hosts would allow a better statistical infer-
ence of device performance based on physiology profiles. We 
note that the physiology metrics chosen to contextualize our 
hosts are by no means exhaustive, and that additional insight 
could be garnered by measurements that reflect the availability 
of transcriptional and translational machinery and resources. 
Examples of such metrics are steady-state ribosomal abundance 
[58], RNA polymerase abundance, and NADH [reduced form 
of nicotinamide adenine dinucleotide (oxidized form)] pool 
[59]. However, the measurement of these metrics can be chal-
lenging to normalize across hosts [60].

Mechanistic modeling has the advantage of being able to 
quantitatively predict output parameters, but establishing such 

a model is challenging or even intractable given that the com-
plexity microbial physiology is compared across species. Our 
holistic approach has the advantage of being able to consider 
diverse range of metrics without needing to know how they 
interact (e.g., growth rate and PCN), under the condition that 
the inclusion of the metric should be justified with a priori 
insight. Our results push the notion that the biological deter-
minants manifesting a comparable and quantifiable chassis 
effect can be traced to physiological differences between hosts, 
and that this holds true for other similar frameworks involving 
plasmid-based bacterial expression systems. Given the univer-
sality of our physiology metrics, our findings could also hold 
true for eukaryotic expression systems. A major caveat of this 
result is that a given collection of hosts must also share some 
base level of genetic compatibility with a given engineered 
device, therein maintaining some unspecifiable level of depend-
ence upon genetic relatedness. Yet, our results show that the 
observable chassis effect cannot be reliably inferred from phy-
logenomic relationships—i.e., genome relatedness. This study 
also establishes a framework for testing how an engineered 
genetic circuit might perform across closely related hosts and 
bolsters momentum in the field of BHR biodesign. Furthermore, 
to our knowledge, this study is the first to report the successful 
genetic engineering of three novel marine hosts, H. aestusnigri 
VGOX14, H. oceani KX20, and P. deceptionensis M1, with prag-
matic innate phenotypes such as polyethylene terephthalate 
(PET) degradation [61], psychrotolerance, and salinity toler-
ance [62,63].

The diverse range of observed constants across the different 
chassis was interesting; since both the protein sequences are 
identical across the data set, changes in kinetic parameters such 
as the activation constants cannot arise due to differences in 
binding affinity of the small activating ligands for the transcrip-
tion factors. Similarly, variations in the Hill coefficient cannot 
be due to local DNA binding interactions since the promoter 
sequences are identical. Instead, these chassis-specific effects 
are more likely due to the expression level of the transcription 
factor and the bioavailability of the activating ligand, which 
may also be dependent on transport regulators and efflux. For 
instance, the markedly higher KaTc values for the Pseudomonas 
spp. could be due to the presence of a native TtgABC efflux 
pump, known to be more highly expressed in the presence of 
tetracycline in P. putida DOT-T1 strain [64,65]. Indeed, a 
BLAST search with the P. putida DOT-T1 TtgA, TtgB, and TtgC 
genes [National Center for Biotechnology Information (NCBI) 
GenBank accession = AF031417.2] against the genomes of our 
six hosts reveals that all three genes are also present in the P. 
putida and P. fluorescens genome, the hosts with the highest 
KaTc. Active export of the inducer leading to lowered intracel-
lular concentration could explain the wider induction range of 
P. putida and P. fluorescens. This is a clear example of how the 
presence of a single element can be a major contributor to var-
iation. Furthermore, unpredictable elements such as the pres-
ence of DNA binding sites on the host genome recognized by 
the TetR and AraC repressors could lead to sequestration of 
the transcription factors, leading to differing steady-state con-
centration of free repressor available to bind to its intended 
cognate operator [66].

Hysteresis experiments revealed that inverter-carrying hosts 
initially induced with Ara were unable to stably maintain past 
fluorescence states in late phase. The reason for the different 
capacities of hysteresis between the PBAD and PTet promoters 
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could be due to the different modes of regulation. The PBAD 
promoter requires Ara-bound AraC to activate transcription; 
hence, the retention of past induction state is susceptible to 
negative growth feedback diluting the activator during expo-
nential growth and thereby leading to memory loss. On the 
other hand, the constitutively active PTet promoter enjoys 
increased transcription upon dilution of its cognate TetR repres-
sor. This dependence on circuit topology is in agreement with 
the findings of Zhang et al. [20]. The topology of our inverter 
circuit differs from the mutual inhibitory motif of classical tog-
gle switches [67,68] not only due to the dual property of the 
chosen AraC transcription factor, but also because the PBAD 
promoter contains a catabolite activator protein binding site, 
leading to a potential topology change as cells exit exponential 
growth and enter slow growth conditions. Catabolite repression 
effect could therefore also contribute to the inability of host 
cells to retain a stable sfGFP ON phenotype. As the purpose of 
the study was to characterize the chassis effect and not the 
inverter circuit, we did not conduct an extensive investigation 
of the inverter’s complex dynamics.

The chassis effect can manifest in different ways between 
hosts, from complete circuit inoperability in some hosts, to 
variations in performance between others. The diversity of per-
formance metric profiles exhibited by the six hosts character-
ized here encourages the notion of viewing chassis as pragmatic 
parts capable of tuning device parameters. In cases where the 
tuning of promoter or ribosome binding site (RBS) strengths 
does not yield the desired functional outcome, exploring chas-
sis design space could be a promising direction. However, we 
recognize that successfully introducing a device into a novel 
chassis is often not possible; as exemplified during our design–
build–test processes, the pS4 plasmid was unsuccessfully trans-
formed into two initially chosen hosts: Pseudomonas taeanensis 
MS-3 and Halopseudomonas pachastrellae CCUG 46540 (NCBI 
Assembly accession numbers MS-3 and ASM198937v1, respec-
tively). Whether this was due to transformation methodology, 
genetic compatibility, or the activity of inverter circuit being 
toxic to the cells is unknown, indicating that the “inoperable 
chassis effect” is challenging to assess.

Armed with automated circuit design software [69], stand-
ardized part libraries, and robust DNA assembly technology, 
synthetic biologists are now able to reliably manifest their 
genetic circuit abstractions into physical DNA molecules that 
carry out programmed functions with increasing fidelity. We 
have improved our ability to control for unwanted composi-
tional and context effects [17] in our circuit designs to a high 
degree by compartmentalizing modules and components using 
regulatory elements such as terminators and ribozymes [70] 
and rationally avoiding promiscuous genetic elements known 
to “cross-talk.” However, continued reliance on our limited 
number of model organisms will surely stagnate the rate of 
progress of engineering microorganisms. As we domesticate 
more pragmatic microbes as novel chassis, our ability to control 
and predict host context effect must also advance. The emerging 
field of BHR synthetic biology aims to develop engineering 
principles that minimize unpredictability arising from host 
context, and our findings contribute to this goal by improving 
prediction of the chassis effect; we have here uncovered poten-
tial fundamental principles that drive observable differences in 
host-specific genetic device performance, and thereby lending 
increased predictive power for porting synthetic circuits across 
bacterial species and the exploration of chassis design space.
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