Skip to main content
. 2023 Aug 1;9(8):e18850. doi: 10.1016/j.heliyon.2023.e18850

Table 2.

Income matrix under corresponding strategies.

Equilibrium point Jacobian matrix eigenvalues
λ1; λ2; λ3
Real part notation Stability condition
Case 1 (0, 0, 0) CmCiβPf2Rm;
Cg2Cg1αSf1+Sf2Sc;
Le
(-, -, -) stable point
Case 2 (1, 0, 0) CiCm+βPf2+Rm;
Cg2Cg1βPf2αSf1+Sf2Sc;
CeβPe2Ri+TeUc+Ui;
(+, -, -) unstable point
Case 3 (0, 1, 0) CmCiRm;
Cg1Cg2+αSf1Sf2+Sc;
Sc
(-, -, -) stable point
Case 4 (0, 0, 1) CmCiβPf2+RiRm+Tf;
Cg2Cg1αSf1+Sf2;
Le
(-, -, +) unstable point
Case 5 (1, 1, 0) CiCm+Rm;
Cg1Cg2+βPf2+αSf1Sf2+Sc;
CePe1RiSc+TeUc+Ui
(+, -, -) unstable point
Case 6 (1, 0, 1) CiCm+βPf2Ri+RmTf;
Cg2Cg1+Pf1+Pe1βPe2βPf2αSf1+Sf2;
βPe2Ce+RiTe+UcUi
(+, +, +) unstable point
Case 7 (0, 1, 1) CmCiPf1+RiRm+Tf;
Cg1Cg2+αSf1Sf2
Sc
(-,+, +) unstable point
Case 8 (1, 1, 1) CiCm+Pf1Ri+RmTf;
Cg1Cg2Pf1Pe1+βPe2+βPf2+αSf1Sf2;
βPe2Ce+RiTe+Sc+UcUi
(-, +, +) unstable point