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ARTICLE

Combined CRISPRi and proteomics screening reveal
a cohesin-CTCF-bound allele contributing
to increased expression of RUVBL1 and prostate cancer progression

Yijun Tian,1,9 Dandan Dong,2,9 Zixian Wang,2,3,4 Lang Wu,5 Jong Y. Park,6 the PRACTICAL consortium,
Gong-Hong Wei,2,3,4,7,8,* and Liang Wang1,*
Summary
Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-

nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci

remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to

cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage.

Among these, rs60464856 was covered bymultiple gRNAs significantly depleted in screening (FDR< 0.05). Pooled SNP association anal-

ysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value¼ 1.23 10�16 and

3.23 10�7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression inmultiple

datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Further-

more, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset

showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in

a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related

pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA data-

sets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with

proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Introduction

Among all cancer types, prostate cancer (PCa) accounted

for 26% of 970,250 new cancer cases and caused 11% of

319,420 cancer-related deaths in US males in 2021.1 As a

cancer type with strong genetic predispositions, PCa has

been extensively investigated in genome-wide association

studies (GWASs)2 in which researchers aim to determine

susceptible variants associated with increased disease risk

and aggressiveness.2,3 It has been reported that the contri-

bution of GWAS-identified loci to PCa risk is nearly 20%.4

Although GWASs have been highly productive, only a few

risk loci have been functionally characterized.5–8 Thus far,

because these risk single-nucleotide polymorphisms (SNPs)

are found in non-coding portions of the genome, it is

believed that many of them (or their closely linked SNPs)

alter the activities of regulatory elements and quantita-

tively change gene expression rather than directly

mutating protein sequences.9–12 With tremendous large-

scale GWAS findings, especially those of high reproduc-

ibility, it is believed that some non-coding variants play a

subtle but profound role in PCa initiation, progression,
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and metastasis by modulating the expression of discrete

susceptibility genes.

To dissect functional variants and their target genes in

PCa, researchers apply bioinformatic and benchtop ap-

proaches to prioritize and validate the causal variants.13–15

Curated databases such as ChIP-atlas,16 ENCODE,17

JASPAR,18 and GTEx19 provide abundant resources for esti-

mating the genetic contribution of GWAS variants to PCa

and other cancer susceptibilities. However, large-scale ge-

netic assays are often needed for interrogation of endoge-

nous variant loci and direct characterization of consequent

phenotype changes to determine the biological effect.20–22

One such assay is lentiviral-basedCas9-mediated screening,

whichhas emergedas apowerful tool for evaluating thebio-

logical significance of genes of interest on a large scale.23,24

Compared with canonical wild-type Cas9-based screening,

dead Cas9 (dCas9) forms steric hindrance according to the

gRNA sequence and induces transcription repression if

fused to repressor peptides KRAB (Krüppel-associated

box). dCas9-KRAB can specifically decrease target gene

expression without strand cleavage and is used for

screening regulatory elements in mammalian cells.25,26
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Figure 1. CRISPRi screening in prostate cell lines decodes regulatory SNPs from eQTL analyses
(A) Study design of the current project, including eQTL target selection, CRISPRi screening, and functional validation.
(B) Overall SNP candidates in BPH1 (red), DU145 (green), and PC3 (blue) cells over 3-week screening.
(C–E) Comparison of the gRNA fold change between the selected and unselected SNPs in BPH1 (C), DU145 (D), and PC3 (E) cells. The
gRNA fold change was calculated from the average of the two biological replicates. The bar represents the standard error of the fold
changes within each category.
(F) Enrichment of the selected compared to unselected SNPs in transcription start sites (TSSs).
(G) Enrichment of the selected compared to unselected SNPs in allele-specific binding (ASB) annotation according to the ANANASTRA
database.
(H–J) Demonstration of gRNA representation for the selected SNPs in BPH1 (H), DU145 (I), and PC3 (J) cells. gRNAs targeting the main
validation SNP rs60464856 are highlighted in red.
Most SNPs are believed to function as regulatory switches

in the human genome. With the eliminated nuclease activ-

ity,26 we hypothesized that dCas9-based CRISPRi could be

used to interfere with regulatory sequences at SNP loci and

faithfullymimick the transcription alteration caused by sin-

gle-base differences. To test this hypothesis, we first estab-

lishedmultiple stable dCas9-KRAB prostate cell lines and de-

signed an unbiased, highly reproducible gRNA library that

targeted candidate SNPs at PCa risk loci. We then performed

negative selection for potential SNPs conferring a growth

advantage. Finally, we provided a detailed analysis of an

SNP-gene pair for its functional role by using prostate cell
1290 The American Journal of Human Genetics 110, 1289–1303, Aug
lines and a mouse model and performed a successful prote-

omics identification of transcriptional regulators that

mediate the variant’s regulatory change. (Figure 1A) Our re-

sults support the use of CRISPRi-based approaches at disease

risk loci for regulatory SNP screening.
Methods

eQTL-based SNP selection at prostate-cancer risk loci
The rationale for the regulatory screening is explained in

Figures S1A and S1B. In brief, to select candidate SNPs, we first

retrieved cis-eQTL data from our benign prostate tissues27 and
ust 3, 2023



identified all SNPs with gene-wise FDR % 1 3 10�3. We then

applied ENCODE annotations (including histone modification,

common transcription factor binding, and DNase hypersensitivity

in prostate cell lines) to filter for candidate functional SNPs.

gRNA selection and library pool amplification for

candidate SNPs
To design gRNAs for the candidate SNPs, we retrieved DNA se-

quences surrounding each SNP (523bp). We used the CRISPOR

program (http://crispor.tefor.net/) for in-silico selection. We

assembled the gRNA oligo pool into the lentiGuide-Puro (RRID:

Addgene_52963) backbone and transformed the pooled oligos

into highly sensitive Endura ElectroCompetent Cells (Lucigen)

to generate plasmid libraries.

dCas9/KRAB stable cell lines and gRNA library

processing
To establish stable cell lines, we packaged lenti-dCas9-KRAB-blast

(RRID: Addgene_89567) into lentiviral particles with HEK293FT

cells and used 10-fold concentrated virus particles to transduce

several human cells, including RWPE1, BPH1, 22Rv1, PC3,

DU145 and HEK293FT cell lines. After blasticidin selection, stable

dCas9 expression was verified with immunoblots. The gRNA virus

library (packaged from lentiGuide-Puro) was titrated in three

dCas9 stable prostate cell lines, including BPH1 (originated from

benign prostatic hyperplasia), DU145 (originated from prostatic

brain metastasis) and PC3 (originated from prostatic bone metas-

tasis) for the screening. We excluded RWPE1 because the serum-

free culture condition conflicts with the virus supernatant, and

we excluded 22Rv1 because the small cell size influenced the accu-

racy of cell counting during screening. To achieve lowmultiplicity

of infection (MOI), we optimized the cell number and virus

amount over 72-h puromycin selection, such that the non-in-

fected group would be eliminated by 95%–99%, whereas the li-

brary group retained 30%–40% viability. The cell viability was

measured with the CellTiter-Glo Luminescent Cell Viability Assay

(Promega G7570). After confirming low MOI integration, we

removed puromycin from the medium and continued the cell cul-

ture for 21 days. We isolated genomic DNA at baseline D1 (day 1)

and endpoint D21 (day 21).

gRNA readout sequencing
We used the Illumina HiSeq platform to sequence the

gRNA readout amplicons. We aimed for at least a 500-fold li-

brary size depth for each replicate to ensure quantification

accuracy.

Data QC and analysis
To quantify the representation of each gRNA, we used a Python

script ‘‘count_spacer.py’’ developed by Feng Zhang’s lab to scan

the FASTQ file for perfectly matched hits and generate raw read

counts for each experiment. We then used principal-component

analysis (PCA) to evaluate the similarity of the plasmid library,

baseline, and screening endpoint gRNA representation. To

determine SNP alleles conferring growth advantage in these cell

lines, we used RIGER (RNAi gene enrichment ranking) extension

(https://software.broadinstitute.org/GENE-E/extensions.html) to

calculate a rank list for SNPs or alleles with the most depleted

gRNA representation.28 The RIGER program ranks gRNAs accord-

ing to their depletion effects and then identifies the SNP targeted

by the shRNAs.
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Plasmid construction and siRNA design
To enable fluorescence-based cell sorting, we assembled copGFP

ORF into base editor plasmid29 xCas9(3.7)-ABE(7.10) (RRID: Addg-

ene_108382) with NEBuilder HiFi DNA Assembly Master Mix

(New England Biolabs). A 223-bp flanking sequencing surround-

ing rs60464856 was amplified from RWPE1 cells (rs60464856 het-

erozygote) and further subcloned into the pGL3-basic vector be-

tween NheI and XhoI sites with NEBuilder HiFi DNA Assembly

Master Mix. Small hairpin RNA (shRNA) targeting RUVBL1,

primers, and gRNA sequences are listed in Table S1.

Reagents and cell culture
Antibody against Cas9 protein (844302) was purchased from

BioLegend. Antibody against RUVBL1 (10210-2-AP) was pur-

chased from Proteintech. Antibody against b-actin (4970) was

purchased from Cell Signaling Technology. SMC3 (ab9263),

H3K4me1 (ab8895), and IgG isotype control antibodies

(ab171870 for rabbit, ab37355 for mouse) were purchased from

Abcam. SMC1A (61067), CTCF (61311), and H3K27ac (39034) an-

tibodies were purchased from Active Motif. CTCFL (MABE1125)

and H3K4me3 (c15410003) antibodies were purchased from

Sigma-Aldrich and Diagenode, respectively. DU145 (CVCL_

0105), PC3 (RRID: CVCL_0035), 22Rv1 (RRID: CVCL_1045), and

RWPE1 (RRID: CVCL_3791) cells were obtained from the ATCC.

BPH1 (RRID: CVCL_1091) cells were purchased from Sigma-

Aldrich. HEK293FT cells (RRID: CVCL_6911) were purchased

from Thermo Fisher Scientific. Cell lines were disposed of and re-

placed with low passage aliquots after being subcultured 15 times.

Unless specified otherwise, all cell culture reagents were obtained

fromThermoFisher Scientific. BPH1, DU145, PC3, and 22Rv1 cells

were grown in RPMI1640 medium supplemented with 10% fetal

bovine serum (FBS). HEK293FT cells were grown in DMEM me-

dium supplemented with 10% FBS and 500 mg/mL geneticin selec-

tive antibiotics. RWPE1 cells were grown in Keratinocyte Serum-

Free Medium. All cell lines were examined for mycoplasma

contamination with Venor GeM Mycoplasma Detection Kit

(Sigma-Aldrich).

CRISPR base editing
To change the rs60464856 A allele to G allele, we created a GFP-

labeled xCas9(3.7)-ABE(7.10) plasmid based on the backbone from

David Liu’s lab.29 A gRNA templatewas synthesized in a gblock frag-

mentwith anhU6promoter and a scaffold (https://benchling.com/

protocols/10T3UWFo/detailed-gblocks-based-crispr-protocol).

Because rs60464856 is located in the base editing window, the

adenine base editor can be directed to the SNP site and catalyze A

into the G allele. We co-transfected 2.5 mg xCas9(3.7)-ABE7.10

plasmid and 1.2 mg gRNA gblock into cells 80% confluent in each

well of the six-well plate. After 48 h, GFP-positive cells were sorted

by flow cytometry and collected for allele dosage quantification.

The GFP-positive cells were seeded into single clones once editing

efficiencies were above 5%. After expanding the single clones for

ten days, we used amplification-refractory mutation system

(ARMS) PCR for genotyping from the direct lysate. We also used

Sanger sequencing to verify the germline change of each single

clone.

Real-time PCR and immunoblot analysis
Total RNA was extracted from cells via the Direct-zol RNA Mini-

prep Kit (Zymo Research). Onemicrogram of total RNAwas reverse

transcribed by iScript cDNA Synthesis Kit (BioRad). Quantification
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reactions were performed with PowerUp SYBR Green Master Mix

(Thermo Fisher Scientific) on the CFX96 Touch real-time PCR sys-

tem (BioRad). The primers are listed in Table S1. Total protein was

extracted and electrophoresed as described previously;30 minor

modification was performed with Mini-PROTEAN Precast Gels

(BioRad). SuperSignal West Pico Chemiluminescent Substrate

(Thermo Fisher Scientific) produced luminescent signals on the

LICOR imaging system. Captured images were aligned in Photo-

shop and assembled in Illustrator.

Luciferase reporter assay
The cells were seeded into a 24-well plate. After 12 to 16 h, Lipofect-

amine 3000 was used for transfecting 500 ng of pGL3 reporter plas-

mids to each well. The media were replaced after transfection for 24

h. After 48 h of transfection, the cells were lysed for the luciferase

assay according to theDual-Luciferase Reporter Assay (E1960, Prom-

ega) protocol. The luminescence signals were measured with the

GlowMax plate reader. After normalization to Renilla luciferase

readout, relative firefly luciferase activities driven by corresponding

promoters were represented by fold changes in lumiescence.

HiC data analysis
We downloaded the processed data for DU145, PC3, VCaP, and

LNCaP cells from the GSE17209931 supplementary file collection

and used the ICED (iterative correction and eigenvector decomposi-

tion) normalized datamatrix for visualization and analysis.We used

a 20 kb bin for DU145 and PC3 cells and a 40 kb bin for VCaP and

LNCaP cells; these sizes are the smallest bin size in the processed

data. We used PERLmodules from the existing pipeline cworld-dek-

ker (https://github.com/dekkerlab/cworld-dekker) to generate the

heatmap and to sub-slice the ICED data matrix. For demonstration

convenience, we highlighted the method to calculate the left-to-

right ratio (L/R) in Figures S6A–S6E. After visualizing the heatmap,

we decided to focus on two hotspots surrounding the rs60464856

locus (chr3: 127840001–127860000 [hg19]) in DU145 and PC3

cells, including three 20-kb bins on the left (chr3: 127780001–

127800000 [hg19] to chr3: 127820001–127840000 [hg19]) and

three 20-kb bins on the right (chr3: 12786000–127880000 [hg19]

to chr3: 127900001–127920000 [hg19]), both interacting with a

distant ten 20-kb-bin region near the 3-prime end of RPN1 (chr3:

128120001–128140000 [hg19] to chr3: 128300001–128320000

[hg19]). We aggregated the ICED count in the hotspot and divided

the left to the right to obtain the L/R ratio in each cell line. For VCaP

and LNCaP, we applied the same strategy to calculate the L/R ratio,

except for the larger bin size included for each interaction spot.

Because the bin count for each hotspot was arbitrarily decided, we

also calculated the L/R ratio for different options in Figure S6E.

The results showed that the current selection represents an average

estimation among the multiple options.

Allele-specific proteomics screening with stable isotope

labeling by amino acid in cell culture (SILAC)
The BPH1, DU145, and PC3 cells were grown in SILAC RPMI 1640

medium (ThermoFisher 88365) for five passages before cells were

harvested for nuclear protein extraction (Active Motif 40010). Af-

ter confirming that heavy amino acid labeling efficiency reached

99.9%, we applied the nuclear extracts to the desalting spin col-

umn (ThermoFisher 89882) to remove excessive ions. The DNA

baits harboring rs60464856 A and G alleles were produced accord-

ing to methods in a previous publication.32 For each binding reac-

tion, 2 mg of purified DNA baits were conjugated to 25 mL Strepta-
1292 The American Journal of Human Genetics 110, 1289–1303, Aug
vidin Dynabeads (ThermoFisher 65001). The clean conjugated

beads were incubated with 12.5 mL precleared nuclear protein at

4� overnight. The incubated beads were washed five times and

combined for two parallel quantitative-mass-spectrometry runs

to provide the allelic protein binding ratio. Qualified proteins

with allelic binding were defined as (1) concordant allele ratio

changes: log2(A/G)3 log2(G/A) < 0 and (2) drastic allele ratio dif-

ferences: |log2(A/G) � log2(G/A)| R 2. For proteins with allelic

hits, we further narrowed them down to those with known DNA

binding functions according to UniProt databases (https://www.

uniprot.org/).33
Chromatin immunoprecipitation qPCR assays
Because the rs60464856 locus was demonstrated to reside in an in-

sulation region in an analysis of previously published Hi-C data, we

adapted our chromatin immunoprecipitation (ChIP) qPCR proto-

cols for chromosome conformation capturing.34 Compared with

conventional ChIP assay protocol, our protocol applied dual cross-

linking to maximally preserve chromatin contacts.35 Each ChIPed

DNA sample was tested in four qPCR reactions, including (1)

rs60464856 locus enrichment primer pair amplifying a 223-bp frag-

ment centering on rs60464856; (2) rs60464856 locus control primer

pair amplifying a 183-bp fragment 2.5 kb upstream to the SNP; (3)

rs60464856 A allele-specific primer pair; and (4) rs60464856 G

allele-specific primer pair. To quantify the histone modification

profiling in the subclones, we performed ChIP reactions with

H3K4me1, H3K4me3, and H3K27ac antibodies and quantified the

rs60464856 locus enrichment over the upstream control primer.

We further normalized the fold change against the input DNA to

obtain an enrichment score for each modification.
RNA-seq and gene set enrichment analysis (GSEA)
Total RNA sample was extracted with the Zymo Direct-zol micro-

prep kit, with the on-column DNase digestion step included.

The mRNA was purified from total RNA via poly-T oligo-attached

magnetic beads. After fragmentation, the first-strand cDNA was

synthesized with random hexamer primers followed by the sec-

ond-strand cDNA synthesis. The library was ready after end repair,

A-tailing, adapter ligation, size selection, amplification, and purifi-

cation. A total of 6G genomic data were targeted for each sample,

which guaranteed roughly 20 million 150 bp paired-end RNA

reads. The FASTQ file was trimmed with cutadapt and quantified

with the RSEM package36 for gene expression. To determine which

pathway was associated with RUVBL1 expression, we used interac-

tive GSEA software37 to find which gene set showed statistically

significant enrichment. For the TCGA prostate cancer tissue, we

used the FPKM data from the NCI GDC data portal for the GSEA

analysis.
In vivo xenograft mouse model
Animal experiments were performed according to the protocol

approved by the Institutional Animal Care and Use Committee

of Fudan University. Nude mice (6-week-old males) were pur-

chased from GemPharmatech (Jiangsu, China) and maintained

in a pathogen-free environment. PC3 was grown in RPMI1640

containing 10% FBS, 100 U/mL penicillin, and 100 mg/mL strepto-

mycin in a humidified CO2 incubator. Before injection into the

mice, the cells were harvested by trypsinization and washed two

times with PBS. PC3 cells were then resuspended in 100 mL

serum-free medium, mixed with 50% Matrigel (BD Biosciences),

and injected (5 3 106/site) subcutaneously into the hind flank of
ust 3, 2023
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each mouse. Tumor volume was measured with a digital caliper

once a week and calculated according to the formula: V ¼ (L 3

W2)/2 (L ¼ length; W ¼ width; all parameters are in millimeters).

After 4 weeks, the mice were sacrificed, and tumors were taken for

weight measurement. Mouse tumor models and protocols were

approved by the Animal Experiment Review Board (20210302-

071) of the School of Basic Medical Sciences, Fudan University,

Shanghai, China.
Results

Candidate SNP selection, gRNA searching, and

screening library production

We first screened the ENCODE database and identified

2664 SNPs (TARGET) with strong epigenomic signals

(Figure S1C). We then applied a Bayesian framework by us-

ing summary statistics to calculate a posterior inclusion

probability (PIP) to predict SNP functionality. We included

five SNPs with the highest PIP score for each eQTL-associ-

ated gene as another PIP SNP category (n ¼ 194). Finally,

we included 641 control SNPs (CTL) that showed strong

eQTL signals but without epigenomic features. After

removing duplicated SNPs, we selected 3,408 SNPs for

gRNA design. We scanned these SNPs with the CRISPOR

program and eventually designed 9,133 gRNAs, including

100 control sequences that did not target any genome

loci (NCG) (Figure S1D). The exact sequence design can

be found in Table S2.

We used immunoblots to confirm stable expression of

dCas9 after one month of transduction (Figure S2A). We

ensured low MOI infection by measuring gRNA lentiviral

library function titer in 72 h (Figure S2B) and visualized a

261-bp gRNA amplicon for each sample on agarose gel

for quantification by high-throughput sequencing

(Figure S2C). The sequencing summary for each sample is

shown in Figure S2D. We also visualized the normalized

count in each replicate endpoint and observed high corre-

lations in all three cell lines (Figures S2E–S2G).

CRISPRi screening identified top candidates of

regulatory SNPs

We first performed PCA analysis and found tight clustering

between baseline and plasmid libraries (Figure S3A), sug-

gesting faithful representations of original gRNA libraries

in transfected cell lines. This analysis also found highly

diverse but cell-line-dependent distribution in the end li-

braries, indicating gRNA profile changes by the selection

process. We then normalized the read count by using the

total noncount with perfect sequence match in each sam-

ple and calculated the fold change by dividing the read

count in the end library by the read count in the baseline

library. The subsequent RIGER analysis showed 779 gRNAs

targeting 117 SNPs with permutation test FDR %0.1 in

both replicates (Figure 1B). Further analysis did not find

significant correlations between the fold change and

gRNA specificity score (Figures S3B–S3D), suggesting mini-

mal off-target effects of these selected gRNAs. When
The American
comparing end and baseline libraries, we found significant

gRNA depletion in BPH1, DU145, and PC3 screening ex-

periments (Figures 1C–1E). When comparing relative

gRNA changes between different categories of candidate

SNPs, we found significantly higher growth depletion

only in BPH1 cells with gRNA targeting the PIP and

TARGET SNPs (Figures S3E–S3G). We also found that a

significantly higher proportion of the SNPs selected as

screening hits resided in transcription start sites of human

genes (Figure 1F) and tended to be allelically bound to tran-

scriptional-factor binding according to ANANASTRA anno-

tation (Figure 1G).38 We plotted the gRNA representation

before and after the growth selection and highlighted

representative SNPs in each cell line (Figures 1H–1J). The

raw and normalized gRNA count and the eQTL mapped

with the candidate SNP are listed in Table S2. The RIGER

analysis output is listed in Table S3.

rs60464856 displays a regulatory role in RUVBL1

expression underpinning susceptibility for prostate

cancer

Among the 117 SNPs showing significant growth inhibi-

tion over a 3-week screening, the SNP rs60464856 was

consistently selected in all tested prostate cell lines. The

SNP sequence was targeted by tengRNAs for the A and

six gRNAs for the G allele. We observed significant A allele

depletion (fold change %0.75) in ten gRNAs in BPH1, five

gRNAs in DU145, and ten gRNAs in PC3 cells (Figure 2A).

rs60464856 is located in a previously identified risk locus,

and the G allele was associated with a 10% increased risk of

prostate cancer in 107,247 cases and 127,006 controls

(p value ¼ 1.2 3 10�16) (Figure 2B).39 Consistently, a

phenome-wide association analysis (PheWAS) in the

FinnGen cohort (n ¼ 342,499) with 2,202 endpoints re-

vealed the strongest association of rs60464856 with malig-

nant neoplasm of prostate (11,590 cases and 110,189

controls; p value ¼ 3.2 3 10�7) (Figure S4A).40 We further

showed that among the RUVBL1 eQTL loci, rs60464856

resided in a linkage disequilibrium block with the sec-

ond-best significance (Figure 2C). Additionally, the

rs60464856 G allele was significantly associated with

elevated RUVBL1 expression in GTEx (https://gtexportal.

org/home/),19 Mayo,27,41,42 and TCGA prostate eQTL43

datasets (Figure 2D). Interestingly, we found the most

abundant isoform of RUVBL1 was associated with the

rs60464856 G allele in the TCGA PCa splicing QTL44,45

and Mayo cohorts27,41,42 (Figures S4B–S4D). We also used

three gRNAs targeting the rs60464856 locus to transiently

transfect the dCas9 stable cells and observed a consistent

knockdown effect on RUVBL1 expressions in all three pros-

tate cell lines (Figure 2E). To evaluate the nuances of

endogenous allele transition contributing to downstream

gene expression, we applied nickase Cas9 (xCas9) base

editing technology, which features high conversion effi-

ciency and a minimal indel rate, to precisely substitute

the rs60464856 allele in prostate cells (Figure 2F). Finally,

we generated multiple isogenic subclones with accurate
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Figure 2. The rs60464856-RUVBL1 locus shows a regulatory role underpinning susceptibility to prostate cancer
(A) Screening fold change of rs60464856 gRNA in BPH1, DU145, and PC3 cells. The Gray bar indicates the rs60464856 locus in the germ-
line, and colored strips above or below the bar indicate gRNA binding Crick or Watson strands of the germline DNA. Numbers in the
center show the average fold change for two screening replicates.
(B) Locus plots for rs60464856 locus PCa GWAS significance in the PRACTICAL cohort.
(C) Locus plots for RUVBL1 eQTL significance in the Mayo prostate dataset.
(D) eQTL associations between RUVBL1 expression and rs60464856 genotypes in GTEx, Mayo, and TCGA prostate cohorts.
(E) RUVBL1 expression in dCas9-KRAB stable prostate cells transfected with non-targeting control guide (NCG) and rs60464856 target-
ing gRNAs. The individual points indicate different gRNA clones. The inhibition fold changes were calculated from three biological rep-
licates. The bar represents standard error.
(F) Schematic figure showing xCas9-based A-to-G base editing in prostate cell lines.
(G) RUVBL1 expression in rs60464856 base-edited clones in BPH1, DU145, and PC3 cells. The bar represents the mean and standard
error.
base conversion and confirmed significant increases of

endogenous RUVBL1 expression by the G allele in BPH1

and DU145, but not in PC3 cells (Figure 2G).

rs60464856 binds cohesin subunits allelically in a

manner mediated by chromatin interactions

To evaluate potential allelic protein binding at rs60464856,

we searched for ChIP-seq data collections, such as Cistrome

Data Browser (http://cistrome.org/db/#/)46 and ChIP-Atlas
1294 The American Journal of Human Genetics 110, 1289–1303, Aug
(https://chip-atlas.org/),16 for potential transcription factor

bindings. However, we did not find highly convincing evi-

dence showing allelic TF binding on this locus. Sincemulti-

ple datasets report histone modification signals on the

rs60464856 locus, we then performed ChIP-qPCR to eval-

uate the locus-specific enrichment for active histone modi-

fication markers (H3K4me1, H3K4me3, and H3K27ac) in

the base-edited subclones.We found distinct histonemodi-

fication status in PC3 clones, especially for H3K27ac on the
ust 3, 2023
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Figure 3. Involvement of the rs60464856 locus with the RUVBL1 enhancer, long-range interaction, and allelic binding to cohesin sub-
units
(A) H3K4me1, H3K4me3, and H3K27ac modifications on rs60464856 locus in BPH1, DU145, and PC3 clones.
(B) ChIP-seq signals of H3K4me1, H3K4me3, and H3K27ac modifications on the rs60464856 locus in prostate cells.
(C and D) HiC interaction heatmap in PC3 (C top), DU145 (C bottom), VCaP (D top), and LNCaP (D bottom) cells. Each L and R indicate
interaction ICED normalized read count on the left and right sides of the rs60464856 bin. The red and green labeled boxes in the contact
matrix represent the interaction hotspot on the left and right side of the rs60464856 locus, respectively. The red and green arrows in the
gene-model illustration highlight the interactions between the left and right region, respectively, of rs60464856 and a distant region
downstream of RPN1. The dotted red arrow demonstrates weakened left interactions in PC3 compared with DU145 cells.
(E) Luciferase reporter assay comparing rs60464856 allele transcription activities in BPH1, DU145, and PC3 cells. The bar represents the
standard error across multiple technical replicates, and the p values represent simple t test results.
(F) SILAC-based DNA pull-down proteomics pipeline for identifying allelic protein binding on the rs60464856 locus.
(G) Allelic proteomics with BPH1 SILAC extracts.
(H–K) ChIP-qPCR measuring rs60464856 locus enrichment and allele-specific binding to SMC1A, SMC3, CTCF, and CTCFL proteins in
BPH1 (H and I) and PC3 (J and K) base-edited populations. Each dot represents experimental data from an independent immunoprecip-
itation biological replicate. The bar represents the standard error, and the p value significance (**p value <0.001; *p value <0.05; N.S. ¼
not significant) represents the Mann Whitney test between the ChIPed sample and the input.
rs60464856 locus (Figure 3A). Consistently, we found the

enrichment of H3K4me1, H3K4me3, and H3K27acmodifi-

cations on rs60464856 in multiple cell lines (Figure 3B),

suggesting a robust regulatory potential of this locus in

the prostate. Intriguingly, in an rs60464856 heterozygous

cell line, RWPE1, we identified higher H3K4me3 and

H3K27ac coverage for G than A allele, suggesting stronger

transcription activity driven by the risk allele. In prostate

cell lines and TCGA prostate cancer tissue47 (Figure S5),

we also identified consistent open chromatin signals near

the rs60464856 locus, further supporting its regulatory po-

tential on RUVBL1. With a recent HiC dataset,31 we also

visualized the long-range interactions surrounding the

rs60464856 locus. By summing the normalized count

from the interaction hot spot on both sides of the

rs60464856 locus, we calculated the left-to-right ratio

(L/R) in each cell line (Figures S6A–S6E). This analysis

showed that PC3 cells had only 60% interaction compared
The American
to DU145 cells (Figure 3C). In contrast, the interactions L/R

ratios were roughly equal in VCaP and LNCaP cells

(Figure 3D). To confirm the transcription activity of the

rs60464856 locus, we tested its flanking sequence (chr3:

128,123,257-128,123,479, negative strand) using a reporter

assay and found higher promoter activity of the G allele

than the A allele in these cell lines (Figure 3E).

We then applied SILAC-based proteomics to detect

possible transcription factors or DNA-binding proteins.

This assay took advantage of isotype-labeled nuclear

extract in DNA pull-down reactions, thus converting the

protein binding difference into the ratio of different

molecular weights (Figure 3F). This proteomics analysis

identified increased cohesin subunits bound to the

rs60464856 A rather than the G allele within the BPH1 nu-

clear extract (Figure 3G). To further elucidate whether co-

hesin could bind endogenous rs60464856 locus allelically,

we used ChIP assays specific to the rs60464856 locus from
Journal of Human Genetics 110, 1289–1303, August 3, 2023 1295



BPH1 and PC3 base-edited populations. In BPH1 cells, we

found significant locus enrichment (Figure 3H) for

SMC1A, SMC3, and CTCF, and the A allele preference for

SMC3 and CTCF (Figure 3I). In PC3 cells, we only found

minor locus enrichment for SMC3 and CTCF (Figure 3J),

and no allele preference was observed for all tested anti-

bodies (Figure 3K). We also explored the unique allelic

binding role of SMC3, using existing ChIP-seq datasets48

(GSE49402 and GSE36578) that quantified SMC1A and

SMC3 binding in the human genome (Figure S7A). We per-

formed STREMEmotif scan with the private peak region of

SMC1A and SMC3, and found that only SMC3 private

peaks included an outstanding significant motif in both

cell lines (Figure S7B). Through STREME -TOMTOM com-

parison, we also found that this motif was highly similar

to the CTCF binding site (MA0139.1) (Figure S7C). More

importantly, the rs60464856 A allele is located in the

CTCF zinc finger seven interaction domain and is consis-

tently preferred by multiple versions of the CTCF motif.49

This result suggests a potential mechanism about how the

rs60464856 protective allele mediates cohesin-CTCF com-

plex formation and supports our observation in the HiC

datasets (Figures 3C and 3D).

RUVBL1 knockdown inhibits prostate-cell proliferation

by downregulating cell-cycle-related pathways

To evaluate the oncogenic role of RUVBL1, we examined

the perturbation effect of RUVBL1 by CRISPR or RNAi

screening in the DepMap portal (https://depmap.org/

portal/). We found that RUVBL1 was a common essential

gene in most human cell lines and had a stronger depen-

dency score than the median of all essential genes for the

prostate cell lines used in our screening, including BPH1,

DU145, and PC3 cells (Figure 4A). To further characterize

the function of RUVBL1, we generated stable cell lines in-

fected with small hairpin RNA (shRNA) lentiviral particles

and verified that RUVBL1 had been successfully knocked

down at the mRNA and protein expression (Figures S8

and 4B). We further monitored the growth of the stable

cell lines with daily Incucyte scans and found that RUVBL1

knockdown by both shRNAs significantly suppressed pro-

liferation in BPH1 (Figure 4C), DU145 (Figure 4D), and

PC3 (Figure 4E) cell lines. We also observed drastic reduc-

tions in colony formation for the RUVBL1 knockdown

group in BPH1, DU145, and PC3 cells (Figure 4F). To char-

acterize the transcriptome alteration caused by RUVBL1

downregulation, we quantified RNA profiling of BPH1

and PC3 cells and calculated the GSVA score for the

HALLMARK gene set collection. Interestingly, multiple

cell-cycle-related pathways, including MYC targets, E2F

targets, and G2M checkpoint genes, showed significant

enrichment with RUVBL1 expression (Figures 4G–4H).

We further visualized the changes in gene expression in

these significantly enriched pathways and found consis-

tent trends with RUVBL1 expression (Figure 4I). To further

explore the RUVBL1-related transcriptomic alterations

induced by the rs60464856 risk allele, we performed
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mRNA-seq in ten BPH-1 clones, including five with AAA

and five with AGG genotypes. The RNA-seq result shows

1.35-fold higher RUVBL1 expression in AGG clones

than in AAA clones; PPDE (posterior probabilities of

being differentially expressed) is equal to 0.99999995

(Figure S9A). We also performed GSEA analysis with the

normalized RNA-seq data in the HALLMARK gene set

collection and found pathway changes similar to those

in RUVBL1 knockdown experiments and TCGA prostate-

cancer profiling (Figure S9B). To characterize the tumori-

genic effect of RUVBL1 in vivo, we performed xenograft

mouse experiments with the PC3 stable cell lines. We

found that the RUVBL1 knockdown significantly inhibited

tumor growth (Figure 4J) and reduced endpoint tumor

weight in the mice model (Figure 4K).
RUVBL1 expression increases aggressiveness and

predicts a worse prognosis in prostate cancer

To characterize the malignant potential associated with

RUVBL1 in clinical samples, we retrieved three indices of

genome instabilities, including the altered fraction of the

genome, mutation count, and aneuploidy score for 488

TCGA prostate cancer. We found that RUVBL1 expression

was positively associated with these indices (Figures 5A–

5C). Additionally, prostate cancer with higher RUVBL1

expression tended tohaveamore advancedTstage andGlea-

son score (Figure 5D). We also calculated the GSVA score for

the HALLMARK gene set collectionwith the TCGAprostate-

cancer RNA profiling and found that the cell-cycle-related

pathways showed up consistently in the eight most signifi-

cantly enriched gene sets (Figure 5E). We further demon-

strated the enrichment score (Figures 5F–5G) and FDR q

value for these significantly enriched pathways and found

consistent positive enrichment with RUVBL1 expression.

We performed a Kaplan-Meier analysis to see whether

RUVBL1 could serve as a prognosticmarker and found signif-

icantly worse progression-free (Figure 5H) survival in indi-

viduals with higher RUVBL1 expression. To determine

whether the RUVBL1-enriched genes could serve a prog-

nostic role, we also used k-means clustering methods with

the leading-edge gene to separate the prostate-cancer

patients into groups with different risks (Figure 5I).

The Kaplan-Meier analysis showed that individuals with

increased risk tended to have significantly worse progres-

sion-free survival (Figures 5J–5L). Additionally, RUVBL1

expression was consistently upregulated in PCa primary

and metastasis tumor tissue (Figures S10A–S10C).50–52 We

also demonstrated a positive association between RUVBL1

expression and elevated prediagnostic PSA level,52 higher

Gleason score,53 and worse biochemical recurrence-free sur-

vival54 in existing cohorts (Figures S10D–S10F).
Discussion

Over the past decade, GWASs and eQTL analyses have been

highly productive in finding PCa risk loci and susceptibilty
ust 3, 2023
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Figure 4. Cell-cycle arrest mediated by RUVBL1 knockdown significantly inhibits prostate cell proliferation
(A) Dependency score of RUVBL1 for CRISPR and RNAi screening from CCLE human cell line collections. A score of 0 indicates that a
gene is not essential, whereas a score of �1 is comparable to the median of all pan-essential genes.
(B) Measuring RUVBL1 protein expression after shRNA knockdown with lentiviral infection (low MOI). The numbers below each lane
indicate RUVBL1 protein intensity normalized to that of the ACTB internal control.
(C–E) Cell proliferation curve comparing cell-growth differences after RUVBL1 knockdown in BPH1 (C), DU145 (D), and PC3 (E) cell
lines. Each bar represents experimental data from six independent technical replicates. The experiment has been repeated twice starting
from lentiviral infection.
(F) Colony-formation assay comparing clonogenic potential alterations after RUVBL1 knockdown in BPH1, DU145, and PC3 cell lines.
Each well represents experimental data from four technical replicates. The experiment has been repeated twice starting from lentiviral
infection.
(G) GSVA on RNA-seq data in BPH1 and PC3 cells after RUVBL1 knockdown on HALLMARK collection pathways.
(H) GSEA summary for the most significant RUVBL1-driven gene sets in BPH1 and PC3 cells.
(I) Representative heatmap showing significantly enriched HALLMARK pathways, including MYC target, E2F target, and G2M check-
point. The RNA-seq was performed in two technical replicates within each group.
(J and K) Tumor volume changes (J) and tumor weight (K) comparison in xenograft experiments with the PC3 cell line. Each xenograft
subgroup included six biological replicates.
genes.55–57 Despite contributing to a better understanding

of the biological significance of risk predisposition, these

analyses did not directly demonstrate the regulatory role

of individual loci and the functional consequence of

each causal gene. To better delineate the functionality of

these genetic findings, a large-scale functional evaluation

of target risk loci is highly warranted. Because of the

non-coding nature of most risk loci, these variants are

believed to play a regulatory role. Therefore, we applied

the dCas9-based CRISPRi assay to target SNP sequences at

risk loci and aimed to mimick the regulatory alteration

caused by single base substitutions. This genome-wide

screening at PCa risk loci revealed 117 SNPs showing a reg-

ulatory role in cell proliferation. Interestingly, these prolif-
The American
eration-related SNPs are enriched in gene transcription

start sites, suggesting that the majority of the phenotypic

changes are related to transcription alterations caused by

dCas9 interference.

This study characterized the regulatory role of a risk SNP,

rs60464856. We observed consistent growth inhibition by

multiple gRNAs targeting this locus. More importantly,

with multiple gRNA targeting both alleles at the

same genomic locations, we observed interesting pheno-

typical changes related to seed region mismatches in

multiple prostate cell lines. As demonstrated by previous

studies,58,59 any mismatches in the 7-bp seed region of

the gRNA could cause a rapid rejection of these targets

by the dCas9 protein. These facts might explain the
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Figure 5. Association between RUVBL1 expression and aggressiveness in prostate cancer
(A–C) Associations in TCGA prostate cancer cohort between RUVBL1 expression and genome instability metrics, including the altered
fraction of genome (A), the mutation count (B), and the aneuploidy score (C).
(D) RUVBL1 expression in TCGA prostate tissue with different T stages and Gleason scores. The p value tested the linear trends between
the RUVBL1 expression with the incremental stages or scores. The dashed lines indicate the quartiles and the medians of each group.
(E) GSVA on RNA-seq data in TCGA prostate cancer tissue by ranking RUVBL1 expression on HALLMARK collection pathways.
(F) GSEA enrichment plots showing significantly enriched HALLMARK pathways in TCGA prostate cohort.
(G) Normalized enrichment score and FDR q value for significantly enriched HALLMARK pathways in the TCGA prostate cohort.
(H) Kaplan-Meier analysis of progression-free survival in TCGA prostate cancer patients stratified by RUVBL1 gene expression.
(I) Heatmap with RUVBL1 leading-edge genes; the side bar shows k-means-stratified groups with different risks related to significantly
enriched HALLMARK pathways, including MYC target V1, E2F targets, and G2M checkpoint, in the TCGA prostate cohort.
(J–L) Kaplan-Meier analysis on progression-free survival in TCGA prostate cancer patients stratified by the GSEA leading-edge gene en-
riched with RUVBL1 in each pathway, including MYC targets V1 (J), E2F targets (K), and G2M checkpoints (L).
A-allele-specific depletion effect of gRNA on positions �5

to �7, as shown in our data (see Figure 2A). When the

mismatch is located outside the seed region, the gRNA

with SNP at the �8 position showed depletion effects for

both alleles. To further validate the regulatory role of

rs60464856, we created multiple subclones carrying con-

verted G alleles. As expected, the G-allele-carrying sub-

clones showed elevated RUVBL1 expression in BPH1 and

DU145 cells. However, this elevated expression was not

observed in PC3 subclones, possibly as a result of the

distinct status of histone modification and chromatin

interaction in PC3 cells.

This study also showed allele-specific binding of SMC3,

which is different from SMC1A, at the rs60464856 locus.

As the major subunits of human cohesin, both SMC1A
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and SMC3mediatemultiple biological processes, including

DNA looping, chromosome condensation, and chromo-

some segregation, by forming heterodimers.60,61 Intrigu-

ingly, there have been several unique observations about

the distinct phenotypic changes brought about by SMC1A

or SMC3 knockdown. Magdalena et al.62 identified that

SMC3 knockdown rendered SMC1A unstable and led to

less cytoplasmic accumulation, whereas SMC1A knock-

downdidnot influence SMC3 stability or cytoplasmic accu-

mulation. A recent study63 reported that SMC1A and SMC3

ATPase active sites had differential effects on cohesin

ATPase function and that SMC3 has a unique function in

DNA tethering. Our database mining showed significant

signal overlap between SMC1A and SMC3 binding sites in

the genome, but only private peaks from SMC3 enriched
ust 3, 2023



CTCF motifs in the two cell lines studied. As an insulator

that can block enhancers to regulate target genes, CTCF

was first discovered as a transcriptional repressor and

believed to execute a hub role in controlling gene expres-

sion.49,64 In our findings, CTCF might also play a crucial

role in governing RUVBL1 gene regulation, potentially

through insulating the rs60464856 loci allelically.

RUVBL1, also known as RuvB-like AAA ATPase 1 or

TIP49, possesses an ATP-dependent DNA helicase activity

and has been reported to regulate a wide range of cellular

processes,65 including chromatin decondensation,66,67

misfolded protein aggregation,68 and transcription regula-

tion.69 In addition to the previously reported mTORC1

pathway,70 our enrichment analysis demonstrated that

RUVBL1 expression was consistently correlated with cell-

cycle regulation and MYC signaling activities in both

cell lines and tumor tissues. This result demonstrates a

potential use of RUVBL1-selective inhibitors in treating

prostate cancer.71,72 The result also suggests using the

rs60464856 genotype to stratify a target population for

future clinical trials.

One potential limitation of this study is inconsistent re-

sults in some tests among different cell lines. Although

these inconsistencies might attribute to genetic heterogene-

ity, we also want to highlight that some hits found exclu-

sively in DU145 cells are reported to be functional in pros-

tate cells—for instance, the established functional variants

residing in the binding sites of the transcription factors

TMPRSS2-ERG and HNF1B.73 Additionally, to increase our

gRNA library coverage, we can use novel CRISPR systems

with expanded PAM site compatibility. With stringent li-

brary preparation and screening processes, the biological

implications for the functional variants discovered exclu-

sively in only a singular cell line are still worth investigating,

which might uncover unique SNP and gene functions spe-

cific to the subline of interest. In summary, we applied

CRISPRi screening technology to screen for survival-essen-

tial SNPs at the genome scale. We identified more than a

hundred functional SNPs that regulate cell proliferation.

We further characterized the rs60464856 risk variant for

its regulatory role in the prostate context and target gene

RUVBL1 for its functional role in prostate-cancer cell prolif-

eration and disease progression. This result will enrich our

knowledge of PCa predisposition and provide insight into

the cancer risk classification and potential therapeutic tar-

gets for personalized treatment.
Data and code availability

The accession number for the results reported in this paper is GEO:

GSE224654, which includes CRISPRi screening gRNA readout

(GEO: GSE224653) and RNA-seq expression for the RUVBL1

knockdown experiment (GEO: GSE224646). The gRNA sequence

design, raw and normalized count, and the eQTL mapped with

the candidate SNP are listed in Table S2. The RIGER analysis output

is listed in Table S3. The publicly available datasets used are listed

in Table S4. The SILAC proteomics sequencing result is listed in
The American
Table S5. Detailed information about the rs60464856 base editing

can be accessed in the github repository (https://github.com/

Yijun-Tian/Base_Editing-rs60464856).
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Supplemental information can be found online at https://doi.org/
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ChIP-Atlas, https://chip-atlas.org/

count_spacer.py,https://github.com/fengzhanglab/Screening_Protocols_

manuscript

Cutadapt, https://cutadapt.readthedocs.io/en/stable/

cworld-dekker, https://github.com/dekkerlab/cworld-dekker

Depmap, https://depmap.org/portal/

FinnGen PheWAS, https://r8.finngen.fi/

GEO, https://www.ncbi.nlm.nih.gov/geo/

GSEA, https://www.gsea-msigdb.org/gsea/index.jsp

GTEx, https://gtexportal.org/home/

NCI GDC Data Portal, https://portal.gdc.cancer.gov/
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RSEM, https://github.com/deweylab/RSEM

Sequence Read Archive (SRA), https://www.ncbi.nlm.nih.gov/sra/

TCGA chromatin accessibility landscape, https://gdc.cancer.gov/

about-data/publications/ATACseq-AWG

TCGA Pan-Cancer Splicing Quantitative Trait Loci, http://www.

cancersplicingqtl-hust.com/#/

TCGA PancanQTL, http://bioinfo.life.hust.edu.cn/PancanQTL/

TCGA SpliceSeq, https://bioinformatics.mdanderson.org/TCGA

SpliceSeq/

Uniprot, https://www.uniprot.org/
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