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Abstract

Background In the primary analysis of the PREDICT trial, a higher hemoglobin target (11-13 g/dl) with darbepoetin alfa
did not improve renal outcomes compared with a lower hemoglobin target (9-11 g/dl) in advanced chronic kidney disease
(CKD) without diabetes. Prespecified secondary analyses were performed to further study the effects of targeting higher
hemoglobin levels on renal outcomes.

Methods Patients with an estimated glomerular filtration rate (¢GFR) 8—20 ml/min/1.73 m? without diabetes were randomly
assigned 1:1 to the high- and low-hemoglobin groups. The differences between the groups were evaluated for the following
endpoints and cohort sets: eGFR and proteinuria slopes, assessed using a mixed-effects model in the full analysis set and the
per-protocol set that excluded patients with off-target hemoglobin levels; the primary endpoint of composite renal outcome,
evaluated in the per-protocol set using the Cox model.

Results In the full analysis set (high hemoglobin, n=239; low hemoglobin, n=240), eGFR and proteinuria slopes were
not significantly different between the groups. In the per-protocol set (high hemoglobin, n=136; low hemoglobin, n=171),
the high-hemoglobin group was associated with reduced composite renal outcome (adjusted hazard ratio: 0.64; 95% confi-
dence interval: 0.43-0.96) and an improved eGFR slope (coefficient: + 1.00 ml/min/1.73 mz/year; 95% confidence interval:
0.38-1.63), while the proteinuria slope did not differ between the groups.

Conclusions In the per-protocol set, the high-hemoglobin group demonstrated better kidney outcomes than the low-hemo-
globin group, suggesting a potential benefit of maintaining higher hemoglobin levels in patients with advanced CKD without
diabetes.

Clinical trial registration Clinicaltrials.gov (identifier: NCT01581073).
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Introduction

Chronic kidney disease (CKD) is a globally significant
burden that affects society, with an estimated prevalence of
10-13% worldwide. Moreover, the number of patients with
CKD requiring renal replacement therapy is estimated to
be 4.9-7.0 million [1, 2]. Anemia is a common complica-
tion among patients with CKD not requiring dialysis [3,
4]. The prevalence of anemia increases as the stage of
CKD progresses, from 8% at stage 1 to 53% at stage 5
[5]. Observational studies have suggested that anemia may
be a biomarker independently associated with increased
cardiovascular (CV) and kidney events [6—8]. Erythro-
poiesis-stimulating agents (ESAs) have been widely used
to treat renal anemia in patients with CKD on dialysis
and those not requiring dialysis. However, interventional
studies using ESAs in patients with CKD not requiring
dialysis have reported conflicting results [9-14], and the
optimal target hemoglobin levels for patients with CKD
are unknown [10-13].

A small randomized controlled trial (RCT) conducted
by Gouva et al. has demonstrated favorable effects of early
intervention using erythropoietin alfa on renal outcomes
[9]. Thereafter, three large RCTs failed to show the clinical
benefits of targeting higher hemoglobin levels. In the Car-
diovascular Risk Reduction by Early Anemia Treatment with
Epoetin Beta (CREATE) trial, using epoetin beta to target
high hemoglobin levels (13.0-15.0 g/dl) vs. low hemoglobin
levels (10.5-11.5 g/dl) also failed to reduce the incidence of
CV events, while the number of patients requiring dialysis
therapy significantly increased [11]. In the Correction of
Hemoglobin and Outcomes in Renal Insufficiency (CHOIR)
trial, patients with CKD not requiring dialysis were ran-
domly assigned to target either a high (13.0-13.5 g/dl) or
a low hemoglobin level (10.5-11.0 g/dl) using epoetin alfa
[12]. However, targeting higher hemoglobin levels was
associated with a significantly higher risk of a composite
outcome of death and CV events. In the Trial to Reduce
Cardiovascular Events with Aranesp Therapy (TREAT),
patients with CKD not requiring dialysis who have diabetes
were randomly assigned to a placebo and a group receiving
darbepoetin alfa to achieve a hemoglobin level of > 13 g/dl
[13]. Similarly, darbepoetin alfa failed to reduce the risk of
the two primary composite outcomes (CV outcome [death
or a CV event] and renal outcome [death or a renal event]).
However, it significantly increased the risk of stroke. A
meta-analysis report has concluded that targeting higher
hemoglobin levels with ESAs reduces the need for blood
transfusions but increases the risk of CV and kidney events
in patients with CKD [16, 17].

Recently, hypoxia-inducible factor prolyl-hydroxylase
inhibitors (HIF-PHIs) have been available. Almost all the
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studies have successfully demonstrated that the efficiency
of HIF-PHIs in treating anemia is comparable with that
of ESAs [18-21]. However, no clinical studies have ever
shown the clear advantage of HIF-PHIs over ESAs or pla-
cebo on the kidney or CV outcomes in patients with CKD
not requiring dialysis. Moreover, the optimal target hemo-
globin levels using HIF-PHIs for patients with CKD not
requiring dialysis have not been previously reported [22].

Tsubakihara et al. conducted an RCT in Japan to inves-
tigate the renal protective effects [14, 15]. Although the
primary analysis was negative, post-hoc analyses demon-
strated that maintaining hemoglobin levels (11-13 g/dl) with
darbepoetin alfa improved renal outcomes as compared to
maintaining hemoglobin levels (9-11 g/dl) with epoetin alfa
in patients at stage 5 CKD not requiring dialysis, particu-
larly those without diabetes. Based on these findings, we
conducted an RCT, namely ‘Prevention of end-stage kid-
ney disease (ESKD) by Darbepoetin Alfa in CKD Patients
with Non-diabetic Kidney Disease (PREDICT) trial.” This
trial aimed to prove our hypothesis that targeting a higher
hemoglobin level (11-13 g/dl) with darbepoetin alfa would
prevent ESKD as compared to targeting a lower hemoglobin
level (9-11 g/dl) in patients with advanced CKD without
diabetes [23]. The primary analysis revealed that targeting a
higher hemoglobin level did not significantly improve renal
outcomes compared with targeting a lower hemoglobin level
[24]. It is noteworthy that in the PREDICT trial, the progno-
sis of the high-hemoglobin group demonstrated a tendency
to improve (hazard ratio [HR] 0.78; 95% confidence interval
[CI] 0.60—1.03), whereas the prognosis in the three studies
mentioned above [11-13] yielded opposite results.

In this prespecified secondary analysis of the PREDICT
trial, we aimed to further clarify the effects of targeting
hemoglobin levels using darbepoetin alfa on renal outcomes,
including the primary endpoint of composite renal endpoint
in the per-protocol set (PPS) and the secondary endpoints of
eGFR and proteinuria slopes in the full analysis set (FAS)
and PPS, in patients with advanced CKD without diabetes.

Materials and methods
Study design

The PREDICT trial was a multicenter, randomized, open-
label, parallel-group study performed in patients with an
estimated glomerular filtration rate (eGFR) of 8-20 ml/
min/1.73 m?, renal anemia with a hemoglobin level < 10 g/dl
and no diabetes. The detailed study design and methods have
been previously described [23, 24]. The trial was designed,
implemented, and overseen by the PREDICT Executive
Committee, along with representatives of the Translational
Research Center for Medical Innovation, Kobe, Japan, a
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third-party organization. The study was registered at Clini-
caltrials.gov (identifier: NCT01581073).

Study population and randomization

A total of 491 patients with CKD without diabetes, aged
20-85 years, with an eGFR of 8-20 ml/min/1.73 m? calcu-
lated with the Japanese equation [25] and with a hemoglobin
level < 10 g/dl, were randomly assigned to a high- (11-13 g/
dl) or a low-hemoglobin (9-11 g/dl) group using darbepoetin
alfain a 1:1 ratio. The registration period was from Decem-
ber 2011 to June 2014, and the observation period lasted
two years after the last patient enrollment, up to June 2016.

PPS was defined as patients in the FAS whose hemo-
globin level had been measured at least twice after 28 weeks
(inevitably, the observation period was > 32 weeks), the
mean of which was within the target range, and more than

half of each measurement was within the target range
(Fig. 1).

Outcomes

The outcomes of the PREDICT trial have also been
described previously [23, 24]. The primary endpoint was
the onset of a composite renal endpoint, including the initia-
tion of dialysis, kidney transplantation, reaching an eGFR of
6 ml/min/1.73 m?, and > 50% of reduction in eGFR. Among
the prespecified secondary endpoint, the initiation of dialy-
sis, >50% reduction in eGFR, all-cause death, composite CV
event, stroke, myocardial infarction, and the development
of malignancy have already been reported in our previous
report [24]. Here, in addition to the composite renal end-
point in the PPS, the unreported and prespecified secondary
endpoints of changes in eGFR and proteinuria in the FAS

491 patients enrolled
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and PPS were assessed. Serious adverse events including
all-cause death, CV events, Malignant neoplasms in the PPS
were also assessed.

Statistical analysis

The methods of statistical analysis were described previ-
ously [23, 24]. The differences in the primary endpoint
between the study groups in the PPS were assessed using
the Kaplan—Meier method with a log-rank test. Multivari-
able Cox regression analysis was also performed to estimate
HRs with 95% CIs for the composite renal endpoint in the
PPS. The analyses were censored on the date of death and
the end of the observation period (2 years from baseline)
without a composite renal endpoint. The proportional haz-
ards assumption was checked using Schoenfeld residual, and
no violation was recorded. Changes in eGFR and proteinuria
were assessed as eGFR slope (ml/min/1.73 m*/year) and pro-
teinuria slope (g/gCr/year), respectively. The eGFR and pro-
teinuria slopes were calculated using a linear mixed effects
model with an unstructured variance—covariance matrix and
patient-level random slopes and intercepts. The effects of
the higher hemoglobin targeting on eGFR and proteinuria
slopes were evaluated by adding an interaction term between
the high-hemoglobin group and time in the mixed-effects
model using the FAS and PPS, respectively. The multivari-
able models were adjusted for sex, age, baseline eGFR, base-
line hemoglobin, systolic blood pressure, and proteinuria.
These covariates as well as the interaction terms between
each covariate and time were included in the model.

All test statistics used in the analyses were the results
of two-sided tests with a significance level of 5%. Data are
reported as number (percentage), mean + standard deviation,
median (interquartile range), or estimated value with 95%
CI as appropriate. Normality was assessed by inspecting his-
tograms. All statistical analyses were performed using SAS
9.4 (SAS Institute Inc., Cary, NC, USA) and Stata/MP 17.0
(StataCorp., College Station, TX, USA).

Results
Analysis of cohort sets

Of the 479 patients in the FAS (high-hemoglobin group,
239; low-hemoglobin group, 240), 307 were included in the
PPS (high-hemoglobin group, 136; low-hemoglobin group,
171) (Fig. 1). The patients’ characteristics at baseline are
summarized in Table 1. There was no significant difference
between the study groups. Figure 2 illustrates the transition
of hemoglobin levels by study group in the PPS. The mean
hemoglobin levels after 28 weeks were 11.8 g/dl and 10.1 g/
dl in the high- and low-hemoglobin groups, respectively.
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The medians (interquartile ranges) darbepoetin alfa doses
in each visit ranged from 67 to 100 ug/4 weeks and 33 to
55 pg/4 weeks in the high- and low-hemoglobin groups
(Supplementary Fig. 1).

Changes in eGFR and proteinuria in FAS

The crude mean + SD eGFR slopes in the high- and low-
hemoglobin groups were — 3.27 +3.32 and — 3.77+3.25 ml/
min/1.73 m?/year, respectively. In the multivariable analy-
sis, the high-hemoglobin group was not associated with
eGFR slope (coefficient: +0.59; 95% CI — 0.06 to + 1.24;
P=0.075), while male sex, lower age, and higher proteinuria
at baseline were significantly associated with faster eGFR
decline (Supplementary Fig. 2).

The crude mean + SD proteinuria slopes in the
high- and low-hemoglobin groups were + 0.65 +0.063
and+0.62 +0.055 g/gCr/year, respectively, with no signifi-
cant difference in the multivariable model (Supplementary
Table 1).

Composite renal endpoint in PPS

The composite renal endpoint occurred in 40 (29%) and 69
(40%) patients in the high- and low-hemoglobin groups,
respectively. The Kaplan—Meier plots of the composite
renal endpoint in the PPS are provided in Fig. 3 (log-rank
test: P=0.045). In the multivariable Cox proportional haz-
ard regression analysis, high hemoglobin levels indicated a
lower risk of composite renal endpoint (adjusted HR 0.64;
95% CI 0.43-0.96; P=0.031). Male sex, lower age, lower
eGFR, and higher proteinuria were associated with a higher
risk of composite renal endpoint (Fig. 4).

Changes in eGFR and proteinuria and adverse
events in PPS

The changes in eGFR and proteinuria were also evalu-
ated in the PPS. The crude mean + SD eGFR slopes in the
high- and low-hemoglobin groups were — 2.17 +3.05 and
— 3.19+2.61 ml/min/1.73 m?/year, respectively. In the
multivariable analyses, the high-hemoglobin group was
associated with improved eGFR slope (coefficient: + 1.00;
95% CI 0.38-1.63; P=0.002), while lower age and higher
proteinuria at baseline were associated with faster eGFR
decline (Fig. 5). The crude mean + SD proteinuria slopes in
the high- and low-hemoglobin groups were 4 0.48 +0.080
and +0.53 +0.068 g/gCr/year, respectively, with no signifi-
cant difference between the study groups in the multivari-
able model similar to the results in the FAS (Supplementary
Table 1). The frequencies of serious adverse events were not
significantly different between the two groups (Supplemen-
tary Table 2).
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Table 1 Baseline characteristics in per-protocol set

Total High-hemoglobin group Low-hemoglobin group
n=307 n=136 n=171

Male sex 171 (56) 73 (54) 98 (57)
Age, years 71+11 71+10 70+11
Body mass index, kg/m? 222+3.1 22.0+3.2 22.4+3.0
Smoking

Current/ever 245 (80) 109 (80) 136 (80)

Never 34 (11) 13 (9.6) 21 (12)

Unknown 28 (9.1) 14 (10) 14 (8.2)
Etiology of chronic kidney disease

Chronic glomerulonephritis 83 (27) 30 (22) 53 (31)

Hypertensive nephrosclerosis 164 (53) 79 (58) 85 (50)

Polycystic kidney disease 30 (10) 17 (12) 13(8)

Others 30 (10) 10(7) 20 (12)
History of cardiovascular disease

Acute myocardial infarction 12 (3.9) 5@3.7) 7(4.1)

Heart failure 29 (9.4) 17 (12) 12 (7.0)

Stroke 27 (8.8) 13 (9.6) 14 (8.2)

Peripheral artery disease 5(1.7) 1(0.7) 4(2.4)
Erythropoiesis-stimulating agents naive 214 (70) 97 (71) 117 (68)
Systolic blood pressure, mm Hg 132+ 15 131+17 132+ 14
Diastolic blood pressure, mm Hg 72+12 71+12 73+11
eGFR, ml/min/1.73 m? 14+3 1443 1443
Chronic kidney disease

Stage 4 122 (40) 59 (43) 63 (37)

Stage 5 185 (60) 77 (57) 108 (63)
Hemoglobin, g/dl 9.4+0.5 9.4+0.5 9.3+0.6
Ferritin, ng/ml 148 (96-233) 144 (92-222) 150 (97-241)
Transferrin saturation, % 32+11 32+11 33+11
Uric acid, mg/dl 72+1.7 72+1.8 72+1.6
Albumin, g/dl 38+04 38+04 3.8+0.4
Proteinuria, mg/dl 58 (21-116) 47 (20-113) 61 (25-117)
C-reactive protein, mg/dl 0.09 (0.03-0.20) 0.09 (0.03-0.20) 0.08 (0.03-0.20)
Iron supplements 91 (30) 42 (31) 49 (29)
Antihypertensive drugs 278 (91) 124 91) 154 (90)

ACE inhibitors 38 (12) 17 (12) 21 (12)

Angiotensin II receptor blockers 187 (61) 91 (67) 96 (56)
Lipid-lowering drugs 116 (38) 55 (40) 61 (36)
Spherical carbonaceous adsorbent 63 (21) 27 (20) 36 (21)

eGFR estimated glomerular filtration rate, ACE angiotensin-converting enzyme

Continuous variables are presented as mean + standard deviation if normally distributed, and as median (interquartile range) if non-normally dis-
tributed. Categorical variables are presented as n (percent)

Discussion

In this prespecified secondary analysis of the PREDICT
trial, we found that targeting a higher hemoglobin level at
11-13 g/dl with darbepoetin alfa did not improve eGFR and

proteinuria slopes as compared to targeting a lower hemo-
globin level at 9—11 g/dl in patients with advanced CKD

without diabetes. These were in line with the results of the
primary analysis in our study that a higher hemoglobin target
did not reduce the composite renal outcome [24]. On the
other hand, the PPS analysis that excluded patients with off-
target hemoglobin levels demonstrated a 36% reduction in
the composite renal endpoint and an improvement in eGFR
slope of 1 ml/min/1.73 m?/year in the high-hemoglobin
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Fig.2 Transition of hemoglobin levels of the two groups in per-pro-
tocol set (n=307). The plots with capped spikes are medians with
interquartile ranges. Values are mean hemoglobin after 28 weeks in
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Fig.3 Cumulative incidence of the composite renal endpoint by
study group in per-protocol set (n=307). The composite renal end-
point includes initiation of maintenance dialysis, kidney transplanta-
tion, eGFR < 6 ml/min/1.73 m?, and a 50% reduction in eGFR. eGFR
estimated glomerular filtration rate

group compared to the low-hemoglobin group. These were
in contrast to the results of previous RCTs indicating that
higher hemoglobin targeting was linked to a relatively worse
prognosis [11-13, 16].

In the FAS analyses of the eGFR and proteinuria slopes,
which was the prespecified secondary endpoints, we could
not demonstrate the clear benefit of higher hemoglobin
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Time, week

each study group. Target hemoglobin levels were 11-13 g/dl in the
high-hemoglobin group and 9-11 g/dl in the low-hemoglobin group

Variable Hazard ratio (95% confidence interval) P-value

High Hemoglobin group 0.64 (0.43-0.96) e 0.031
Male sex 2.03 (1.35-3.05) —=—  0.001
Age, +10 years 0.76 (0.64-0.90) - 0.001

eGFR, +10 ml/min/1.73 m?®  0.12 (0.06-0.23) +——=— <0.001
Hemoglobin, +1 g/dI 1.08 (0.75-1.56) —— 0.68
Systolic BP, +10 mm Hg 1.13 (0.99-1.28) ] 0.061
Proteinuria, +100 mg/dl 1.38 (1.19-1.59) im <0.001

_—_
01 02505 1 2 4

Fig.4 Multivariable Cox proportional hazard regression for the
composite renal endpoint in per-protocol set (n=307). The compos-
ite renal endpoint includes initiation of maintenance dialysis, kidney
transplantation, eGFR <6 ml/min/1.73 m?, and a 50% reduction in
eGFR. eGFR estimated glomerular filtration rate, BP blood pressure

targeting using darbepoetin alfa. The composite renal end-
point was reduced by 22% in the high-hemoglobulin group
(vs. low-hemoglobin group) as reported previously [24], and
the eGFR decline was 0.59 ml/min/1.73 m?*/year smaller as
presented in this study, although not statistically signifi-
cant (P=0.08 and P=0.075, respectively). Regarding the
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Variable B SE Coefficient (95% Cl)  P-value
High Hemoglobin group +1.00 0.32 | —=— 0.002
Male sex 048 033 — 0.14
Age, +10 years +0.54 0.15 - <0.001
eGFR, +10 ml/min/1.73 m?  -0.51 0.50 —_—— 0.30
Hemoglobin, +1 g/dI -0.20 0.30 i 0.49
Systolic BP, +10 mm Hg -0.13 0.099 - 0.19
Proteinuria, +100 mg/d| -0.87 0.17 —a— <0.001
_
-1 0 1
— —>
eGFR decline Faster  Slower

Fig.5 Association between eGFR slope (ml/min/1.73 m2/year) and
each covariate in-per protocol set (n=307). Values are for the interac-
tion term between each variable and time in the mixed-effects model
for eGFR. B unstandardized regression coefficient, SE standard error,
CI confidence interval, eGFR estimated glomerular filtration rate, BP
blood pressure

proteinuria slope analysis, the mean baseline value was only
58 mg/dL. Therefore, it is difficult to draw any conclusion
about the anti-proteinuric effects in this study. Our previous
report has also revealed that the rates of CV events were not
significantly different between the groups. The PPS analy-
ses in this study suggested that high-hemoglobin targeting
was associated with better kidney outcomes among patients
with advanced CKD without diabetes and who maintained
the target hemoglobin levels without violating the protocol.
Darbepoetin alfa, when used properly to maintain the target
hemoglobin level at 11-13 g/dl, may exert good effects on
the kidney as previously described [14, 15].

As aforementioned, a meta-analysis has demonstrated
the potential harm of targeting a higher hemoglobin level
(> 13 g/dl) using ESAs in patients with CKD not requiring
dialysis [16]. One of the main differences was the target level
in the high-hemoglobin group; the target in the three major
RCTs was > 13 g/dl [11-13], whereas in our study, the target
was not normalization but the middle range at 11-13 g/dl.
Taken together with our previous report [24], the PREDICT
study demonstrates that maintaining hemoglobin levels at
11-13 g/dl compared with 9-11 g/dl did not at least worsen
the prognosis of the patients.

However, the results of the PPS analysis need to be inter-
preted with caution. Hypo-responsiveness to ESAs was
reported to be associated with worse kidney outcomes and
CV prognosis [25, 26]. Patients unable to achieve the target
hemoglobin level may have been hypo-responsive to ESAs.
Especially in the high-hemoglobin group, 57 out of 200

patients were excluded because the lower hemoglobin lev-
els than the target. Therefore, it is still difficult to conclude
from the PPS analysis that maintaining hemoglobin levels
at 11-13 g/dl protects the kidney more than at 9—11 g/dI.

Concerning the mechanisms of ESAs on the CV progno-
sis and renal outcomes, both beneficial and harmful effects
have been postulated. The beneficial effects for organ pro-
tection may be independent of anemia correction but can be
attributed to the non-hematological effects of rHuEPO that
prevent tissue damage [27]. The potential harm of ESAs
may include elevated blood pressure, increased viscosity,
and increased platelet number and aggregation [28]. The
balance of these factors may have led to different results in
RCTs, including this study, depending on the setting of the
trial, such as target hemoglobin levels, dosage and kinds of
ESA reagents, as well as participants’ characteristics with
different risks for CV and renal events. Two RCTs involving
patients with CKD receiving kidney transplantation have
revealed the renoprotective effects of maintaining normal
hemoglobin levels with ESAs on renal outcomes [29, 30].
The participants were relatively young and had a lower risk
of CV events than those in other RCTs involving patients
with CKD in the pre-dialysis stage.

Regarding the other factors, male sex and higher urinary
protein levels at baseline were independently associated with
worse renal outcomes in line with those of previous studies
[31, 32]. Our study also showed that older age was asso-
ciated with better renal outcomes after adjusting for other
clinical factors. This is probably because those who had
hypertensive nephrosclerosis with slower CKD progression
were relatively old, while those who had glomerulonephritis
with rapid CKD progression were relatively young [33].

Recently, HIF-PHIs have been utilized in treating renal
anemia in patients with CKD not requiring dialysis. Many
preclinical studies have shown the potential benefit of HIF-
PHISs for ischemic organ damage, including the heart and
kidney [35-36]. To date, clinical studies have not demon-
strated the detrimental effects of HIF-PHIs [17-21, 37, 38].
Since the mechanism of HIF-PHIs function is different from
that of ESAs [34, 39, 40], the data of hemoglobin targeting
studies obtained by ESA treatment cannot be directly applied
to understand the potential benefit or harm of HIF-PHIs in
the clinical setting. RCTs to analyze the effects of targeting
high vs. low hemoglobin levels on the prognosis of patients
with CKD not requiring dialysis using HIF-PHIs will pro-
vide clinically useful information. Due to the difference in
the relatively lower incidence of CV events in patients with
CKD in Japan than in Western countries [41], clinical trials
focusing on renal outcomes by targeting high hemoglobin
levels with HIF-PHIs should be conducted in each region.

Our study had several potential limitations. First, only
patients with CKD in Japan were included in the study, and
Japan has a much lower incidence of CV events. Therefore,
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our results may underestimate the potential harm of CV dis-
eases and may not be generalized to all patients with CKD
in other places. Nevertheless, this could also be a strength
of our study. Since the rates of CV events in our study were
low, only 8% in the high- and 7% in the low-hemoglobin
groups [24], the net effects of higher hemoglobin levels
on renal outcomes were focused on without considering
the indirect effects of CV events. Second, the difference in
achieved hemoglobin levels was not more significant than
expected, leading to insufficient power to detect the group
differences in outcomes. The PREDICT trial was planned
and conducted based on the data from the previous study
performed in Japan [14], where the difference in the hemo-
globin levels between high- and low-hemoglobin groups
was approximately 2 g/dl. However, the actual difference in
this study was only 1.2 g/dl in the FAS and 1.7 g/dl in the
PPS. Third, a prespecified method for making up the PPS
may not be the best. Patients who could not reach the higher
target levels were excluded due to the violation of protocol.
As mentioned above, the patients may have been hypore-
sponsive to ESA therapy and did not necessarily intend to
violate protocols. Due to the selection bias from this, the
PPS analysis may overestimate the true effects of targeting
higher hemoglobin levels.

Conclusions

In summary, in this prespecified secondary analysis of the
PREDICT trial, the FAS analysis failed to demonstrate
that targeting a high hemoglobin level at 11-13 g/dl with
darbepoetin alfa reduced the eGFR decline or proteinuria
increase as compared to targeting a low hemoglobin level at
9-11 g/dl in patients with advanced CKD without diabetes.
In the PPS that excluded patients whose hemoglobin levels
did not match the target, the high-hemoglobin group dem-
onstrated better kidney outcomes than the low-hemoglobin
group, suggesting the potential benefit of maintaining higher
hemoglobin levels. Further prospective studies are needed to
determine the optimal hemoglobin target levels using ESAs
or HIF-PHISs in patients with CKD not requiring dialysis.
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