
Surgery Open Science 15 (2023) 1–11

Available online 6 August 2023
2589-8450/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Research Paper 

Deep learning based suture training system 

Mohammed Mansour a,*, Eda Nur Cumak a, Mustafa Kutlu a, Shekhar Mahmud b 

a Department of Mechatronics Engineering, Sakarya University of Applied Sciences, Sakarya, Turkey 
b Department of Systems Engineering, Military Technological College, Muscat, Oman   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Suture training 
Classification 

A B S T R A C T   

Background and objectives: Surgical suturing is a fundamental skill that all medical and dental students learn 
during their education. Currently, the grading of students' suture skills in the medical faculty during general 
surgery training is relative, and students do not have the opportunity to learn specific techniques. Recent 
technological advances, however, have made it possible to classify and measure suture skills using artificial 
intelligence methods, such as Deep Learning (DL). This work aims to evaluate the success of surgical suture using 
DL techniques. 
Methods: Six Convolutional Neural Network (CNN) models: VGG16, VGG19, Xception, Inception, MobileNet, and 
DensNet. We used a dataset of suture images containing two classes: successful and unsuccessful, and applied 
statistical metrics to compare the precision, recall, and F1 scores of the models. 
Results: The results showed that Xception had the highest accuracy at 95 %, followed by MobileNet at 91 %, 
DensNet at 90 %, Inception at 84 %, VGG16 at 73 %, and VGG19 at 61 %. We also developed a graphical user 
interface that allows users to evaluate suture images by uploading them or using the camera. The images are then 
interpreted by the DL models, and the results are displayed on the screen. 
Conclusions: The initial findings suggest that the use of DL techniques can minimize errors due to inexperience 
and allow physicians to use their time more efficiently by digitizing the process.   

Introduction 

Medical education aims to provide students with basic professional 
competencies, with patient safety as the top priority. While theoretical 
education is important, practical training is also necessary to equip 
students with the knowledge and skills they need. The acquisition of 
basic skills, such as surgical suturing, is crucial in the field of healthcare. 
A study conducted in 2013 at the Istanbul Faculty of Medicine found that 
only 71.6 % of 283 medical students surveyed were able to participate in 
surgical suture training, with 27.6 % feeling inadequate in this area [1]. 

Despite being a basic skill that all medical and dental students should 
learn (see Fig. 1), surgical suture training is not always emphasized in 
educational institutions for various reasons. Typically, suture placement 
by students is evaluated by experienced faculty members in surgical 
departments. However, this grading process can be burdensome for 
experienced surgeons, particularly under increasing workload and 
difficult conditions, and may also be a challenge for students who do not 
have enough time for training. The gold standard for suture 

classification is expert evaluation during surgical training, but this can 
be difficult to coordinate, especially in undergraduate education. The 
COVID-19 pandemic has further disrupted the feasibility of these eval-
uations in medical education. One of the main purposes of medical ed-
ucation is to provide medical school students with basic professional 
competencies. Although it is not enough for students to receive only 
theoretical education, patient safety should be chosen as the most 
important goal, practical training should be given, and they should be 
equipped with knowledge and skills. 

Recent medical studies have used computer vision [2] methods to 
classify and diagnose medical data, often achieving better results than 
medical doctors. It is well-known that these methods have been used to 
address deficiencies in the field. The development of basic medical skills 
has been a crucial focus in medical education in recent years. The 
training of medical students and hospital staff is evaluated by experts, 
and the feedback provided can be objectively applied without the need 
for subjective decision-making. This section reviews the use of 
technology-enhanced suture training based on system analysis and deep 
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learning models. In their study, Ton et al. developed a computer vision 
algorithm to assess suturing ability [3]. This algorithm uses a synthetic 
deep-formed platform to evaluate suture skills. When performing the 

sewing operation on the platform, the algorithm takes into account 
various metrics such as the entry and exit times of the suture needle, the 
entry and exit points, and the length of the needle track. Woonjae et al. 
developed a flexible sensor for suture training to improve the training 
and working conditions of hospital personnel [4]. They believed that 
this sensor, embedded in an artificial skin simulator, would enhance the 
acquisition of surgical skills, particularly in terms of sensory training. 
Handelmann et al. used a combination of computer vision-based soft-
ware and fiber optic strain sensors to evaluate suture performance in the 
fields of general surgery and eye surgery [5]. The suture quality was 
evaluated using computer vision software, while the suture flow was 
assessed based on the voltage measurement of an optical fiber placed 
near the wound. Dubrovski et al. aimed to create an effective feedback 
system to facilitate motor learning skills by determining the forces and 
movements exerted on tissue during suturing [6]. They believed this 
system could be a viable tool for teaching basic technical skills. The main 
focus of the study was to examine, through detailed analysis, whether 
specific process measurements can be applied to hand movements and 
forces. Dose et al. have argued that it is possible to conduct an objective 
assessment of surgical skills using skill-based video analysis systems [7]. 
The aim of their study was to create a comprehensive surgical instru-
ment. The device, developed by the Surgical Computing and Oncology 
and Technology and Imaging Research Group, is a dexterity-based mo-
tion analyzer. While these methods have been useful, there is still room 
for improvement by incorporating new data and simpler methods. 

Deep learning (DL) and deep transfer learning are important tech-
niques in data science and artificial intelligence that are used in statis-
tical and predictive modeling [8–11]. Convolutional neural networks 
(CNN) are a type of DL architecture specifically designed for input for-
mats such as images and are often used for image recognition and 
classification (see Fig. 2) [12–15]. These deep neural networks have 
been successful in a variety of real-world applications, including image 
classification, object detection, segmentation, and face detection. 
Transfer learning involves taking the classifier layer from a pretrained 
CNN and fine-tuning it on the target dataset [16]. This can reduce the 
training demands and is a common technique for using deep CNNs on 
small datasets. 

The goal of this study is to predict the success of suture images using 
CNN transfer learning. This is the first study to use DL to classify suture 
images and assess the performance of different CNN models. Six well- 
known CNN models; VGG 16, VGG 19, Xception, Inception, Mobile 

Fig. 1. Suture training example.  

Fig. 2. CNN structure example.  

Fig. 3. Study flow chart.  

Fig. 4. System Setup: 1) Laptop, 2) Camera 3) Suture pad.  
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Fig. 5. Successful suture images example.  

Fig. 6. Failed suture images example.  

Fig. 7. Data augmentation.  
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Net, and Dens Net were used to classify a dataset containing two image 
classes: successful and unsuccessful [17]. The methods and system 
description are provided in Methods section. In Results section, the re-
sults are presented and explained. Discussion section gives the discus-
sion. Finally, conclusions are drawn and the potential future 
applications are discussed in Conclusion section. 

Methods 

The study began by constructing the dataset, which consisted of two 
types of suture images: successful and unsuccessful. Data augmentation 
was then performed, and CNN transfer learning models were used and 
evaluated for classification to determine the best model. The flow chart 
of the study is shown in Fig. 3. 

Data collection 

The data was collected from a polymer suture training pad (RTV 2) 
produced with a mold (see Fig. 4). In addition, to generate sufficient data 
for DL, search engine results were also collected and added to the 
database based on keywords such as “suture,” surgical suture material,” 
and” suture surface.” Examples of both the successful and unsuccessful 

Table 1 
Data augmentation methods and parameters.  

Method Probability Min. 
factor 

Max. 
factor 

Max. left 
rotation 

Min. left 
rotation 

Zoom  0.3 1.1 1.6 – – 
Rotation  0.7 – – 10 10  

Table 2 
Parameter setting.  

Parameter Value 

Image size 224*224*3 
Convolutional and Max Pooling CNN Transfer learning 
Learning rate 0.0001, 0.0002 
Epochs 100 
Activation function Sigmoid 
Dropout rate 0.5, 0.7  

Fig. 8. Xception model training and validation accuracy and accuracy loss.  

Fig. 9. Inception model training and validation accuracy and accuracy loss.  
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Fig. 10. VGG16 model training and validation accuracy and accuracy loss.  

Fig. 11. VGG19 training and validation accuracy and accuracy loss.  

Fig. 12. MobileNet training and validation accuracy and accuracy loss.  
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class are shown in Fig. 5 and Fig. 6, respectively. All of the collected 
results were examined by a medical specialist, and a dataset was created 
by sequentially adding those that were considered suitable for use in the 
study. 

Image processing and data augmentation 

To process and analyze the data, a custom Python application was 
created. The images selected for the dataset were also subjected to a 
series of data augmentation techniques, which involve generating new 
data from the existing dataset. The primary purpose of this process is to 
strengthen the deep neural network through diversification [18,19]. As 
shown in Fig. 7, data augmentation techniques such as rotation, zoom-
ing, cropping, and filtering can be used to increase the number of data 
(see Table 1) [18,20–23]. The table gives the changes of zoom and 
rotation few specifications done to the original images where Proba-
bility is the probability that a brightness chosen from the region is less 
than or equal to a given brightness value, the max and min filter effec-
tively follows the smooth edges of the image, and max and min left 
rotation are counter clockwise rotation of the original images. These 
specifications of changes were applied to gather new images from the 

original dataset and a total of 2005 images were used. 

Transfer learning & CNN models 

Transfer learning, or learning from related tasks, has gained 
increasing attention in recent years [24–26]. In this study, we used six 
popular CNN architectures with pre-trained weights for transfer 
learning. The suture images were classified as successful or unsuccessful 
using VGG 16, VGG 19, Xception, Inception, MobileNet, and DenseNet. 
CNNs are a type of DL algorithm used to process data with spatial or 
temporal relationships. While CNNs are similar to other neural net-
works, they incorporate several convolutional layers, which adds an 
additional level of complexity. A CNN network consists of four main 
components: the input layer, the convolutional layer, the pooling layer, 
and the fully connected layer [12,27]. Convolutional layer extracted 
feature Hi feature map and Wi is the weight, bi is offset and ρ is the 
rectified Linear unit (Eq. (1)). 

Fig. 13. DensNet training and validation accuracy and accuracy.  

Fig. 14. Confusion matrix basic.  

Fig. 15. Confusion matrix of Xception.  
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Hi = ƿ(HiWi + bi) (1) 

A crucial part of a CNN is the layer clustering, which reduces the 
dimensionality of the size of convolved features while also decreasing 
the computational power needed for image processing. Pooling can be 
divided into two categories: max pooling and average pooling. While 
average pooling returns the average value of the image section, max 
pooling returns the maximum value. Dropout layers can improve the 
performance of a trained model by reducing the correlation between 
neurons and preventing overfitting. All activation functions employ the 
dropout process, although it is scaled by a factor. It collapses the spatial 
dimensions of the mapped pooled features while preserving the channel 

dimensions. When the layer is flattened and converted into a vector, 
more dimensions are added. The dense layer, also known as the fully 
connected layer, receives this vectorized feed. Fully connected layers are 
necessary due to the specific function of extracted image classification 
features. The sigmoid function makes predictions based on previously 
extracted image properties from earlier levels, and the sigmoid activa-
tion function is used in the output layers for classification into two 
classes. For the CNN models, the input image size was set to 224 × 224. 
The images were augmented before being processed through the CNN 
convolutional layer. The CNN architectures were imported directly from 
the Keras and Tensorflow libraries [28–30] with their trained weights. 
The layers and filter sizes were used without any modifications. A global 

Fig. 16. Confusion matrix of Inception.  

Fig. 17. Confusion matrix of VGG16.  

Fig. 18. Confusion matrix of VGG19.  

Fig. 19. Confusion matrix of MobileNet.  
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average pooling 2D layer was added to convert the features to a single 
element vector per image, and the sigmoid activation function was used 
in the final layer. 

CNN models application 
The CNN architecture was applied to classify the success of suture 

images. The experiments were performed using the Python program-
ming language and its libraries, including Keras, sci-kit, and Tensorflow. 
Before the classification process, the images were prepared and 
augmented to improve the accuracy of the model and reduce overfitting. 
Several hyperparameters, including the number of epochs, hidden 
layers, hidden nodes, activation functions, dropout, learning rates, and 
batch size, were used to fine-tune the model. The performance of the 
model can be influenced by hyperparameter tweaking. The hyper-
parameters used are shown in Table 2. These hyperparameters represent 
the specification of DL models applied. 

The test-split Python function was used to split the dataset. The 
dataset included (1220) images for training, (479) images for validation, 
and (306) images for testing. Six pre-trained CNN algorithms were used. 
For all CNN models, the input layer used 224 by 224 images, 100 epochs, 
a batch size of 32, a learning rate of 0.0001, early stopping mode to 
prevent overfitting, and Adam optimizer. The models performed a max- 
pooling operation in each pooling layer with a modified pool size and 
the network's rectified linear unit (RELU) function. The output classes 
used a sigmoid activation function. The hyperparameters, including the 
learning rate and epoch size, were modified during the network's 
training phase. The learning rate was tested at various settings to 
maximize the targeted performance measurement. The validation pro-
cedure was based on the total number of images in the collection. The 
accuracy improved as different epochs and batch sizes were adjusted. 

Results 

The effectiveness of the models was assessed and validated using 
training, testing, and validation techniques. Fig. 8–13 show the training 
and validation accuracy, as well as the accuracy loss, for the models 
where accuracy score is the number of correct predictions obtained and 
loss values are the values indicating the difference from the desired 

Fig. 20. Confusion matrix of DensNet.  

Table 3 
Accuracy table.  

Algorithm Accuracy (%) 

VGG19  61 
VGG16  73 
Inception  84 
DensNet  90 
MobileNet  91 
Xception  95  

Fig. 21. Accuracy chart.  

Table 4 
CNN models weighted average assessments.  

Algorithm Precision Recall F1 score 

VGG19  76  61  54 
VGG16  82  73  71 
Inception  87  84  84 
DensNet  91  90  90 
MobileNet  92  91  91 
Xception  96  95  95  
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target states [31]. I.e. the accuracy is the correctness of the model and 
accuracy loss is the sum of errors made for each example in training and 
validation sets. Loss value implies how poorly or well a model behaves 
after each iteration of optimization. The epoch refers to the one entire 
passing of training data through the algorithm. It's a hyperparameter 
that determines the process of training the DL model. Each time a 
dataset passes through an algorithm, it is said to have completed an 
epoch. 

The confusion matrix is a table that is used to define the performance 
of a classification algorithm (see Fig. 14) [32]. A confusion matrix vi-
sualizes and summarizes the performance of a classification algorithm 
using the test data. Figs. 15–20 show the confusion matrices, which 
illustrate the predicted classes and their disturbance. The accuracy 
which is calculated from confusion matrix is defined as follows (Eq. (2)), 
were TP (observation is predicted positive and is actually positive), TN 
(observation is predicted negative and is actually negative), FN (refers to 
the number of predictions where the classifier incorrectly predicts the 
positive class as negative), and FP (observation is predicted positive and 

is actually negative). The accuracy is best when it is close to 100 
[33,34,36]. 

Accuracy =
TP + TN

TP + TN + FP + FN
(2) 

The general accuracies were 61 % with VGG19, 73 % with VGG16, 
84 % with Inception, 90 % with DensNet, 91 % with MobileNet and 95 % 
with Xcpetion. Table 3 and Fig. 21 present the accuracies of CNN ar-
chitectures. The Xception algorithm is the most accurate algorithm 
among the other models. Table 4 and Fig. 22 show the assessment pa-
rameters of CNN models. In this study, these primary criteria were 
precision (Eq. (3)), recall (Eq. (4)), and F1 score (Eq. (5)) for the two 
predicted classes (success and not success) [37–40]. The results of these 
equation are evaluated based on confusion matrix as accuracy and they 
have more success when they are close to 100 [33,34,36]. 

Precision =
TP

TP + FP
(3) 

Fig. 22. Evaluation metrics for CNN architectures.  

Fig. 23. The graphical user interface.  
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Recall =
TP

TN + FN
(4)  

F1 = 2*
Precision*Recall

Precision + Recall
(5) 

QtDesigner were used to design the graphical user interface. PyQt is a 
Python adaptation of the Qt library written in C++ [41]. The interface 
includes six DL models using PyQt5 version. The suture images, either 
taken from the camera or uploaded by the user, are interpreted by DL, 
and the result information is displayed on the screen. The implemented 
graphical user interface is shown in Fig. 23. 

Discussion 

In this study, CNN models were applied to analyze and evaluate 
suture images. The performance of the CNN models was assessed using 
several standard metrics, including accuracy, specificity, precision, 
recall, and F1. Our results showed that the accuracy performance of the 
studied models was high and statistically significant. In particular, 
among the different models tested, the Xception model demonstrated 
the highest accuracy (95 %), precision (96 %), recall (95 %) and F1 
measure (95 %). This suggests that the Xception model was particularly 
effective at correctly identifying and classifying suture images. There 
have been very less methods proposed in the literature [3–5] for eval-
uating suture images and suture performance. These methods used 
computer vision-based software to evaluate the suture performance. In 
this new study, a novel approach for detecting the success of suture 
images was presented using CNN models, which achieved an accuracy of 
96 %. This new method is simple and can be easily accessed through an 
application interface. The research indicates that the use of CNN tech-
niques to predict the success of suture photos could potentially be 
beneficial for medical personnel. The findings of this study have the 
potential to significantly advance surgical education by reducing errors 
due to insufficient practice and providing physicians with efficient tools 
for digitizing the process. By using CNN models to evaluate suture im-
ages, the effectiveness of medical training and practice were aimed to be 
improved. In summary, the goal of this study was to investigate the use 
of CNN models as a means of evaluating suture images in order to 
enhance medical education and practice. 

The developed graphical user interface also allows for the evaluation 
of suture images in a user-friendly way, which has not been previously 
reported in the literature. The findings of this study have contributed 
new insights into the potential use of DL techniques to improve the ef-
ficiency and accuracy of suture training. By leveraging the power of CNN 
models, we were able to demonstrate high levels of accuracy in detecting 
the success of suture images. These results suggest that the use of DL 
approaches could potentially be beneficial for enhancing the effective-
ness of suture training programs. Additionally, the approach is simple 
and easily accessible through an application interface, making it a 
potentially useful tool for medical professionals looking to improve their 
suture skills. Overall, the results of this study provide evidence for the 
potential utility of deep learning in suture training and highlight the 
need for further research in this area. 

Conclusion 

A dataset of suture images was collected and compiled for this study, 
which involved applying CNN models through data augmentation, 
dataset preprocessing, training, and testing. Compared to other tech-
niques, CNN models have more extensive evaluation metrics parame-
ters. With an accuracy of 95 %, the proposed research is suitable for 
deployment. Given these considerations, the results of this study, which 
aims to provide suture training with the help of an application under the 
guidance of experienced surgeons in medical schools, have the potential 
to make significant contributions towards reducing the negative impacts 

of increased workload. 
In future studies, we plan to make the developed system available on 

mobile platforms to ensure wider accessibility. To further evaluate the 
effectiveness and user-friendliness of the system, user testing will be 
conducted on a sample of medical students. The results of the user 
testing will be used to identify any deficiencies in the system and to 
gather feedback on potential improvements. These findings will be taken 
into consideration as we work to address any identified deficiencies and 
enhance the overall performance of the system. 
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